首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 302 毫秒
1.
基于等离子体反应器的室内空气净化装置研究   总被引:6,自引:0,他引:6  
在对比若干室内空气净化方法之后,介绍了等离子体空气净化的能力、机理以及光催化反应,对基于等离子体反应器的室内空气净化典型装置进行系统分析。对等离子体空气净化技术的研究进行了展望,指出存在的问题和发展的方向。  相似文献   

2.
纳米催化剂作为新一代高效环保催化剂 ,在大气污染治理 ,尤其是在室内空气净化中有着广阔的应用前景。评述了纳米催化技术在光催化空气净化、汽车尾气净化、化石燃料脱硫和降低温室效应等空气净化领域的研究进展 ,并对应用纳米催化技术净化空气的关键科学问题进行了分析和展望  相似文献   

3.
纳米催化技术用于空气净化   总被引:1,自引:0,他引:1  
纳米催化剂作为新一代高效环保催化剂,在大气污染治理,尤其是在室内空气净化中有着广阔的应用前景。评述了纳米催化技术在光催化空气净化、汽车尾气净化、化石燃料脱硫和降低温室效应等空气净化领域的研究进展,并对应用纳米催化技术净化空气的关键科学问题进行了分析和展望。  相似文献   

4.
为了探究进气流量和相对湿度对活性炭吸附法和光催化转化法动态净化室内空气中总挥发性有机物(TVOC)的影响,设计了一套包含活性炭吸附器和光催化反应器的多功能空气动态净化实验装置,并利用该装置进行了室内空气净化实验。通过设置不同进气条件(进气流量和相对湿度)对室内空气进行净化实验,采用气相色谱仪对样品TVOC浓度进行检测,并与未经净化处理的空气样品进行对比,计算TVOC去除率。结果表明:该实验装置能够实现连续进气且能对进气流量和相对湿度进行精准调节;随着进气流量增大,活性炭和光催化对TVOC去除率减小;随着进气相对湿度增大,活性炭对TVOC去除率减小,光催化对TVOC的去除率呈现先增大后减小的趋势。以上实验结果为气候舱空气净化系统、家用空气净化器及室内新风过滤系统等动态空气净化系统的设计提供了参考。  相似文献   

5.
室内空气污染对人类健康的影响日益受到关注,目前空气净化系统作为室内空气污染最有效的控制方式,逐渐受到人们的青睐。针对市场上常见的空气净化器和新风净化机这2种空气净化系统,为探究2种系统净化方式的异同,分别构建了内循环、外循环净化理论模型,实际实验验证模型具有正确性。应用模型对影响两系统净化效果的因素进行分析,结果表明,相同条件下,空气净化器对PM_(2.5)去除效率高于新风净化机,且均随着风量、一次通过净化效率、时间的增大而升高,随着房间体积的增大而降低,新风净化机存在最佳建筑物换气次数。室外PM_(2.5)浓度不影响2种空气净化系统对PM_(2.5)的去除率,但随着室外浓度增大,室内PM_(2.5)剩余浓度升高。  相似文献   

6.
本文通过对造成室内空气污染的原因和现有净化技术的比较分析 ,提出采用高效空气过滤技术和浸渍活性炭吸附技术相结合的空气净化方法 ,是一项经济、有效的方法  相似文献   

7.
室内空气污染物的净化   总被引:17,自引:1,他引:17  
本文通过对造成室内空气污染的原因和现有净化技术的比较分析,提出采用高效空气过滤技术和浸渍活性炭吸附技术相结合的空气净化方法,一是项经济,有效的方法。  相似文献   

8.
电凝并式空气净化单元对颗粒物和甲醛净化效果的实验   总被引:2,自引:0,他引:2  
研究一种新型电凝并式空气净化单元对室内空气中颗粒物和甲醛的净化效果.实验结果表明,高压高频(HV-HF)电凝并装置能促使小粒子相互凝并为较大的电中性的粒子团,这些具有较高比表面积的电中性粒子团进入室内空间,能继续粘附空气中及物体表面上的颗粒,形成更大的粒子团,从而易于被净化单元中的中效过滤器捕集,而且该净化单元对于大粒子(粒径>0.7μm)浓度较高的场所净化效果更加明显.另外,室内空气中吸附在颗粒物表面的甲醛也随之被高效去除.该净化单元的投入使用,起到了提高过滤效率、去除气溶胶小粒子、降低能耗、进一步改善室内空气品质等多重功效.  相似文献   

9.
介绍了室内空气净化技术及其特点.针对中央空调系统的特点,提出了将活性炭吸附技术、TiO2光催化技术与静电除尘技术结合的静电活性炭-TiO2光催化复合技术,这一组合技术可能成为今后空调系统空气净化系统重要的改进措施.  相似文献   

10.
中央空调净化系统的改进措施   总被引:1,自引:0,他引:1  
介绍了室内空气净化技术及其特点。针对中央空调系统的特点,提出了将活性炭吸附技术、TiO2光催化技术与静电除尘技术结合的静电活性炭-TiO2光催化复合技术,这一组合技术可能成为今后空调系统空气净化系统重要的改进措施。  相似文献   

11.
This paper reviews the effects and control methods for particulate matter (PM) in animal indoor environments. PM in animal indoor environments represents a particular threat to the health of countless animals and millions of workers around the world. Because air in animal facilities has a higher portion of biological content than does air in other environments, the adverse health impact is much greater than it is for the same amount of PM in other environments. Source control, ventilation, and internal air cleaning can reduce PM concentration in animal indoor environments. Source control is typically the most economical method for PM control. Ventilation is the most widely applied technology, although uncertainties remain as to its effectiveness for PM control. Most internal air cleaners require frequent maintenance because of the high concentration and stickiness of PM in animal environments. Filtration is the most well-studied and widely used technology for internal air cleaning because of its low capital cost and high efficiency. Several trials using electrostatic precipitators have shown efficiencies of approximately 50% in removing PM concentration, but improvements are needed before they can be used widely. No report using wet collectors or centrifugals as internal air cleaners has been found.  相似文献   

12.
Resuspension experiments were performed in a single-family residence. Resuspension by human activity was found to elevate the mass concentration of indoor particulate matter with an aerodynamic diameter less than 10 microm (PM10) an average of 2.5 times as high as the background level. As summarized from 14 experiments, the average estimated PM10 resuspension rate by a person walking on a carpeted floor was (1.4 +/- 0.6) x 10(-4) hr(-1). The estimated residence time for PM in the indoor air following resuspension was less than 2 hr for PM10 and less than 3 hr for 2-microm tracer particles. However, experimental results show that the 2-microm tracer particles stayed in the combined indoor air and surface compartments much longer (>19 days). Using a two-compartment model to simulate a regular deposition and resuspension cycle by normal human activity (e.g., walking and sitting on furniture), we estimated residence time for 2-microm conservative particulate pollutants to be more than 7 decades without vacuum cleaning, and months if vacuum cleaning was done once per week. This finding supports the observed long residence time of persistent organic pollutants in indoor environments. This study introduces a method to evaluate the particle resuspension rate from semicontinuous concentration data of particulate matter (PM). It reveals that resuspension and subsequent exfiltration does not strongly affect the overall residence time of PM pollutants when compared with surface cleaning. However, resuspension substantially increases PM concentration, and thus increases short-term inhalation exposure to indoor PM pollutants.  相似文献   

13.
A field study was performed to evaluate indoor air concentrations and vapor intrusion (VI) of tetrachloroethylene (PCE) and other chlorinated solvents at a commercial retail site in Dallas, TX. The building is approximately 40 yr old and once housed a dry cleaning operation. Results from an initial site characterization were used to select sampling locations for the VI study. The general approach for evaluating VI was to collect time-integrated canister samples for off-site U.S. Environmental Protection Agency Method TO-15 analyses. PCE and other chlorinated solvents were measured in shallow soil gas, subslab soil-gas, indoor air, and ambient air. The subslab soil gas exhibited relatively high values: PCE < or =2,600,000 parts per billion by volume (ppbv) and trichloroethylene < or =170 ppbv. The attenuation factor, the ratio of indoor air and subslab soil-gas concentrations, was unusually low: approximately 5 x 10(-6) based on the maximum subslab soil-gas concentration of PCE and 1.4 x 10(-5) based on average values.  相似文献   

14.
Abstract

A field study was performed to evaluate indoor air concentrations and vapor intrusion (VI) of tetrachloroethylene (PCE) and other chlorinated solvents at a commercial retail site in Dallas, TX. The building is approximately 40 yr old and once housed a dry cleaning operation. Results from an initial site characterization were used to select sampling locations for the VI study. The general approach for evaluating VI was to collect time-integrated canister samples for off-site U.S. Environmental Protection Agency Method TO-15 analyses. PCE and other chlorinated solvents were measured in shallow soil gas, subslab soil-gas, indoor air, and ambient air. The subslab soil gas exhibited relatively high values: PCE ≤2,600,000 parts per billion by volume (ppbv) and trichloroethylene ≤170 ppbv. The attenuation factor, the ratio of indoor air and subslab soil-gas concentrations, was unusually low: approximately 5 x 10-6 based on the maximum subslab soil-gas concentration of PCE and 1.4 x 10-5 based on average values.  相似文献   

15.
Nowadays, the heating, ventilation, and air conditioning (HVAC) system has been an important facility for maintaining indoor air quality. However, the primary function of typical HVAC systems is to control the temperature and humidity of the supply air. Most indoor air pollutants, such as volatile organic compounds (VOCs), cannot be removed by typical HVAC systems. Thus, some air handling units for removing VOCs should be added in typical HVAC systems. Among all of the air cleaning techniques used to remove indoor VOCs, photocatalytic oxidation is an attractive alternative technique for indoor air purification and deodorization. The objective of this research is to investigate the VOC removal efficiency of the photocatalytic filter in a HVAC system. Toluene and formaldehyde were chosen as the target pollutants. The experiments were conducted in a stainless steel chamber equipped with a simplified HVAC system. A mechanical filter coated with Degussa P25 titania photocatalyst and two commercial photocatalytic filters were used as the photocatalytic filters in this simplified HVAC system. The total air change rates were controlled at 0.5, 0.75, 1, 1.25, and 1.5 hr(-1), and the relative humidity (RH) was controlled at 30%, 50%, and 70%. The ultraviolet lamp used was a 4-W, ultraviolet-C (central wavelength at 254 nm) strip light bulb. The first-order decay constant of toluene and formaldehyde found in this study ranged from 0.381 to 1.01 hr(-1) under different total air change rates, from 0.34 to 0.433 hr(-1) under different RH, and from 0.381 to 0.433 hr(-1) for different photocatalytic filters.  相似文献   

16.
ABSTRACT

The present study investigated indoor and outdoor concentrations of two particulate matter size fractions (PM10 and PM2.5) and CO2 in 20 urban homes ventilated naturally and located in one congested residential and commercial area in the city of Alexandria, Egypt. The results indicate that the daily mean PM2.5 concentrations measured in the ambient air, living rooms, and kitchens of all sampling sites exceeded the WHO guideline by 100%, 65%, and 95%, respectively. The daily mean outdoor and indoor PM10 levels in all sampling sites were found to exceed the WHO guideline by 100% and 80%, respectively. The indoor PM10 and PM2.5 concentrations were significantly correlated with their corresponding outdoor levels, as natural ventilation through opening doors and windows allowed direct transfer of outdoor airborne particles into the indoor air. Most of the kitchens investigated had higher indoor concentrations of PM2.5 and CO2 than in living rooms. The elevated levels of PM2.5 and CO2 in domestic kitchens were probably related to inadequate ventilation. The current study attempted to understand the sources and the various indoor and outdoor factors that affect indoor PM10, PM2.5 and CO2 concentrations. Several domestic activities, such as smoking, cooking, and cleaning, were found to constitute important sources of indoor air pollution. The indoor pollution caused by PM2.5 was also found to be more serious in the domestic kitchens than in the living rooms and the results suggest that exposure to PM2.5 is high and highlights the need for more effective control measures.

Implications: Indoor air pollution is a complex problem that involves many determinant factors. Understanding the relationships and the influence of various indoor and outdoor factors on indoor air quality is very important to prioritize control measures and mitigation action plans. There is currently a lack of research studies in Egypt to investigate determinant factors controlling indoor air quality for urban homes. The present study characterizes the indoor and outdoor concentrations of PM10, PM2.5, and CO2 in residential buildings in Alexandria city. The study also determines the indoor and outdoor factors which influence the indoor PM and CO2 concentrations as well as it evaluates the potential indoor sources in the selected homes. This research will help in the development of future indoor air quality standards for Egypt.  相似文献   

17.
Principal component analyses (varimax rotation) were used to identify common sources of 30 target volatile organic compounds (VOCs) in residential outdoor, residential indoor and workplace microenvironment and personal 48-h exposure samples, as a component of the EXPOLIS-Helsinki study. Variability in VOC concentrations in residential outdoor microenvironments was dominated by compounds associated with long-range transport of pollutants, followed by traffic emissions, emissions from trees and product emissions. Variability in VOC concentrations in environmental tobacco smoke (ETS) free residential indoor environments was dominated by compounds associated with indoor cleaning products, followed by compounds associated with traffic emissions, long-range transport of pollutants and product emissions. Median indoor/outdoor ratios for compounds typically associated with traffic emissions and long-range transport of pollutants exceeded 1, in some cases quite considerably, indicating substantial indoor source contributions. Changes in the median indoor/outdoor ratios during different seasons reflected different seasonal ventilation patterns as increased ventilation led to dilution of those VOC compounds in the indoor environment that had indoor sources. Variability in workplace VOC concentrations was dominated by compounds associated with traffic emissions followed by product emissions, long-range transport and air fresheners. Variability in VOC concentrations in ETS free personal exposure samples was dominated by compounds associated with traffic emissions, followed by long-range transport, cleaning products and product emissions. VOC sources in personal exposure samples reflected the times spent in different microenvironments, and personal exposure samples were not adequately represented by any one microenvironment, demonstrating the need for personal exposure sampling.  相似文献   

18.
Abstract

Nowadays, the heating, ventilation, and air conditioning (HVAC) system has been an important facility for maintaining indoor air quality. However, the primary function of typical HVAC systems is to control the temperature and humidity of the supply air. Most indoor air pollutants, such as volatile organic compounds (VOCs), cannot be removed by typical HVAC systems. Thus, some air handling units for removing VOCs should be added in typical HVAC systems. Among all of the air cleaning techniques used to remove indoor VOCs, photocatalytic oxidation is an attractive alternative technique for indoor air purification and deodorization. The objective of this research is to investigate the VOC removal efficiency of the photocatalytic filter in a HVAC system. Toluene and formaldehyde were chosen as the target pollutants. The experiments were conducted in a stainless steel chamber equipped with a simplified HVAC system. A mechanical filter coated with Degussa P25 titania photocatalyst and two commercial photocatalytic filters were used as the photo-catalytic filters in this simplified HVAC system. The total air change rates were controlled at 0.5, 0.75, 1, 1.25, and 1.5 hr?1, and the relative humidity (RH) was controlled at 30%, 50%, and 70%. The ultraviolet lamp used was a 4-W, ultraviolet-C (central wavelength at 254 nm) strip light bulb. The first-order decay constant of toluene and form-aldehyde found in this study ranged from 0.381 to 1.01 hr?1 under different total air change rates, from 0.34 to 0.433 hr?1 under different RH, and from 0.381 to 0.433 hr?1 for different photocatalytic filters.  相似文献   

19.
Air quality monitoring was conducted during the late construction and early occupation stages of the College of DuPage Student Resource Center (SRC) addition from April 24,1995, to July 20,1995. Chemical contaminants monitored included combustibles; cleaning solvents; and human, furniture, and carpeting effluents. Carbon dioxide, carbon monoxide, ethanol, propane, 3-pentanone, methyl cyclohexane, methyl formate, tetrahydrofuran, methyl methacrylate, and cyclohexane were used as calibration standards for continuous infrared absorption measurements. Indoor water content, outdoor relative humidity, indoor and outdoor temperatures, and indoor airborne particulate matter were measured. After most construction and indoor painting and carpeting were completed, a two-week air-out was performed using a continuous supply of fresh air, without recirculated air. This resulted in a low "case study" level of contaminants. Contaminant levels increased significantly after furniture and people move-ins and student use. Contaminant level changes were observed during typical indoor construction days, before and after a power outage-caused loss of ventilation, and in the presence of carpentry machines. A "naive" sensory panel contributed its "perception" of air quality, and anair quality survey was conducted among new building employees. No significant or consistent effects of indoor contaminants or indoor temperature upon indoor perception were noted. An inverse relationship between indoor air quality perceptions and the outdoor Temperature-Humidity Index was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号