首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to investigate the air quality and the abatement of traffic-related pollution during the 2008 Olympic Games, we select 12 avenues in the urban area of Beijing to calculate the concentrations of PM10, CO, NO2 and O3 before and during the Olympic traffic controlling days, with the OSPM model.Through comparing the modeled results with the measurement results on a representative street, the OSPM model is validated as sufficient to predict the average concentrations of these pollutants at street level, and also reflects their daily variations well, i.e. CO presents the similar double peaks as the traffic flow, PM10 concentration is influenced by other sources. Meanwhile, the model predicts O3 to stay less during the daytime and ascend in the night, just opposite to NO2, which reveals the impact of photochemical reactions. In addition, the predicted concentrations on the windward side often exceed the leeward side, indicating the impact of the special street shape, as well as the wind.The comparison between the predicted street concentrations before and during the Olympic traffic control period shows that the overall on-road air quality was improved effectively, due to the 32.3% traffic flow reduction. The concentrations of PM10, CO and NO2 have reduced from 142.6 μg m−3, 3.02 mg m−3 and 118.7 μg m−3 to 102.0 μg m−3, 2.43 mg m−3 and 104.1 μg m−3. However, the different pollutants show diverse changes after the traffic control. PM10 decreases most, and the reduction effect focusing on the first half-day even clears the morning peak, whereas CO and NO2 have even reductions to minify the daily fluctuations on the whole. Opposite to the other pollutants, ozone shows an increase of concentration. The average reduction rate of PM10, CO, NO2 and O3 are respectively 28%, 19.3%, 12.3% and −25.2%. Furthermore, the streets in east, west, south and north areas present different air quality improvements, probably induced by the varied background pollution in different regions around Beijing, along with the impact of wind force. This finding suggests the pollution control in the surrounding regions, not only in the urban area.  相似文献   

2.
Following the meteorological evaluation in Part I, this Part II paper presents the statistical evaluation of air quality predictions by the U.S. Environmental Protection Agency (U.S. EPA)’s Community Multi-Scale Air Quality (Models-3/CMAQ) model for the four simulated months in the base year 2005. The surface predictions were evaluated using the Air Pollution Index (API) data published by the China Ministry of Environmental Protection (MEP) for 31 capital cities and daily fine particulate matter (PM2.5, particles with aerodiameter less than or equal to 2.5 μm) observations of an individual site in Tsinghua University (THU). To overcome the shortage in surface observations, satellite data are used to assess the column predictions including tropospheric nitrogen dioxide (NO2) column abundance and aerosol optical depth (AOD). The result shows that CMAQ gives reasonably good predictions for the air quality.The air quality improvement that would result from the targeted sulfur dioxide (SO2) and nitrogen oxides (NOx) emission controls in China were assessed for the objective year 2010. The results show that the emission controls can lead to significant air quality benefits. SO2 concentrations in highly polluted areas of East China in 2010 are estimated to be decreased by 30–60% compared to the levels in the 2010 Business-As-Usual (BAU) case. The annual PM2.5 can also decline by 3–15 μg m?3 (4–25%) due to the lower SO2 and sulfate concentrations. If similar controls are implemented for NOx emissions, NOx concentrations are estimated to decrease by 30–60% as compared with the 2010 BAU scenario. The annual mean PM2.5 concentrations will also decline by 2–14 μg m?3 (3–12%). In addition, the number of ozone (O3) non-attainment areas in the northern China is projected to be much lower, with the maximum 1-h average O3 concentrations in the summer reduced by 8–30 ppb.  相似文献   

3.
Personal measurements of exposure to particulate air pollution (PM10, PM2.5, PM1) were simultaneously made during walking and in-car journeys on two suburban routes in Northampton, UK, during the winter of 1999/2000. Comparisons were made between concentrations found in each transport mode by particle fraction, between different particle fractions by transport mode, and between transport microenvironments and a fixed-site monitor located within the study area. High levels of correlation were seen between walking and in-car concentrations for each of the particle fractions (PM10: r2=0.82; PM2.5: r2=0.98; PM1: r2=0.99). On an average, PM10 concentrations were 16% higher inside the car than for the walker, but there were no difference in average PM2.5 and PM1 concentrations between the two modes. High PM2.5:PM10 ratios (0.6–0.73) were found to be associated with elevated sulphate levels. The PM2.5:PM10 and PM1:PM2.5 ratios were shown to be similar between walking and in-car concentrations. Concentrations of PM10 were found to be more closely related between transport mode than either mode was with concentrations recorded at the fixed-site (roadside) monitor. The fixed-site monitor was shown to be a poor marker for PM10 concentrations recorded during walking and in-car on a route over 1 km away.  相似文献   

4.
Journey-time exposures to particulate air pollution were investigated in Leicester, UK, between January and March 2005. Samples of TSP, PM10, PM2.5, and PM1 were simultaneously collected using light scattering devices whilst journeys were made by walking an in-car. Over a period of two months, 33 pairs of walking and in-car measurements were collected along two circular routes. Average exposures while walking were seen to be higher than those found in-car for each of the particle fractions: average walking to in-car ratios were 1.2 (± 0.6), 1.5 (± 0.6), 1.3 (± 0.6), and 1.4 (± 0.6) μg m−3 for coarse (TSP–PM10), intermediate (PM10–PM2.5), fine (PM2.5–PM1), and very fine particles (PM1), respectively. Correlations between walking and in-car exposures were seen to be weak for coarse particles (r=0.10, p=0.58), moderate for the intermediate particles (r=0.49, p<0.01) but strong for fine (r=0.89, p<0.01) and very fine (r=0.90, P<0.01) particles. PM10 exposures while walking were on average 70% higher than a nearby roadside fixed-site monitor whilst in-car exposures were 25% higher than the same fixed-site monitor. Particles with an aerodynamic diameter of less than 2.5 μm were seen to be highly correlated between walking and in-car particle exposures and a rural fixed-site monitor about 30 km south of Leicester.  相似文献   

5.
An indoor air quality assessment was conducted on 100 homes of recent Mexican immigrants in Commerce City, Colorado, an urban industrial community north of Denver. Head of households were administered a family health survey, filled out an activity diary, and participated in a home inspection. Carbon monoxide (CO) and carbon dioxide (CO2) were measured for 24 h inside the main living area and outside of the homes. Harvard Impactors were used to collect 24-h samples of PM2.5 at the same locations for gravimetric analysis. Dust samples were collected by vacuuming carpeting and flooring at four locations within the home and analyzed by ELISA for seven allergens. Mean indoor and outdoor PM2.5 levels were 27.2 and 8.5 μg m−3, respectively. Indoor PM2.5 and CO2 were elevated in homes for which the number of hours with door/window open was zero compared to homes in which the number of hours was high (>15 h). Indoor PM2.5 levels did not correlate with outdoor levels and tended to increase with number of inhabitants, and results indicate that the source of indoor particles were occupants and their activities, excluding smoking and cooking. Mean indoor CO2 and CO levels were 1170 and 2.4 ppm, respectively. Carbon monoxide was higher than the 24-h National Ambient Air Quality Standard in 3 of the homes. The predominant allergens were cat (Fel d 1) and mouse (Mus m 1) allergens, found in 20 and 34 homes, respectively.  相似文献   

6.
7.
BackgroundCurrent standards for fine particulates and nitrogen dioxide are under revision. Patients with cardiovascular disease have been identified as the largest group which need to be protected from effects of urban air pollution.MethodsWe sought to estimate associations between indicators of urban air pollution and daily mortality using time series of daily TSP, PM10, PM2.5, NO2, SO2, O3 and nontrauma deaths in Vienna (Austria) 2000–2004. We used polynomial distributed lag analysis adjusted for seasonality, daily temperature, relative humidity, atmospheric pressure and incidence of influenza as registered by sentinels.ResultsAll three particulate measures and NO2 were associated with mortality from all causes and from ischemic heart disease and COPD at all ages and in the elderly. The magnitude of the effect was largest for PM2.5 and NO2. Best predictor of mortality increase lagged 0–7 days was PM2.5 (for ischemic heart disease and COPD) and NO2 (for other heart disease and all causes). Total mortality increase, lagged 0–14 days, per 10 μg m−3 was 2.6% for PM2.5 and 2.9% for NO2, mainly due to cardiopulmonary and cerebrovascular causes.ConclusionAcute and subacute lethal effects of urban air pollution are predicted by PM2.5 and NO2 increase even at relatively low levels of these pollutants. This is consistent with results on hospital admissions and the lack of a threshold. While harvesting (reduction of mortality after short increase due to premature deaths of most sensitive persons) seems to be of minor importance, deaths accumulate during 14 days after an increase of air pollutants. The limit values for PM2.5 and NO2 proposed for 2010 in the European Union are unable to prevent serious health effects.  相似文献   

8.
A highly resolved temporal and spatial Pearl River Delta (PRD) regional emission inventory for the year 2006 was developed with the use of best available domestic emission factors and activity data. The inventory covers major emission sources in the region and a bottom–up approach was adopted to compile the inventory for those sources where possible. The results show that the estimates for SO2, NOx, CO, PM10, PM2.5 and VOC emissions in the PRD region for the year 2006 are 711.4 kt, 891.9 kt, 3840.6 kt, 418.4 kt, 204.6 kt, and 1180.1 kt, respectively. About 91.4% of SO2 emissions were from power plant and industrial sources, and 87.2% of NOx emissions were from power plant and mobile sources. The industrial, mobile and power plant sources are major contributors to PM10 and PM2.5 emissions, accounting for 97.7% of the total PM10 and 97.2% of PM2.5 emissions, respectively. Mobile, biogenic and VOC product-related sources are responsible for 90.5% of the total VOC emissions. The emissions are spatially allocated onto grid cells with a resolution of 3 km × 3 km, showing that anthropogenic air pollutant emissions are mainly distributed over PRD central-southern city cluster areas. The preliminary temporal profiles were established for the power plant, industrial and on-road mobile sources. There is relatively low uncertainty in SO2 emission estimates with a range of −16% to +21% from power plant sources, medium to high uncertainty for the NOx emissions, and high uncertainties in the VOC, PM2.5, PM10 and CO emissions.  相似文献   

9.
In 1995, Taiwan's Environmental Protection Administration (EPA/TW) instituted a policy of levying emission taxes on polluters in order to combat the rampant national issue of pollution. Since that time, pollution control strategies, tightening exhaust emission standards for industry, improvements in fuel quality, and new stricter vehicle emission standards, etc., have been implemented. This study evaluates the effectiveness of these measures and examines the improvement of Taiwan's air quality. In this paper, we conduct a detailed analysis of change in the concentrations of pollutants (SO2, NOx and particulate matter [PM]) between two three-year periods (from 1996 to1998 and from 2000 to 2002). The pollution levels were generally lower in the latter period. Concentrations at 14 EPA/TW stations in central Taiwan were simulated and source apportionment analyses in three of Central Taiwan's largest cities were conducted using a trajectory transfer-coefficient air quality model. Correlation coefficients (r) between simulations and observations for the monthly means of the concentrations of SO2, NOx, PM2.5 and PM10 during the study periods at the 14 stations are 0.56, 0.63, 0.70 and 0.31, respectively. The sulfur control policy greatly reduced SO2 concentration island-wide, a stringent emission standard put into place for gasoline vehicles reduced NOx concentration along highways, and an emissions tax placed on construction sites, as well as a regular program for road-dust sweeping, reduced primary particulate matter. Among all of the pollution abatement policies implemented, the most effective method for reducing PM2.5 concentrations in the three largest cities involved the reduction of fine ammonium sulfate aerosols from point sources (56–63% of net PM2.5 reduction). The next largest reduction was attributed to a diminishment in primary PM2.5 emanating from point sources (27–56% of net PM2.5 reduction). Secondary particulate matter, especially sulfate, was reduced from distances up to 150 km leeward of major pollution point sources such as Taichung Power Plant.  相似文献   

10.
Air quality impacts of volatile organic compound (VOC) and nitrogen oxide (NOx) emissions from major sources over the northwestern United States are simulated. The comprehensive nested modeling system comprises three models: Community Multiscale Air Quality (CMAQ), Weather Research and Forecasting (WRF), and Sparse Matrix Operator Kernel Emissions (SMOKE). In addition, the decoupled direct method in three dimensions (DDM-3D) is used to determine the sensitivities of pollutant concentrations to changes in precursor emissions during a severe smog episode in July of 2006. The average simulated 8-hr daily maximum O3 concentration is 48.9 ppb, with 1-hr O3 maxima up to 106 ppb (40 km southeast of Seattle). The average simulated PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) concentration at the measurement sites is 9.06 μg m?3, which is in good agreement with the observed concentration (8.06 μg m?3). In urban areas (i.e., Seattle, Vancouver, etc.), the model predicts that, on average, a reduction of NOx emissions is simulated to lead to an increase in average 8-hr daily maximum O3 concentrations, and will be most prominent in Seattle (where the greatest sensitivity is??0.2 ppb per % change of mobile sources). On the other hand, decreasing NOx emissions is simulated to decrease the 8-hr maximum O3 concentrations in remote and forested areas. Decreased NOx emissions are simulated to slightly increase PM2.5 in major urban areas. In urban areas, a decrease in VOC emissions will result in a decrease of 8-hr maximum O3 concentrations. The impact of decreased VOC emissions from biogenic, mobile, nonroad, and area sources on average 8-hr daily maximum O3 concentrations is up to 0.05 ppb decrease per % of emission change, each. Decreased emissions of VOCs decrease average PM2.5 concentrations in the entire modeling domain. In major cities, PM2.5 concentrations are more sensitive to emissions of VOCs from biogenic sources than other sources of VOCs. These results can be used to interpret the effectiveness of VOC or NOx controls over pollutant concentrations, especially for localities that may exceed National Ambient Air Quality Standards (NAAQS).

Implications: The effect of NOx and VOC controls on ozone and PM2.5 concentrations in the northwestern United States is examined using the decoupled direct method in three dimensions (DDM-3D) in a state-of-the-art three-dimensional chemical transport model (CMAQ). NOx controls are predicted to increase PM2.5 and ozone in major urban areas and decrease ozone in more remote and forested areas. VOC reductions are helpful in reducing ozone and PM2.5 concentrations in urban areas. Biogenic VOC sources have the largest impact on O3 and PM2.5 concentrations.  相似文献   

11.
Total mercury concentration was analyzed in 171 lakes from pre-industrial (>30 cm depth; Hgpre-industrial) and present-day sediments (0.5–1 cm; Hgpresent-day). Numerous hot or cold spots of sediment mercury enrichment (Hg EF; Hgpre-industrial/Hgpresent-day) were evident as determined by local tests of autocorrelation, although in most cases, the maximum correlation among sites was not the nearest neighbor, indicating a strong influence of watershed characteristics. Hg EF was correlated with the area of open water (ha) (r = 0.91, p = 0.035), mine tailings (r = 0.94, p = 0.019), and organic deposits in surficial geology of the watershed (r = −0.91, p = 0.034). Through use of local rather than global regression coefficients, R2 increased from 0.20 (p = 0.005) to 0.60 (p = 0.013). A broad spatial pattern (>500 km) observed only in Hgpre-industrial was best explained by mean annual precipitation (shared variance = 3.5%), while finer spatial patterns only observed in Hgpresent-day and Hg EF were best explained by pH (average shared variance = 10.8%).  相似文献   

12.
Particle-bound polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in ambient air were monitored together with particulate matter less than 10 μm (PM10) at three sampling sites of the Andean city of Manizales, Colombia; during September 2009 and July 2010. PCDD/Fs ambient air emissions ranged from 1 fg WHO-TEQ m−3 to 52 fg WHO-TEQ m−3 in particulate fraction. The PM10 concentrations ranged from 23 μg m−3 to 54 μg m−3. Concentrations of PM10 and PCDD/Fs in ambient air observed for Manizales - a medium sized city with a population of 380 000 - were comparable to concentrations in larger cities. The highest concentrations of PCDD/Fs and PM10 found in this study were determined at the central zone of the city, characterized by public transportation density, where diesel as principal fuel is used. In addition, hypothetical gas fractions of PCDD/Fs were calculated from theoretical Kp data. Congener profiles of PCDD/Fs exhibited ratios associated with different combustion sources at the different sampling locations, ranging from steel recycling to gasoline and diesel engines. Taking into account particle and gas hypothetical fraction of PCDD/Fs, Manizales exhibited values of PCDD/Fs equivalent to rural and urban-industrial sites in the southeast and center of the city respectively. Poor correlation of PCDDs with PM10 (r = −0.55 and r = 0.52) suggests ambient air PCDDs were derived from various combustion sources. Stronger correlation was observed of PCDFs with PM10. Poor correlation between precipitation and reduced PM10 concentration in ambient air (r = −0.45) suggested low PM10 removal by rainfall.  相似文献   

13.
Abstract

Airborne fine particles of PM2.5-10 and PM2.5 in Bangkok, Nonthaburi, and Ayutthaya were measured from December 22, 1998, to March 26, 1999, and from November 30, 1999, to December 2, 1999. Almost all the PM10 values in the high-polluted (H) area exceeded the Thailand National Ambient Air Quality Standards (NAAQS) of 120 μg/m3. The low-polluted (L) area showed low PM10 (34–74 μg/m3 in the daytime and 54–89 μg/m3 at night). PM2.5 in the H area varied between 82 and 143 μg/m3 in the daytime and between 45 and 146 μg/m3 at night. In the L area, PM2.5 was quite low both day and night and varied between 24 and 54 μg/m3, lower than the U.S. Environmental Protection Agency (EPA) standard (65 μg/m3). The personal exposure results showed a significantly higher proportion of PM2.5 to PM10 in the H area than in the L area (H = 0.80 ± 0.08 and L = 0.65 ± 0.04).

Roadside PM10 was measured simultaneously with the Thailand Pollution Control Department (PCD) monitoring station at the same site and at the intersections where police work. The result from dual simultaneous measurements of PM10 showed a good correlation (correlation coefficient: r = 0.93); however, PM levels near the roadside at the intersections were higher than the concentrations at the monitoring station. The relationship between ambient PM level and actual personal exposures was examined. Correlation coefficients between the general ambient outdoors and personal exposure levels were 0.92 for both PM2.5 and PM10.

Bangkok air quality data for 1997–2000, including 24-hr average PM10, NO2, SO2, and O3 from eight PCD monitoring stations, were analyzed and validated. The annual arithmetic mean PM10 of the PCD data at the roadside monitoring stations for the last 3 years decreased from 130 to 73 μg/m3, whereas the corresponding levels at the general monitoring stations decreased from 90 to 49 μg/m3. The proportion of days when the level of the 24-hr average PM10 exceeded the NAAQS was between 13 and 26% at roadside stations. PCD data showed PM10 was well correlated with NO2 but not with SO2, suggesting that automobile exhaust is the main source of the particulate air pollution. The results obtained from the simultaneous measurement of PM2.5 and PM10 indicate the potential environmental health hazard of fine particles. In conclusion, Bangkok traffic police were exposed to high levels of automobile-derived particulate air pollution.  相似文献   

14.
A method for transforming continuous monitoring (CM) fine particulate matter (aerodynamic diameter <2.5 μm; PM2.5) data (i.e., by tapered element oscillating microbalance [TEOM]) obtained from the Canadian National Air Pollution Surveillance (NAPS) program to meet the data quality objective (DQO) of R2 > 0.8 against the co-located federal reference method (i.e., dichotomous air sampler) is described. By using a two-step linear regression to account for the effect of the ambient temperature, 16 out of the 23 examined sites met the common model adequacy threshold of R2 > 0.8. After the transformation, 20 out of the 23 examined sites met the DQO of R2 > 0.7, as recommended by the U.S. Environmental Protection Agency (EPA). A combined two-step statistical approach was also examined and revealed similar results. The methods described herein show that the CM data can be successfully transformed to meet DQOs for representative sites across Canada using year-round (both summer and winter) data.
Implications:This study provides a transformation approach to correct ambient TEOM data against the federal reference method without dividing the ambient data according to warm and cold seasons. This transformation approach will significantly improve the correlation coefficient between TEOM and dichotomous air sampler data. It is possible that TEOM data at many Canadian locations can be transformed to meet the EPA data quality objective, thus making this transformation approach useful for comparisons of ambient PM data across jurisdictions.  相似文献   

15.
Concentrations of traffic-related air pollution can be highly variable at the local scale and can have substantial seasonal variability. This study was designed to provide estimates of intra-urban concentrations of ambient nitrogen dioxide (NO2) in Montreal, Canada, that would be used subsequently in health studies of chronic diseases and long-term exposures to traffic-related air pollution. We measured concentrations of NO2 at 133 locations in Montreal with passive diffusion samplers in three seasons during 2005 and 2006. We then used land use regression, a proven statistical prediction method for describing spatial patterns of air pollution, to develop separate estimates of spatial variability across the city by regressing NO2 against available land-use variables in each of these three periods. We also developed a “pooled” model across these sampling periods to provide an estimate of an annual average. Our modelling strategy was to develop a predictive model that maximized the model R2. This strategy is different from other strategies whose goal is to identify causal relationships between predictors and concentrations of NO2.Observed concentrations of NO2 ranged from 2.6 ppb to 31.5 ppb, with mean values of 12.6 ppb in December 2005, 14.0 ppb in May 2006, and 8.9 ppb in August 2006. The greatest variability was observed during May. Concentrations of NO2 were highest downtown and near major highways, and they were lowest in the western part of the city. Our pooled model explained approximately 80% of the variability in concentrations of NO2. Although there were differences in concentrations of NO2 between the three sampling periods, we found that the spatial variability did not vary significantly across the three sampling periods and that the pooled model was representative of mean annual spatial patterns.  相似文献   

16.
The U.S. Environmental Protection Agency (EPA), state and local agencies have focused their efforts in assessing secondary fine particulate matter (aerodynamic diameter ≤2.5 µm; PM2.5) formation in prevention of significant deterioration (PSD) air dispersion modeling. The National Association of Clean Air Agencies (NACAA) developed a method to account for secondary PM2.5 formation by using sulfur dioxide (SO2) and nitrogen oxides (NOx) offset ratios. These ratios are used to estimate the secondary formation of sulfate and nitrate PM2.5. These ratios were first introduced by the EPA for nonattainment areas in the Implementation of the New Source Review (NSR) Program for Particulate Matter Less than 2.5 Micrometers (PM2.5), 73 FR 28321, to offset emission increases of direct PM2.5 emissions with reductions of PM2.5 precursors and vice versa. Some regulatory agencies such as the Minnesota Pollution Control Agency (MPCA) have developed area-specific offset ratios for SO2 and NOx based on Comprehensive Air Quality Model with Extensions (CAMx) evaluations for air dispersion modeling analyses. The current study evaluates the effect on American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) predicted concentrations from the use of EPA and MPCA developed ratios. The study assesses the effect of these ratios on an electric generating utility (EGU), taconite mine, food processing plant, and a pulp and paper mill. The inputs used for these four scenarios are based on common stack parameters and emissions based on available data. The effect of background concentrations also evaluates these scenarios by presenting results based on uniform annual PM2.5 background values. This evaluation study helps assess the viability of the offset ratio method developed by NACAA in estimating primary and secondary PM2.5 concentrations. An alternative Tier 2 approach to combine modeled and monitored concentrations is also presented.

Implications:

On January 4, 2012, the EPA committed to engage in rulemaking to evaluate updates to the Guideline on Air Quality Models (Appendix W of 40 CFR 51) and, as appropriate, incorporate new analytical techniques or models for secondary PM2.5. As a result, the National Association of Clean Air Agencies (NACAA) developed a screening method involving offset ratios to account for secondary PM2.5 formation. The use of this method is promising to evaluate total (direct and indirect) PM2.5 impacts for permitting purposes. Therefore, the evaluation of this method is important to determine its viability for widespread use.  相似文献   


17.
Atmospheric concentrations of major reactive nitrogen (Nr) species were quantified using passive samplers, denuders, and particulate samplers at Dongbeiwang and Quzhou, North China Plain (NCP) in a two-year study. Average concentrations of NH3, NO2, HNO3, pNH4+ and pNO3 were 12.0, 12.9, 0.6, 10.3, and 4.7 μg N m−3 across the two sites, showing different seasonal patterns of these Nr species. For example, the highest NH3 concentration occurred in summer while NO2 concentrations were greater in winter, both of which reflected impacts of N fertilization (summer) and coal-fueled home heating (winter). Based on measured Nr concentrations and their deposition velocities taken from the literature, annual N dry deposition was up to 55 kg N ha−1. Such high concentrations and deposition rates of Nr species in the NCP indicate very serious air pollution from anthropogenic sources and significant atmospheric N input to crops.  相似文献   

18.
Wu  Tingting  Ma  Yuan  Wu  Xuan  Bai  Ming  Peng  Yu  Cai  Weiting  Wang  Yongxiang  Zhao  Jing  Zhang  Zheng 《Environmental science and pollution research international》2019,26(15):15262-15272

Ambient particulate matter (PM) pollution has been linked to elevated mortality, especially from cardiovascular diseases. However, evidence on the effects of particulate matter pollution on cardiovascular mortality is still limited in Lanzhou, China. This research aimed to examine the associations of daily mean concentrations of ambient air pollutants (PM2.5, PMC, and PM10) and cardiovascular mortality due to overall and cause-specific diseases in Lanzhou. Data representing daily cardiovascular mortality rates, meteorological factors (daily average temperature, daily average humidity, and atmospheric pressure), and air pollutants (PM2.5, PM10, SO2, NO2) were collected from January 1, 2014, to December 31, 2017, in Lanzhou. A quasi-Poisson regression model combined with a distributed lag non-linear model (DLNM) was used to estimate the associations. Stratified analyses were also performed by different cause-specific diseases, including cerebrovascular disease (CD), ischemic heart disease (IHD), heart rhythm disturbances (HRD), and heart failure (HF). The results showed that elevated concentration of PM2.5, PMC, and PM10 had different effects on mortality of different cardiovascular diseases. Only cerebrovascular disease showed a significant positive association with elevated PM2.5. Positive associations were identified between PMC and daily mortality rates from total cardiovascular diseases, cerebrovascular diseases, and ischemic heart diseases. Besides, increased concentration of PM10 was correlated with increased death of cerebrovascular diseases and ischemic heart diseases. For cerebrovascular disease, each 10 μg/m3 increase in PM2.5 at lag4 was associated with increments of 1.22% (95% CI 0.11–2.35%). The largest significant effects for PMC on cardiovascular diseases and ischemic heart diseases were both observed at lag0, and a 10 μg/m3 increment in concentration of PMC was associated with 0.47% (95% CI 0.06–0.88%) and 0.85% (95% CI 0.18–1.52%) increases in cardiovascular mortality and ischemic heart diseases. In addition, it exhibited a lag effect on cerebrovascular mortality as well, which was most significant at lag6d, and an increase of 10 μg/m3 in PMC was associated with a 0.76% (95% CI 0.16–1.37%) increase in cerebrovascular mortality. The estimates of percentage change in daily mortality rates per 10 μg/m3 increase in PM10 were 0.52% (95% CI 0.05–1.02%) for cerebrovascular disease at lag6 and 0.53% (95% CI 0.01–1.05%) for ischemic heart disease at lag0, respectively. Our study suggests that elevated concentration of atmospheric PM (PM2.5, PMC, and PM10) in Lanzhou is associated with increased mortality of cardiovascular diseases and that the health effect of elevated concentration of PM2.5 is more significant than that of PMC and PM10.

  相似文献   

19.
Improvement of air quality models is required so that they can be utilized to design effective control strategies for fine particulate matter (PM2.5). The Community Multiscale Air Quality modeling system was applied to the Greater Tokyo Area of Japan in winter 2010 and summer 2011. The model results were compared with observed concentrations of PM2.5 sulfate (SO42-), nitrate (NO3?) and ammonium, and gaseous nitric acid (HNO3) and ammonia (NH3). The model approximately reproduced PM2.5 SO42? concentration, but clearly overestimated PM2.5 NO3? concentration, which was attributed to overestimation of production of ammonium nitrate (NH4NO3). This study conducted sensitivity analyses of factors associated with the model performance for PM2.5 NO3? concentration, including temperature and relative humidity, emission of nitrogen oxides, seasonal variation of NH3 emission, HNO3 and NH3 dry deposition velocities, and heterogeneous reaction probability of dinitrogen pentoxide. Change in NH3 emission directly affected NH3 concentration, and substantially affected NH4NO3 concentration. Higher dry deposition velocities of HNO3 and NH3 led to substantial reductions of concentrations of the gaseous species and NH4NO3. Because uncertainties in NH3 emission and dry deposition processes are probably large, these processes may be key factors for improvement of the model performance for PM2.5 NO3?.
Implications: The Community Multiscale Air Quality modeling system clearly overestimated the concentration of fine particulate nitrate in the Greater Tokyo Area of Japan, which was attributed to overestimation of production of ammonium nitrate. Sensitivity analyses were conducted for factors associated with the model performance for nitrate. Ammonia emission and dry deposition of nitric acid and ammonia may be key factors for improvement of the model performance.  相似文献   

20.
PM2.5 and PM10 were collected during 24-h sampling intervals from March 1st to 31st, 2006 during the MILAGRO campaign carried out in Mexico City's northern region, in order to determine their chemical composition, oxidative activity and the estimation of the source contributions during the sampling period by means of the chemical mass balance (CMB) receptor model. PM2.5 concentrations ranged from 32 to 70 μg m−3 while that of PM10 did so from 51 to 132 μg m−3. The most abundant chemical species for both PM fractions were: OC, EC, SO42−, NO3, NH4+, Si, Fe and Ca. The majority of the PM mass was comprised of carbon, up to about 52% and 30% of the PM2.5 and PM10, respectively. PM2.5 constituted more than 50% of PM10. The redox activity, assessed by the dithiothreitol (DTT) assay, was greater for PM2.5 than for PM10, and did not display significant differences during the sampling period. The PM2.5 source reconciliation showed that in average, vehicle exhaust emissions were its most important source in an urban site with a 42% contribution, followed by re-suspended dust with 26%, secondary inorganic aerosols with 11%, and industrial emissions and food cooking with 10% each. These results had a good agreement with the Emission Inventory. In average, the greater mass concentration occurred during O3S that corresponds to a wind shift initially with transport to the South but moving back to the North. Taken together these results show that PM chemical composition, oxidative potential, and source contribution is influenced by the meteorological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号