首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The feasibility of utilizing non edible rice (broken rice) for production of fine materials such as poly(3-hydroxybutyrate) (PHB) was considered as one of the alternative ways of keeping the environment clean for sustainable development. Thus, production of PHB from broken rice by simultaneous saccharification and fermentation (SSF) was investigated. During the SSF process, the rice (15% w/v) material was hydrolyzed to glucose, which was utilized by Cupriavidus necator for growth and production of PHB. The PHB content reached 38% at 58 h fermentation. The PHB had weight average molar mass (Mw) and polydipersity index of 3.82 × 105 (g/mol) and 4.15, respectively. Differential calorimetric scan of the PHB showed a melting temperature (Tm) of 176 °C. Given that the PHB was a homopolymer (which consisted of (R)-3-hydroxybutyric acid monomers), it was thought that broken rice could be a raw material for production of both PHB and (R)-3-hydroxybutyric acid. This SSF process would not only help in the utilization of broken rice or non edible rice, but would also serve as a model for utilization of other raw materials that contain starch for production of PHB.  相似文献   

2.
A series of polyhydroxyalkanoates (PHA), all containing 1% nucleating agent but varying in structure, were melt-processed into films through single screw extrusion techniques. This series consisted of three polyhydroxybutyrate (PHB) and three polyhydroxybutyrate-valerate (PHBV) resins with varying valerate content. Processing parameters of temperature in the barrel (165–173 °C) and chill rolls (60 °C) were optimized to obtain cast films. The gel-permeation chromatography (GPC) results showed a loss of 8–19% of the polymer’s initial molecular weight due to extrusion processing. Modulated differential scanning calorimetry (MDSC) displayed glass transition temperatures of the films ranging from −4.6 to 6.7 °C depending on the amount of crystallinity in the film. DSC data were also used to calculate the percent crystallinity of each sample and slightly higher crystallinity was observed in the PHBV series of samples. X-ray diffraction patterns did not vary significantly for any of the samples and crystallinity was confirmed with X-ray data. Dynamic mechanical analysis (DMA) verified the glass transition trends for the films from DSC while loss modulus (E′) reported at 20 °C showed that the PHBV (3,950–3,600 MPa) had the higher E′ values than the PHB (3,500–2,698 MPa) samples. The Young’s modulus values of the PHB and PHBV samples ranged from 700 to 900 MPa and 900 to 1,500 MPa, respectively. Polarized light microscopy images revealed gel particles in the films processed through single-screw extrusion, which may have caused diminished Young’s modulus and tensile strength of these films. The PHBV film samples exhibited the greatest barrier properties to oxygen and water vapor when compared to the PHB film samples. The average oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) for the PHBV samples was 247 (cc-mil/m2-day) and 118 (g-mil/m2-day), respectively; while the average OTR and WVTR for the PHB samples was 350 (cc-mil/m2-day) and 178 (g-mil/m2-day), respectively. Biodegradation data of the films in the marine environment demonstrated that all PHA film samples achieved a minimum of 70% mineralization in 40 days when run in accordance with ASTM 6691. For static and dynamic incubation experiments in seawater, microbial action resulting in weight loss as a function of time showed all samples to be highly biodegradable and correlated with the ASTM 6691 biodegradation data.  相似文献   

3.
An extracellular poly (β-hydroxybutyrate) (PHB) depolymerase was purified from a Penicillium sp. DS9701-09a by centrifugation, ultrafiltration, precipitation and gel filtration chromatography. The specific activity of the purified enzyme was 37.9-folds higher than that of the culture supernatant and the recovery yield was 11.8%. The PHB deploymerase molecular mass was 44.8 kDa from analysis of both Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Matrix-assisted laser desorption-time-of-flight (MALDI-TOF) mass spectrometer. The isoelectric point of 6.7 for the enzyme was determined by a two-dimensional electrophoresis. The optimum enzyme activity was observed at a temperature of 50 °C and pH 5.0. The apparent K m of the enzyme was found to be 1.35 mg/mL. The PHB depolymerase consisted of 16 kinds of normal amino acids. The secondary structure of the enzyme was determined by CD spectrum. α-helix and β-turn were found to be 66% and 34% for the enzyme without ammonium sulphite. Chemical inhibition on the PHB depolymerase activity was examined and EDTA was found to have a significantly inhibitory effect.  相似文献   

4.
The accumulation of polyhydroxybutyrate of Bacillus megaterium is growth associated and significantly dependent on carbon sources. In the present investigation B. megaterium strain isolated from soil was studied for PHB production in fructose minimal media. The PHB production was found to be growth associated. The polymer production by the strain was found to vary from 24 to 48 % content (w/w) of the dry cell weight. Box Bohn design was used to study the interactive effect of four variables on cell growth and PHB production. The optimized medium conditions with the constrain to maximize cell growth and PHB content were glucose 4.32 g/L, Mannitol 4.52 g/L and Na succinate 3.45 g/L and PHB yield 1.38 g/L amounting to 49 % of dry cell weight which is more than 1.8 folds the basal medium. The polymer production by the strain was found to vary from 12.18 to 57.2 % content (w/w) of the dry cell weight.  相似文献   

5.
An extracellular poly(3-hydroxybutyrate) (PHB) depolymerase produced by a thermotolerant fungal soil isolate, Aspergillus fumigatus 202, was purified and characterized. Maximum PHB depolymerase production was obtained at the end of 48 h with initial medium pH 7.0 and 45 °C in Bushnell Haas Minerals medium containing PHB as sole source of carbon. The PHB depolymerase was purified using size exclusion chromatography to a fold purification of 20.62 and 61.62% yield. SDS-PAGE and isoelectric focusing revealed the molecular weight and pI of the purified enzyme as 63,744 Da and 4.2, respectively. N-terminal amino acid sequence of purified enzyme was HAXDAYLVK. This non-glycosylated enzyme was most active at pH 9.0 and 45 °C. Purified enzyme was inactivated by N-bromosuccinimide and dithiothreitol suggesting the involvement of tryptophan residues and disulfide bonds at its active site. Nonionic detergents like Tween 20, Tween 80 and Triton X-100 inhibited the enzyme activity. Ions like Ca+2 and Mg+2 (5 mM) increased the enzyme activity 1.5 times. Fe+2 effectively inhibited the enzyme activity to 88% whereas Hg+2 completely inhibited the enzyme.  相似文献   

6.
A novel affinity chromatographic material, which is composed of silica matrix, coated with polyhydroxybutyrate (PHB) powder, suitable for the purification of PHB depolymerases, was developed. The surface morphology of the PHB-silica coated particles (silica-PHB composite particles) was examined by scanning electron microscopy and revealed a successful uniform coating of silica particles with PHB. Moreover, the complex of these materials retained its homogeneity even after incubation at 80 °C for 6 h, whereas the strong binding of PHB on silica surface was further verified by thermal gravimetric analysis and by PHB extraction- from silica surface- experiments. This novel material was demonstrated to be suitable for both, the one-step on-batch and on-column purification of Thermus thermophilus extracellular PHB depolymerase. The enzyme exhibited higher affinity against the composite of silica-PHB particles than PHB powder, since the one-step purification-fold and the overall recovery of the enzyme were 2.8 and 4 times higher respectively, in the first case. Reusability of the silica-PHB composites particles was examined by determining the recoveries of PHB depolymerase. The enzyme recoveries were ranged from 30 to 35% for the first five uses, whereas for further uses recoveries gradually dropped to 15–18% indicating that the particles could be used repeatedly for five times. This material could be also a suitable support for lipases or other proteins that exhibit strong affinity to hydrophobic materials.  相似文献   

7.
In this study, a biodegradable composite consisting of a degradable continuous cellulosic fiber and a degradable polymer matrix—poly(3-hydroxybutyrate)-co-poly(3-hydroxyvalerate (PHB/V with 19% HV)—was developed. The composite was processed by impregnating the cellulosic fibers on-line withPHB/V powder in a fluidization chamber. The impregnated roving was then filament wound on a plate and hot-pressed. The resulting unidirectional composite plates were mechanically tested and optically characterized by SEM. The fiber content was 9.9 ±0.9 vol% by volumetric determination. The fiber content predicted by the rule of mixture for unidirectional composites was 13.8 ±1.4 vol%. Optical characterization showed that the fiber distribution was homogeneous and a satisfactory wetting of the fibers by the matrix was achieved. Using a blower to remove excess matrix powder during processing increased the fiber content to 26.5 ±3.3 vol % (volumetric) or 30.0 ±0.4 vol% (rule of mixture). The tensile strength of the composite parallel to the fiber direction was 128 ±12 MPa (10 vol% fiber) up to 278 ±48 MPa (26.5 vol% fiber), compared to 20 MPa for the PHB/V matrix. The Young’s modulus was 5.8 ±0.5 GPa (10 vol% fiber) and reached 11.4 ±0.14 GPa (26.5 vol% fiber), versus 1 GPa for the matrix.  相似文献   

8.
A co-product stream from soy-based biodiesel production (CSBP) containing glycerol, fatty acid soaps, and residual fatty acid methyl esters (FAME) was utilized as a fermentation feedstock for the bacterial synthesis of poly(3-hydroxybutyrate) (PHB) and medium-chain-length poly(hydroxyalkanoate) (mcl-PHA) polymers. Pseudomonas oleovorans NRRL B-14682 and P. corrugata 388 grew and synthesized PHB and mcl-PHA, respectively, when cultivated in up to 5% (w/v) CSBP. In shake flask culture, P. oleovorans grew to 1.3 ± 0.1 g/L (PHA cellular productivity = 13–27% of the bacterial cell dry weight; CDW) regardless of the initial CSBP concentration, whereas P. corrugata reached maximum cell yields of 2.1 g/L at 1% CSBP, which tapered off to 1.7 g/L as the CSBP media concentration was increased to 5% (maximum PHA cellular productivity = 42% of the CDW at 3% CSBP). While P. oleovorans synthesized PHB from CSBP, P. corrugata produced mcl-PHA consisting primarily of 3-hydroxyoctanoic acid (C8:0; 39 ± 2 mol%), 3-hydroxydecanoic acid (C10:0; 26 ± 2 mol%) and 3-hydroxytetradecadienoic acid (C14:2; 15 ± 1 mol%). The molar mass (Mn) of the PHB polymer decreased by 53% as the initial CSBP culture concentration was increased from 1% to 5% (w/v). In contrast, the Mn of the mcl-PHA polymer produced by P. corrugata remained constant over the range of CSBP concentrations used.  相似文献   

9.
In the present study, depending upon the availability and cheaper cost, different carbon source were tested for the production of PHAs (Polyhydroxyalkonoates) by soil bacterium Pseudomonas aeruginosa and it was found that sugar refinery waste (cane molasses) produced the maximum PHA (biodegradable polymer) which is precursor for bio-plastic development. Urea served as potent nitrogen source over other inorganic nitrogen sources in bio-plastic synthesis. Effect of different physical parameters viz; pH, temperature and agitation speed were also studied on PHA production. Batch cultivation kinetics under optimized cultural and physical condition showed maximum cell mass and PHA concentration of 7.32?±?0.2 and 5.60?±?0.3?g/L, respectively after 54.0?h of cultivation. Sugar refinery waste (Total sugar 4%) and urea (0.8%) improved the economics of the process which exhibited a yield (YP/X) of 0.70 with productivity of 0.11?g/L/h. PHA was further characterized as PHB by using Fourier Transform Infra-red Spectroscopy (FT-IR).  相似文献   

10.
11.
The objective of this work was to determine the composition and production rate of medical waste from the health care facility of social insurance institute, a small waste producer in Xanthi, Greece. Specifically, produced medical waste from the clinical pathology (medical microbiology) laboratory, the X-ray laboratory and the surgery and injection therapy departments of the health facility was monitored for six working weeks. A total of 240 kg medical solid waste was manually separated and weighed and 330 L of liquid medical waste was measured and classified. The hazardous waste fraction (%w/w) of the medical solid waste was 91.6% for the clinical pathology laboratory, 12.9% for the X-ray laboratory, 24.2% for the surgery departments and 17.6% for the injection therapy department. The infectious waste fraction (%w/w) of the hazardous medical solid waste was 75.6% for the clinical pathology laboratory, 0% for the X-ray laboratory, 100% for the surgery departments and 75.6% for the injection therapy department. The total hazardous medical solid waste production rate was 64 ± 15 g/patient/d for the clinical pathology laboratory, 7.2 ± 1.6 g/patient/d for the X-ray laboratory, 8.3 ± 5.1 g/patient/d for the surgery departments and 24 ± 9 g/patient/d for the injection therapy department. Liquid waste was produced by the clinical pathology laboratory (infectious-and-toxic) and the X-ray laboratory (toxic). The production rate for the clinical pathology laboratory was 0.03 ± 0.003 L/patient/d and for the X-ray laboratory was 0.06 ± 0.006 L/patient/d. Due to the small amount produced, it was suggested that the most suitable management scheme would be to transport the hazardous medical waste, after source-separation, to the Prefectural Hospital of Xanthi to be treated with the hospital waste. Assuming this data is representative of other small medical facilities, medical waste production can be estimated for such facilities distributed around Greece.  相似文献   

12.
Fed-batch cultures of recombinantEscherichia coli strains were carried out for the production of poly(3-hydroxybutyric acid) (PHB) in a chemically defined medium. TheE. coli strains used were XL1-Blue, harboring pSYL105, a stable high-copy number plasmid containing theAlcaligenes eutrophus polyhydroxyalkanoate (PHA) genes, and XL1-Blue, harboring pSYL107, which is pSYL105 containing theE. coli ftsZ gene to suppress filamentation. With XL1-Blue(pSYL105) the final cell mass and PHB concentration obtained in 62 h were 102 and 22.5 g/L, respectively. Fed-batch culture of XL1-Blue(pSYL107) under identical conditions resulted in a final cell mass and PHB concentration of 127.5 and 48.2 g/L, respectively. The PHB contents obtained with XL1-Blue(pSYL105) and XL1-Blue(pSYL107) were 22.1 and 37.8%, respectively. Therefore, PHB was more efficiently produced in a defined medium by employing filamentation-suppressed recombinantE. coli.  相似文献   

13.
When a recombinantEscherichia coli XL1-Blue harboring pSYL105 was cultured in a complex medium, a poly(3-hydroxybutyric acid) (PHB) concentration of 7.16 g/L was obtained in 48 h. However, a PHB concentration of only 0.91 g/L was obtained in 60 h by culturing in a defined medium. Also, fed-batch culture in a defined medium resulted in considerably lower PHB accumulation than in a complex medium. With the aim to produce a high concentration of PHB at a reduced medium cost, we examined 10 complex nitrogen sources for their ability to promote PHB synthesis in a defined medium. Tryptone, casamino acids, and casein hydrolysate promoted PHB synthesis to a higher extent than the others tested. PHB synthesis was also enhanced during fedbatch cultures when a defined medium was supplemented with various complex nitrogen sources. With tryptone supplementation a PHB concentration of 66.7 g/L could be obtained in 44 h. Yeast extract was less effective for promoting PHB synthesis than tryptone. Corn steep liquor, which did not enhance PHB synthesis significantly, could promote PHB synthesis considerably when supplemented together with yeast extract in both flask and fed-batch cultures.  相似文献   

14.
A gram-negative psychrophilic bacterium, with potential for biodegradation of long-chain n-alkanes was isolated from ice samples collected in Spitzbergen, Denmark. On the basis of results of biochemical and morphological tests and sequence analysis of 16S rRNA, the strain was identified as Pseudomonas frederiksbergensis. In this work, a short-chain NAD+-dependent alcohol dehydrogenase (alcDH) (Accession number: AAR13804) from the P. frederiksbergensis was cloned and transformed in E. coli BL21 (3DE) competent cells. The alcDH activity was highest in the crude extract of cells induced with 1.0 mM IPTG. The recombinant alcDH enzyme was purified to 93.4% homogeneity using three consecutive purification steps including ammonium sulphate, Q-Sepharose Fast Flow column and gel filtration chromatography employing Superdex 200 10/30 HR column. Enzyme enrichment and yield levels of 31.4 folds and 25.5%, respectively, were achieved. While the subunit molecular mass of the enzyme was determined on SDS-PAGE to be ~38 kDa, the aggregated native form of the enzyme had a molecular mass of ~238 kDa by gel filtration analysis. Reaction conditions optima for the recombinant alcDH were determined with propan-1-ol as the substrate. While the optimum pH was 9, the optimum temperature was 35 °C. The alcDH enzyme exhibited moderate thermal stability with half-lives of 150 min at 55 °C, 27 min at 65 °C and 8 min at 75 °C. Results for kinetic parameters indicated that the apparent K m value for alcDH with propan-1-ol as the substrate was found to be 1.42 mM and the V max value was 0.63 mmol mg−1 min−1. Experimental evidence revealed that the recombinant alcDH exhibited a wide range of substrate specificity, with higher levels of specific activity for aliphatic alcohols as compared to secondary alcohols. Taken together, the present study highlights the potential of alcDH as a member of cold-adapted enzymes in several key biotechnological applications including environmental bioremediation and biotransformations. It is envisaged that, with the ongoing screening of microorganisms and metagenomes, directed evolution approaches and the subsequent overexpression of recombinant proteins, more enzymes will be found that are suitable for bioremediation purposes.  相似文献   

15.
The fermentative production of 1,3-propanediol (1,3-PDO) by Klebsiella pneumoniae under different initial substrate concentrations (between 5 and 110 g/L) was investigated. It was found that glycerol was almost 100% utilized and 1,3-PDO production increased up to 20 g/L of influent substrate concentration, but there was a significant decrease in both glycerol consumption and 1,3-PDO production at substrate concentrations exceeding 20 g/L. Furthermore, pH control was essential, and a lack of pH control negatively effects of 1,3-PDO production. In the second part of the study, two microorganisms, namely Clostridium beijerinckii NRRL B593 and K. pneumoniae were comparatively studied in terms of their 1,3-PDO productivity under pH controlled conditions. Higher 1,3-PDO production was achieved under pH controlled fermentation conditions (pH = 7) for both microorganisms. Even though the two microorganisms had almost the same 1,3-PDO yield (0.60 mol/mol for C. beijerinckii, 0.61 mol/mol for K. pneumoniae) at the end of fermentation period, K. pneumoniae completed the 1,3-PDO production in one-third of the time (t = 8 h with a productivity of 1.34 g/L/h) than C. beijerinckii (t = 24 h). The results of this study clearly indicated that a substrate inhibition is a challenge that needs to be studied further for higher productivities.  相似文献   

16.
Four polyhydroxyalkanoate (PHA) depolymerases were purified from the culture fluid ofPseudomonas lemoignei: poly(3-hydroxybutyrate) (PHB), depolymerase A (M r , 55,000), and PHB depolymerase B (M r , 67,000) were specific for PHB and copolymers of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) as substrates. The third depolymerase additionally hydrolyzed poly(3-hydroxyvalerate) (PHV) at high rates (PHV depolymerase;M r , 54,000). The N-terminal amino acid sequences of the three purified proteins, of a fourth partially purified depolymerase (PHB depolymerase C), and of the PHB depolymerases ofComamonas sp. were determined. Four PHA depolymerase genes ofP. lemoignei (phaZ1,phaZ2,phaZ3, andphaZ4) have been cloned inEscherichia coli, and the nucleotide sequence ofphaZ1 has been determined recently (D. Jendrossek, B. Müller, and H. G. Schlegel,Eur. J. Biochem. 218, 701–710, 1993). In this study the nucleotide sequences ofphaZ2 andphaZ3 were determined.PhaZ1,phaZ2, andphaZ4 were identified to encode PHB depolymerase C, PHB depolymerase B, and PHV depolymerase, respectively.PhaZ3 coded for a novel PHB depolymerase ofP. lemoignei, named PHB depolymerase D. None of the four genes harbored the PHB depolymerase A gene, which is predicted to be encoded by a fifth depolymerase gene ofP. lemoignei (phaZ5) and which has not been cloned yet. The deduced amino acid sequences ofphaZ1–phaZ3 revealed high homologies to each other (68–72%) and medium homologies to the PHB depolymerase gene ofAlcaligenes faecalis T1 (25–34%). Typical leader peptide amino acid sequences, lipase consensus sequences (Gly-Xaa-Ser-Xaa-Gly), and unusually high proportions of threonine near the C terminus were found in PhaZ1, PhaZ2, and PhaZ3. Considering the biochemical data of the purified proteins and the amino acid sequences, PHA depolymerases ofP. lemoignei are most probably serine hydrolases containing a catalytical triad of Asp, His, and Ser similar to that of lipases. A comparison of biochemical and genetic data of various eubacterial and one eukaryotic PHA depolymerases is provided also.Paper presented at the Bio/Environmentally Degradable Polymer Society—Second National Meeting, August 19–21, 1993, Chicago, Illinois.  相似文献   

17.
Landfills are an anaerobic ecosystem and represent the major disposal alternative for municipal solid waste (MSW) in the U.S. While some fraction of the biogenic carbon, primarily cellulose (Cel) and hemicellulose (H), is converted to carbon dioxide and methane, lignin (L) is essentially recalcitrant. The biogenic carbon that is not mineralized is stored within the landfill. This carbon storage represents a significant component of a landfill carbon balance. The fraction of biogenic carbon that is not reactive in the landfill environment and therefore stored was derived for samples of excavated waste by measurement of the total organic carbon, its biogenic fraction, and the remaining methane potential. The average biogenic carbon content of the excavated samples was 64.6 ± 18.0% (average ± standard deviation), while the average carbon storage factor was 0.09 ± 0.06 g biogenic-C stored per g dry sample or 0.66 ± 0.16 g biogenic-C stored per g biogenic C.  相似文献   

18.
Alginates, extracted from algae are linear unbranched polymers containing β-(1→4)-linked d-mannuronic acid (M) and α-(1→4)-linked l-guluronic acid (G) residues. The conversion of alginic acid into the metal alginate is confirmed using FTIR spectroscopy. Asymmetric and symmetric stretching of free carboxyl group present in metal alginate occurs almost at the same position in various solvent compositions. Total intrusion volume of metal alginate prepared in propanol (0.0742 mL/g) is greater compared to those in ethanol (0.0648 mL/g) and methanol (0.0393 mL/g) as solvent. Surface morphology as well as porosity and pore size distribution of metal alginate are greatly influenced by solvent. It can be seen from thermal analysis results that calcium alginate prepared using different solvent compositions started decomposing at 100 °C, but rapid degradation started around 200 °C. The results showed a stepwise weight loss during thermal sweep, indicating different types of reactions during degradation. First and second step of rapid degradation was situated around 200–300 and 300–550 °C, respectively; whereas the final step is situated around 550–650 °C. The trend of degradation was similar for all the solvents, although the amount of final residue varied from one solvent to another. At the same time, lower thermal stability was also observed with higher heating rates. Additionally, a kinetic analysis was performed to fit with TGA data, where the entire degradation process has been considered as three consecutive first order reactions.  相似文献   

19.
Six strains of Pseudomonas were tested for their abilities to synthesize poly(hydroxyalkanoate) (PHA) polymers from crude Pollock oil, a large volume byproduct of the Alaskan fishing industry. All six strains were found to produce PHA polymers from hydrolyzed Pollock oil with productivities (P; the percent of the cell mass that is polymer) ranging from 6 to 53% of the cell dry weight (CDW). Two strains, P. oleovorans NRRL B-778 (P = 27%) and P. oleovorans NRRL B-14682 (P = 6%), synthesized poly(3-hydroxybutyrate) (PHB) with number average molecular weights (Mn) of 206,000 g/mol and 195,000 g/mol, respectively. Four strains, P. oleovorans NRRL B-14683 (P = 52%), P. resinovorans NRRL B-2649 (P = 53%), P. corrugata 388 (P = 43%), and P. putida KT2442 (P = 39%), synthesized medium-chain-length PHA (mcl-PHA) polymers with Mn values ranging from 84,000 g/mol to 153,000 g/mol. All mcl-PHA polymers were primarily composed of 3-hydroxyoctanoic acid (C8:0) and 3-hydroxydecanoic acid (C10:0) amounting to at least 75% of the total monomers present. Unsaturated monomers were also present in the mcl-PHA polymers at concentrations between 13% and 16%, providing loci for polymer derivatization and/or crosslinking. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

20.
Microbial polyhydroxyalkonate such as homopolyester of poly(3-hydroxybutyrate) (PHB) was produced from cheese whey by Bacillus megaterium NCIM 5472. Due to their numerous potential industrial applications, the focus was given to competently enhance the amount of PHB produced. The amount of PHB produced from whole cheese whey, and ultrafiltered cheese whey was first compared, and after observing a rise in PHB production by using ultrafiltered cheese whey, cheese whey permeate was chosen for further analysis. The presence of PHB was then confirmed by GCMS. Since the main aim of the study was to increase the amount of PHB produced through batch fermentation, various process parameters like time, pH, C/N ratio, etc. were optimized. After optimization, it was found that B. megaterium NCIM 5472 was capable of accumulating 75.5% of PHB of its dry weight and a PHB yield of 8.29 g/L. The chemical structure of the polymer was further analyzed by using FTIR and NMR spectroscopy methods. Also, the physical and thermal properties were studied by using Differential scanning calorimetry and Thermogravimetric analysis. It was found that the polymer produced had excellent thermal stability, thus allowing the possibility to exploit its properties for industrial purposes such as adhesives, packaging materials, etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号