首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Females of many species mate multiply, yet some taxon females mate with only one male, also known as monandry. Although the underlying mechanism behind female monandry is poorly understood relative to female polyandry, there are two contrasting hypotheses, male control and female control, for the maintenance of monandry. Since females generally benefit from multiple mating for material and/or genetic benefits, cases of monandry may reflect male manipulation on female remating at the expense of female fitness (male control). Alternatively, monandry may be favored by females, if females maximize their fitness by mating once (female control). Here, we tested two hypotheses by manipulating the number of mating (repeated mating and polyandry) on female fitness in a largely monandrous wolf spider, Pardosa astrigera. We allowed females to be inseminated once, twice with the same males (repeated mating) or with two males (polyandry) and determined female fitness consequences. The number of female mating, regardless of a single mating, repeated mating, or polyandry, had no significant effects on female fecundity, fertility, and survival and size of their spiderlings. However, the fitness cost of female multiple mating may to some extent be underestimated under laboratory conditions. In addition, female survival was adversely affected by induced multiple mating. Therefore, our results suggest that monandry of the wolf spider (P. astrigera) may be under the control of females, rather than under the control of males.  相似文献   

2.
The purpose of my study was to determine whether male body size, a trait known to be important to mating success, covaries with offspring performance. I tested the effects of male body size on the performance of Bufo bufo tadpoles reared at two food levels by mating large, small, and naturally-mated males to the same females. Survival of tadpoles in the high-food environment was affected by male size class, but in the opposite way to that expected. Tadpoles sired by large males had the lowest survival, and those sired by small males the highest. Neither body size at metamorphosis nor larval period were affected by male size class alone, but male size interacted with the female contribution: tadpoles sired by large males had short larval periods and large size at metamorphosis with some females,but long larval periods and small body sizes with others. Food level had a significant effect on both size at metamorphosis and larval period, and interacted with female contribution, but not male size class. This indicated that female contribution to tadpoles was dependent on food level, but that the effects of male size were not differentially expressed by tadpoles at the two food levels. My results indicate that traits with a direct effect on offspring fitness are not enhanced by large male body size, yet some males and females produced offspring with significantly better performance. I suggest that evolutionary change in this mating system is unlikely to occur through the non-random mating of males based on body size alone.  相似文献   

3.
Summary A recent model in sexual selection has proposed a role for parasites in maintaining heritable fitness variation. Females are envisaged as benefitting from preferentially mating with males that show resistance to infection. The post-copulatory guarding behaviour characteristic of many species of field cricket, has been envisaged as a means by which females assess male health and vigour. This hypothesis was tested in a field cricket, G. bimaculatus, which harbours a protozoan gut parasite. In enclosed arena trials, no direct correlations between female behaviours and levels of infection in males were found. However, there were significant correlations between the intensity of male guarding and the number of parasites found in the gut; infected males guarded more intensely in order to maintain contact with the female. In a second experiment simulating open field conditions, females left heavily parasitized males sooner than mildly or uninfected individuals. These data are discussed in relation to female choice for male health and vigour.  相似文献   

4.
Protandrous hermaphrodites are predicted to change sex from male to female when relative reproductive fitness of females surpasses that of males. How size at sex transition varies with population, mating group and individual parameters was investigated for five populations of the protandrous hermaphrodite slipper snail, Crepidula fornicata. The populations varied for density, size distribution, average mating group size and sex ratio. Size at sex-change was correlated with the population sex ratio. Comparisons of multiple hypotheses revealed that variables predicting the sex of a snail vary among positions in the mating group. The variables included body size, the relative size of the snail sitting atop the focal snail and population density. Our data support the conclusions that size at sex-change (and by inference, the size at which one sex has relatively greater fitness) is not fixed for these hermaphrodites and that individual size, social conditions and population differences all influence variation in relative fitness.  相似文献   

5.
The concept of evolvability is controversial. To some, it is simply a measure of the standing genetic variation in a population and can be captured by the narrow-sense heritability (h2). To others, evolvability refers to the capacity to generate heritable phenotypic variation. Many scientists, including Darwin, have argued that environmental variation can generate heritable phenotypic variation. However, their theories have been difficult to test. Recent theory on the evolution of sex and recombination provides a much simpler framework for evaluating evolvability. It shows that modifiers of recombination can increase in prevalence whenever low fitness individuals produce proportionately more recombinant offspring. Because recombination can generate heritable variation, stress-induced recombination might be a plausible mechanism of evolvability if populations exhibit a negative relationship between fitness and recombination. Here we use the fruit fly, Drosophila melanogaster, to test for this relationship. We exposed females to mating stress, heat shock or cold shock and measured the temporary changes that occurred in reproductive output and the rate of chromosomal recombination. We found that each stress treatment increased the rate of recombination and that heat shock, but not mating stress or cold shock, generated a negative relationship between reproductive output and recombination rate. The negative relationship was absent in the low-stress controls, which suggests that fitness and recombination may only be associated under stressful conditions. Taken together, these findings suggest that stress-induced recombination might be a mechanism of evolvability.  相似文献   

6.
Species where most but not all females mate monandrously can provide insight into the potential factors both promoting and restricting polyandry. Polyandry is typically explained by direct and/or indirect benefits models; however, polyandry may also confer costs via sexually antagonistic processes. The fitness of polyandrous and monandrous females may also vary with environmental conditions, such as availability of water. For some lepidopterans, water is a vital resource that increases fecundity and may be a direct benefit of multiple mating. Male lepidopterans transfer large spermatophores that may be an important water source for females, particularly for species living in water-depauperate environments. In such species, multiple-mating females may increase their reproductive output. We examined the fitness consequences of multiple mating in the almond moth, Cadra cautella. Males transfer substantial spermatophores; these have a large chitinous process attached, which decrease female longevity. To assess the impact of female mating treatment and water availability on female fitness, females mated once or twice, either with the same or different males, with half the females in each treatment receiving water. Water-fed females had dramatically increased fecundity, but we found no fitness benefits of multiple mating. Male longevity decreased with increased mating frequency and potentially his level of reproductive investment. Water-deprived females that mated twice died sooner than once-mated females, while multiple-mating females that received water lived longer than their water-deprived counterparts. It is interesting to note that the male’s spermatophore process did not affect female fitness or longevity. Why polyandry is maintained in this species is discussed.  相似文献   

7.
Summary Examples of positive assortative mating by body size are abundant but its causes remain controversial. I show that size-assortative mating occurs in the chrysomelid beetle Trirhabda canadensis and I test a series of alternative hypotheses to explain how this mating pattern comes about. Results suggest that assortative mating in this beetle is due to the greater ease with which size-matched pairs can achieve intromission, and not due to size-biased skews in the availability of mates or mate choice favoring large individuals. There was no correlation between male and female elytron length (a measure of body size) at the initiation of courtship, but pairs assorted positively by size at the onset of intromission. Moreover, in the laboratory, there was a negative correlation between male and female size for pairs engaged in courtship that terminated without mating. Assortative mating was not associated with a large-male mating advantage and there was no evidence of female choice of large males. Nor was there unequivocal evidence for male choice of large females; although mating females were slightly larger and considerably heavier than solitary females, males did not differ in the frequency with which they rejected large and small females. Assortative mating in T. canadensis appeared to be caused by the lower ability of mismatched pairs to achieve intromission after an encounter, both when males were larger and when they were smaller than the female.  相似文献   

8.
Large size often confers a fitness advantage to female insects because fecundity increases with body size. However, the fitness benefits of large size for male insects are less clear. We investigated the mating behavior of the mayfly Baetis bicaudatus to determine whether the probability of male mating success increased with body size. Males formed mating aggregations (swarms) ranging from a few to hundreds of individuals, 1-4 m above the ground for about 1.5-2 h in the early morning. Females that flew near swarms were grabbed by males, pairs dropped to the vegetation where they mated and then flew off individually. Some marked males returned to swarms 1, 2 or 3 days after marking. Larger males swarmed near spruce trees at the edges of meadows, but the probability of copulating was not a function of male body size (no large male advantage). Furthermore, the potential fitness advantage of mating with larger, more fecund females was not greater for large males (no size-assortative mating). However, the sizes of copulating males were significantly less variable than those of non-mating males collected at random in swarms. Intermediate male size may be optimal during mating because of trade-offs between flight agility and longevity or competitive ability. Results of this study are consistent with the hypotheses that there is stabilizing selection on adult male body size during mating, and that male body size in this species may be influenced more by selection pressures acting on larvae than on adults.  相似文献   

9.
Female choice on the basis of male traits has been described in an array of taxa but has rarely been demonstrated in reptiles. In the sand lizard (Lacerta agilis), and possibly in other non-territorial reptiles, a male's contribution to a female's fitness is restricted to his genes. In order to choose males of high genetic quality, females have to trade the fitness gain against the costs of active choice. In a Swedish population of sand lizards, long-lived males sired offspring with higher embryonic survival compared to offspring sired by short-lived males. In spite of this female sand lizards did not mate selectively with older and/or larger males. There appeared to be mo reliable cues to male longevity; age-specific male body size was highly variable. Furthermore, estimates of male nuptial coloration did not covary with ectoparasite load and, hence, females cannot use male coloration as a cue to heritable resistance to pathogenic parasite effects. When cues to male genetic quality are poor, or inaccurate, and males make no parental investment, we predict that female choice will be rare. Sand lizard females mating with many partners lay clutches with higher hatching success. Thus, females may obtain good genes for their young by multiple mating, thereby avoiding costs associated with mate choice.  相似文献   

10.
The occurrence of male pregnancy in the family Syngnathidae (seahorses, pipefishes, and sea dragons) provides an exceptionally fertile system in which to investigate issues related to the evolution of parental care. Here, we take advantage of this unique reproductive system to study the influence of maternal body size on embryo survivorship in the brood pouches of pregnant males of the broad-nosed pipefish, Syngnathus typhle. Males were mated with either two large females, two small females, a large then a small female, or a small then a large female. Our results show that offspring survivorship depends on an interaction between female body size and the number of eggs transferred by the female. Eggs of larger females deposited in large numbers are more likely to result in viable offspring than eggs of smaller females laid in large numbers. However, when females deposited smaller numbers of eggs, the eggs from smaller females were more likely to produce viable offspring compared to those from larger females. We found no evidence that this result was based on mating order, the relative sizes of competing females, or egg characteristics such as dry weight of eggs. Additionally, male body size did not significantly influence the survivorship of offspring during brooding. Our results suggest that the factors underlying offspring survivorship in pipefish may be more complex than previously believed, with multiple factors interacting to determine the fitness of individual offspring within the broods of pregnant males.  相似文献   

11.
Male seahorses (genus Hippocampus) provide all post-fertilization parental care, yet despite high levels of paternal investment, these species have long been thought to have conventional sex roles, with female mate choice and male–male competition. Recent studies of the pot-bellied seahorse (Hippocampus abdominalis) have shown that sex-role reversal occurs in high-density female-biased populations, indicating that male mating preferences may lead to sexual selection on females in this species. Egg size, egg number, and offspring size all correlate positively with female body size in Hippocampus, and by choosing large mating partners, male seahorses may increase their reproductive success. While male brood size is also positively correlated with body size, small H. abdominalis males can carry exceptionally large broods, suggesting that the fecundity benefits of female preference for large partners may be limited. We investigated the importance of body size in reproductive decisions of H. abdominalis, presenting focal individuals of both sexes with potential mating partners of different sizes. Mating preferences were quantified in terms of time spent courting each potential partner. Male seahorses were highly active throughout the mate-choice trials and showed a clear behavioral preference for large partners, while females showed significantly lower levels of activity and equivocal mating preferences. The strong male preferences for large females demonstrated here suggest that sexual selection may act strongly on female body size in wild populations of H. abdominalis, consistent with predictions on the importance of female body size for reproductive output in this species. An erratum to this article can be found at  相似文献   

12.
Life-history theory predicts that individuals should increase their reproductive effort when the fitness return from reproduction is high. Females mated with high-quality males are therefore expected to have higher investment than females mated with low-quality males, which could bias estimates of paternal effects. Investigating the traits females use in their allocation decisions and the aspects of reproduction that are altered is essential for understanding how sexual selection is affected. We studied the potential for differential female allocation in a captive population of a precocial bird, the Chinese quail, Coturnix chinensis. Females paired with males with large sexual ornaments laid larger, but not more, eggs than females paired with males with small sexual ornaments. Furthermore, female egg mass was also significantly positively affected by male testis size, probably via some unknown effect of testis size on male phenotype. Testis size and ornament size were not correlated. Thus, both primary and secondary male sexual traits could be important components of female allocation decisions. Experimental manipulation of hormone levels during embryonic development showed that both male and female traits influencing female egg size were sensitive to early hormone exposure. Differences in prenatal hormone exposure as a result of maternal steroid allocation to eggs may explain some of the variation in reproductive success among individuals, with important implications for non-genetic transgenerational effects in sexual selection.Communicated by C. Brown  相似文献   

13.
Costs and benefits associated with matings and the effects of mating frequency on fitness commonly differ between the sexes. As a result, outcrossing simultaneous hermaphrodites may prefer to copulate in the more rewarding sex role, generating conflicts over sperm donation and sperm receipt between mates. Because recent sex role preference models remain controversial, we contrast here some of their assumptions and predictions in the sea slug Chelidonura sandrana. For this hermaphrodite with sperm storage and internal fertilisation, risk-averse models assume that fitness pay-offs are constantly higher in the female than in the male function in any single mating. Moreover, excluding mutual partner assessment, these models predict male mating behaviour to be independent of receiver traits. The competing gender ratio hypothesis assumes that relative fitness pay-offs, and thus the preferred mating roles, vary and may reverse between matings and predicts that ejaculation strategies co-vary with receiver quality. We found that field mating rates of C. sandrana substantially exceeded what is required to maintain female fertility and fecundity, indicating large variation in direct female benefits between matings. We further demonstrate that male copulation duration adaptively increased with partner body size (i.e. fecundity) but decreased with recent partner promiscuity. These findings are compatible with the gender ratio hypothesis but contradict risk-averse models.  相似文献   

14.
Courtship feeding in katydids benefits the mating male's offspring   总被引:2,自引:0,他引:2  
Summary For species exhibiting courtship feeding it is typically argued that the food gift presented by males is a sexually-selected trait in serving to acquire fertilizations. An alternative hypothesis is that the trait is maintained by natural selection for parental investment in which the fitness of the mating male's offspring is increased. Here I argue that the spermatophylax, a nutritious part of the spermatophore provided to female katydids, Requena verticalis, functions mainly as parental investment. Previous research suggested that variation in the size of the male donation in this species (1) did not influence the ability of males to transfer ejaculates and (2) resulted in variation in offspring fitness. In the present paper genetic markers and radiolabels are used to show that the offspring are fathered by the males that donate the nutrients. Although these results indicate that the large spermatophylax is maintained by selection for increased parental investment, it is likely that this male offering originated in a sexual selection context whereby males fed females in order to obtain fertilizations.  相似文献   

15.
Males often use elaborate courtship displays to attract females for mating. Much attention, in this regard, has been focused on trying to understand the causes and consequences of signal variation among males. Far less, by contrast, is known about within-individual variation in signal expression and, in particular, the extent to which males may be able to strategically adjust their signalling output to try to maximise their reproductive returns. Here, we experimentally investigated male courtship effort in a fish, the Australian desert goby, Chlamydogobius eremius. When offered a simultaneous choice between a large and a small female, male gobies spent significantly more time associating with, and courting, the former, probably because larger females are also more fecund. Male signalling patterns were also investigated under a sequential choice scenario, with females presented one at a time. When first offered a female, male courtship was not affected by female size. However, males adjusted their courtship effort towards a second female depending on the size of the female encountered previously. In particular, males that were first offered a large female significantly reduced their courtship effort when presented with a subsequent, smaller, female. Our findings suggest that males may be able to respond adaptively to differences in female quality, and strategically adjust their signalling effort accordingly.  相似文献   

16.
Summary Size dimorphism with males larger than females has been related to the benefits for males of enhanced dominance and hence reproductive success. However, mating gains must outweigh the fitness costs of deferred reproduction and the mortality associated with further growth. The relationships between male age, size and reproduction were assessed for greater kudus (Tragelaphus strepsiceros) in the Kruger National Park in South Africa. Individually identifiable animals were monitored over 10 years, with detailed observations made during six breeding seasons. In the non-breeding season males formed loose all-male groups. Horn grappling and low intensity agonistic interactions fostered dominance rankings. Dominance was age-graded, until males reached full weight at 6 years of age. Males aged 6 and 7 years monopolized courtship and mating, but 5-year-old males secured about 10% of mating opportunities. Few males survived beyond 7 years. Male mortality rate rose steeply with age, so that the functional sex ratio of fertile females per mature male was about 14:1. During the breeding season many female groups remained unattended by a mature male. Reproductive sorting among males occurred largely through variation in survival to full size and maturity. Increased size enhances fighting success and hence dominance. Further growth ceases when the functional sex ratio exceeds the number of mating opportunities that males can effectively achieve during a breeding season. Predation amplifies the mortality cost of continued growth. In the absence of large predators, male-male interactions may be atypically exaggerated.  相似文献   

17.
Field studies demonstrate that natural populations of a group of water striders (Heteroptera: Gerridae) that share a common mating system are characterized by weak assortative mating by size and by large sizes of mating males and females relative to single individuals. This study presents an experimental assessment of the components of mating that may contribute to these mating patterns. The effects of male and female body size on each of three components of mating were studied in three water strider species in the laboratory. Large females of all three species mated more frequently, copulated for longer and were guarded longer than small females. Large males mated more frequently than small males in all three species, and also guarded females for longer in the two species where the average of mate guarding was long. However, we found an antagonistic effect of male size on copulation duration: small males copulated for longer than large males in all three species. We show that the combined effects of these size biases mimic the mating patterns found in the wild, e.g. weak and variable assortative mating, and stronger and less variable size ratios of mating versus non-mating females relative to males. We suggest that the antagonistic effects of male size on copulation and guarding duration may be a key source of interpopulational variation in assortative mating and sexual selection on male size. Further, neither spatial or temporal covariation in size, nor mechanical constraints, caused the assortative mating observed here in this group of water striders. Some combination of male and female choice (either active or passive forms) of large mates and male-male exploitation competition for mates play potentially important roles in producing population level assortative mating in water striders. Received: 17 March 1995/Accepted after revision: 28 October 1995  相似文献   

18.
Although the effects of male mating history on female reproductive output and longevity have been studied in insects, few such studies have been carried out in spiders. In a mating system in which females are monandrous while males are polygynous, females may incur the risk by mating with successful males that have experienced consecutive matings and suffer from the possible depletion of sperm and/or associated ejaculates. Here, we examine the effects of male mating history on male courtship and copulation duration, female reproductive fitness, and female adult longevity of the wolf spider, Pardosa astrigera. Results indicated that male mating frequency had little effect on their subsequent copulation success, and of 35 males tested, about half of the males were able to copulate with five virgin females successively at an interval of 24 h. Male mating history had little effect on their courtship duration. However, male mating history significantly affected male copulation duration, female adult longevity, and reproductive output. Males that mated more frequently copulated longer and more likely failed to cause their mates to produce a clutch, although there was no significant difference in the number of eggs laid and the number of eggs hatched regardless of the first clutch or the second one. Multiple mating of male P. astrigera resulted in significant reduction in female adult longevity. Our results indicate that monandrous females mating with multiple-mated males may incur substantial fitness costs.  相似文献   

19.
Female mate choice based on visual traits appears to be rare in lizards. Field observations suggest that females of the lizard Lacerta monticola preferred to mate with larger/older males. Although older males are usually green and larger, and younger males brown and smaller, there is some overlap in size and coloration between age classes. Thus, visual cues may not always be reliable indicators of a male's age. We hypothesized that female mate-choice preferences may be based on males' pheromones, which might transmit information about characteristics such as age. In a laboratory experiment, we analyzed the effect of age of males on attractiveness of their scents to females. When we offered scents of two males of different age, females associated preferentially with scents of older males. This suggested that females were able to assess the age of males by chemical signals alone, and that females preferred to be in areas scent-marked by older males. Thus, females may increase their opportunities to mate with males of high quality, or may avoid harassment by sneaking young males. This result agreed with field observations on females mating with old males, and rejection of advances by young males. Our results also suggested that female preference for older males may depend on their own body size. Large females showed a strong preference for older males, whereas smaller females were not so selective. This, together with males' preference for large females, might lead to size-assortative matings. We suggest that the quality and/or quantity of male pheromones could communicate to the female heritable male genetic quality (i.e. age) and thereby serve as the basis of adaptive female choice in lizards.Communicated by W.E. Cooper  相似文献   

20.
Contrary to vertebrates, sperm production in insects may bear considerable costs for males. This is especially true in species that donate spermatophores containing sperm and nutrient-rich accessory gland products like in butterflies. Hence, spermatophores at first and subsequent copulations can differ in a quantitative and qualitative way. Such effects have particularly been shown in polyandrous species providing large spermatophores. Here we experimentally tested the effect of male mating status (virgin male vs recently mated male) on copulation duration, spermatophore size and females’ fitness components in a monandrous butterfly Pararge aegeria that typically donates small spermatophores. Copulations with non-virgin males lasted on average five times longer than that with virgin males and resulted in a spermatophore which was on average three times smaller. Number of eggs laid and female life span were not affected by the mating status treatment, but there was a significant effect on the number of living caterpillars a female produced, as copulations with virgin males resulted in higher numbers of larval offspring. Interestingly, the difference in spermatophore mass at the first and the second copulation increased with male body size. This suggests differential spermatophore allocation decisions among males of different size. Consequences for females and potential mechanisms influencing female fitness components are discussed. Given the small absolute size of spermatophores in P. aegeria, components other than consumable nutrients (perhaps hormones) should cause the observed effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号