首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
对自制天然有机高分子絮凝剂DXSL-Ⅰ实际应用和环境生物效应进行初步的实验研究.实验结果表明,DXSL-Ⅰ对高浓度油污水具有较高的处理效率;当油份浓度大于2 000×10-6g/L时,只需要处理10 h,处理效率就能达到60%以上,可用于高浓度油污水的快速预处理.通过生物实验可以明显的观察到,孔雀鱼的LD50约为416×10-6g/L,泥鳅的LD50约为870×10-6g/L,因而可以推定其具有相对较高的环境安全性;而且经过DXSL-Ⅰ常规浓度处理的养殖用水对某些水产养殖生物的生长具有改善促进作用.表明,DXSL-I在水处理中具有较理想的实际应用前景.  相似文献   

2.
对自制天然有机高分子絮凝剂DXSL-I实际应用和环境生物效应进行初步的实验研究。实验结果表明,DXSL-I对高浓度油污水具有较高的处理效率;当油份浓度大于2000×10-6g/L时,只需要处理10h,处理效率就能达到60%以上,可用于高浓度油污水的快速预处理。通过生物实验可以明显的观察到,孔雀鱼的LD50约为416×10-6g/L,泥鳅的LD50约为870×10-6g/L,因而可以推定其具有相对较高的环境安全性;而且经过DXSL-I常规浓度处理的养殖用水对某些水产养殖生物的生长具有改善促进作用。表明,DXSL-I在水处理中具有较理想的实际应用前景。  相似文献   

3.
生化组合工艺对高浓度制浆造纸废水的深度处理   总被引:1,自引:0,他引:1  
采用斜网-混凝-厌氧/好氧-臭氧-曝气生物滤池深度处理组合工艺处理高浓度制浆造纸废水,废水中的CODCr从进水质量浓度8-10 g/L降到100 mg/L以下,BOD5从进水质量浓度2.5-4 g/L降到20 mg/L以下,SS降到20 mg/L以下,出水达到国家造纸废水排放新标准(GB3544-2008),且出水水质稳定。废水处理系统的实际运行结果表明,高效的厌氧处理和臭氧-曝气生物滤池深度处理系统是该工艺处理高浓度造纸废水稳定达标的关键。  相似文献   

4.
比较了生物絮凝剂γ-聚谷氨酸与PAM、PAC及FeCl3等3种常规化学絮凝剂对5g/L高岭土悬浊液的絮凝效果.结果表明,γ-聚谷氨酸的絮凝活性较高,投加量在0.02g/L以上时均能获得》90%的絮凝率,其最佳投加量为0.30 g/L,此时上清液浊度为3.2NTU,絮凝率达97.82%,絮体粗大,固液分离迅速,产泥量小,无毒.γ-聚谷氨酸絮凝剂处理各种浓度工业废水的结果表明,其对溶解性有机物的去除效率不高,较适用于处理低浓度工业废水以及河流水体的净化,其在中、高浓度工业废水的处理中并没有显示出比PAM和PAC等化学絮凝剂更为优异的絮凝效果,且与PAM相比,γ-聚谷氨酸絮凝剂的投加量偏大.  相似文献   

5.
为了将NY3菌实际应用于处理高浓度含油废水,采用摇瓶试验方法,研究了含油废水的理化特性对NY3菌去除高浓度油的影响。结果表明,NY3菌能耐高浓度油,降解石油烃的最佳p H值为7.5,24 h对质量浓度为2 000 mg/L的高含油废水中烃类的去除率高达72%。适度的含盐量可提高NY3菌降解原油的能力,与未外加Na Cl相比,2 g/L Na Cl使NY3菌降解原油效率提高约20%。Sn2+、Ag+、Pb2+、Cd2+、Hg2+等均能对NY3菌降解石油烃的效率产生抑制作用,其中Ag+作用最明显,使NY3菌24 h烃降解效率降低约38.8%。硝酸铵为NY3菌降解石油烃的最佳氮源,外加3.71 g/L硝酸铵,24 h内对油的去除率高达81.75%。外加表面活性剂(SDS)使降解体系中NY3菌细胞数量减少,同时使NY3菌降解油的效率降低约43.5%。  相似文献   

6.
在小浪底水库坝上约10 km处主航道上设置采样垂线,采集水体不同深度的样品,采用冷原子荧光光谱法和电感耦合等离子体质谱法测定了样品中汞、砷、铅、镉、铬、铜、锌、锰、镍等元素的质量浓度.结果表明,在所有样品中,铬、镉、锌、铅均未检出,汞、铜和砷的质量浓度分别为(0.95±0.44) ng/L、(0.35±0.07) μg/L和(1.12±0.20)μgL,锰和镍的质量浓度分别为(0.14±0.06) μg/L和(0.59±0.09)μg/L.汞质量浓度随水深增加逐渐升高,至水深7.5m处达到最大值,然后逐渐降低,在接近底层时重新升高,达到次峰值.其他重金属质量浓度呈现随水深增加而升高的趋势.健康风险评价结果表明,致癌物质砷引起的健康危害较高,风险值为10-6~10-5 a-1,底层水中砷的风险值接近国际辐射防护委员会(ICRP)推荐的最大可接受风险水平;非致癌物质汞、铜、镍和锰引起的健康风险分别为1.43×10-2a-1、0.31×10-10 a-1、0.13×10-10 a-1和0.45×10-12 a-1,均远低于ICRP推荐的最大可接受水平.  相似文献   

7.
酵母融合菌-活性污泥曝气处理含镍废水研究   总被引:2,自引:0,他引:2  
利用酵母融合菌RJ与活性污泥曝气处理含镍废水.实验结果表明,融合菌对废水中的镍具有很强的富集性能,投加10g/L菌体,处理20 mg/L含镍废水,去除率可达70.10%;同时投加6g/L活性污泥,去除率上升到80.73%,出水固液分离效果得到改善;且融合菌的pH值适用范围较广,当pH=3~9时,去除率均在75%以上;溶解氧是影响曝气生物吸附的重要因素,在缺氧或富氧环境下,生物吸附会受到抑制,DO为2.5~4.5 mg/L时吸附效果较好;融合菌-活性污泥曝气处理不同浓度Ni2 的吸附等温线符合Freundlich模型,相关系数为0.997 5.  相似文献   

8.
铁离子对膜生物反应器中污泥性质及膜污染的影响   总被引:1,自引:0,他引:1  
以处理模拟生活污水的平板膜-生物反应器为依托,将进水铁离子质量浓度分别调配成6 mg/L、1g mg/L、40 mg/L,考察三价铁离子对膜生物反应器中污泥性质及膜污染的影响.结果表明,投加铁离子对平板膜-生物反应器的出水水质影响不大.随着铁离子投加质量浓度的增加,跨膜压差(TMP)增长趋势变小,膜污染得到缓解,其中铁离子投加质量浓度为40 mg/L时,膜污染控制效果最好.铁离子的投加强化了生物絮凝作用,造成污泥质量浓度的上升,溶解性微生物产物(SMP)和松散型胞外聚会物(LB-EPS)质量比的下降.从膜阻力分析可以看出.投加铁离子主要是降低SMP和LB-EPS等凝胶层污染物引起的外部阻力.  相似文献   

9.
炼油碱渣预处理工程实践   总被引:1,自引:0,他引:1  
炼油碱渣因其高浓度污染会对污水处理系统造成冲击.某炼油厂实行"清污分流、污污分治"的污水治理政策,对碱渣进行预处理以消减负荷.针对碱渣主要含可生化降解物质,采用两级生物催化作为主要预处理手段.工程实践表明,控制进水pH值为5-6和反应器DO > 2 mg /L,处理出水的COD、硫化物和挥发酚平均质量浓度分别为5347...  相似文献   

10.
研究了SBR法处理颜料中间体高浓度有机废水时,污泥浓度、曝气时间、pH等参数对该工艺处理效果的影响.结果表明,当SBR周期为8 h(进水0.2 h,反应6 h,沉淀1 h,排水0.5 h,闲置0.3 h), MLSS为2-4 g/L,进水CODCr1.2 g/L,pH 7.00-8.50时,COD去除率可达70%.  相似文献   

11.
微电解-催化氧化-吸附法处理二硝基苯废水   总被引:1,自引:0,他引:1  
二硝基苯生产废水具有硝基苯类化合物浓度高,盐量高,难降解等特点.CODCr的平均质量浓度为10 g/L,含盐量达30 g/L.采用微电解-催化氧化-吸附法对该废水进行处理.结果表明:经微电解处理后硝基苯类物质的去除率可达90%以上,铁碳还原后的废水再经催化氧化和活性炭吸附后,废水的CODCr去除率达到96%,硝基苯类物质、色度的去除率接近100%,出水可达到<污水综合排放标准>(GB8978-1996)规定的三级排放标准,是一种效果良好的二硝基苯类废水的处理方法.  相似文献   

12.
UASB+SBR工艺处理皂素生产废水的快速启动研究   总被引:7,自引:1,他引:6  
皂素生产废水为难处理高浓度酸性含硫有机废水.其中高含量的硫酸盐在厌氧条件下产生大量的H2S,造成了对厌氧微生物的抑制作用,严重影响厌氧生物处理的效果,甚至使厌氧消化完全失败,使该类废水的处理较为困难.为了有效解除硫酸盐对生物处理设施中微生物的抑制,找出皂素生产废水的快速启动运行的方法,本文选用了UASB SBR组合工艺进行了2个月左右的动态连续流实验,对硫酸盐抑制的解除方法进行了研究,提出了相应的解除硫酸抑制厌氧消化的方法,找到了UASB快速启动的有效方法.小试连续运行实验结果表明,在UASB中加入适量铁屑和活性炭颗粒,以生活污水处理厂剩余污泥为种泥可以成功实现UASB SBR处理系统的快速启动,消除DO2-4对生物处理系统的影响,并在较短的时间内(21 d左右)培养出了厌氧颗粒污泥.UASB启动后,在进水COD质量浓度34 000mg/L左右时,COD的去除率一直保持在95%以上,出水COD质量浓度维持在1 300 mg/L左右.厌氧出水经过SBR处理后,出水水质达到了<综合污水排放标准>中的二级排放标准要求.该快速启动方法可供类似酸性高浓度有机废水处理和调试参考.  相似文献   

13.
为研究表面活性剂十二烷基苯磺酸钠(SDBS)与CaCl_2复配液对煤体瓦斯解吸的抑制效应,选用新疆硫磺沟4—5号煤层煤样,采用HCA高压吸附解吸装置,测定干燥煤样、纯水、质量浓度2.5×10~(-2)g/m LSDBS及SDBS与CaCl_2复配液浸泡后煤样瓦斯解吸参数。研究表明:SDBS与CaCl_2复配液有效降低纯水的表面张力、煤样接触角,当质量浓度为2.5×10~(-2)g/m L的SDBS溶液与质量浓度为2.5×10~(-2)g/m L的CaCl_2溶液体积比为1∶3时,溶液表面张力降低至24.22 m N/m,煤样接触角降低至15.175°;随解吸时间增加,煤体瓦斯解吸量呈Langmuir关系逐渐增大后趋于稳定,瓦斯解吸速率迅速减小,当CaCl_2质量浓度为1.875×10~(-2)g/m L时,最大瓦斯解吸量为0.24 m L/g,最大解吸速率为0.8×10~(-2)m L/(g·s),对瓦斯解吸量及解吸速率的抑制效率最高。  相似文献   

14.
硫酸铜和氰戊菊酯对斑马鱼急性毒性试验   总被引:2,自引:1,他引:1  
为探究重金属和农药对斑马鱼的毒性与安全评价,选用硫酸铜、氰戊菊酯对斑马鱼进行急性毒性试验,以24~96h半致死浓度(LC50)判定斑马鱼对这两种药物的敏感性.结果表明,硫酸铜24 hLC50、48h LC50、72 h LC50、96h LC50分别为12mg/L、7.9 mg/L、6.8mg/L、5.4 mg/L;氰戊菊酯24 h LC50、48h LC50、72h LC50、96h LC50分别为1.2×10-4 mg/L、0.9×10-4 mg/L、0.9×10-4 mg/L、0.9×10-4 mg/L; 硫酸铜安全质量浓度为1.03mg/L,氰戊菊酯为1.52×1O-5 mg/L.参照我国化学物质对鱼类毒性分级标准,判定硫酸铜对斑马鱼急性毒性为Ⅱ级,氰戊菊酯对斑马鱼急性毒性为Ⅰ级.  相似文献   

15.
餐厨垃圾固渣厌氧发酵产甲烷潜力及Logistic动力学研究   总被引:1,自引:0,他引:1  
为考察餐厨垃圾经提炼生物柴油处理后的固渣厌氧生物处理的可行性,在中温条件下,研究固渣批式厌氧发酵的产气特性和物质转化过程,并结合Logistic方程分析该固渣厌氧消化产甲烷的动力学过程.结果表明,该固渣具有较高的厌氧发酵产甲烷潜力,在2:1的物料比条件下,单位质量固渣产气效率最高,甲烷产量达633 NmL/gVS.稳定状态下,Logistic方程可以较好地分析餐厨垃圾固渣厌氧发酵产甲烷过程(决定系数R2> 0.99),经过拟合,产甲烷潜力为661.33NmL/g VS,最大产甲烷速率为106.78 NmL/(g VS-d),无滞后期,与试验结果基本一致.随底物负荷提高,总挥发性脂肪酸和氨氨的质量浓度分别达到14 800 mg/L、2 500 mg/L,pH值降至5.0左右,产甲烷菌活性受到总挥发性脂肪酸(VFAs)、高浓度氨氮(NH4+-N)及低pH值的严重抑制.  相似文献   

16.
以PBS为载体和碳源的SND系统的脱氮效果研究   总被引:1,自引:0,他引:1  
水产养殖业高速发展所带来的氮素污染问题越来越严重,近年来同步硝化反硝化(Simultaneous Nitrification and Denitrification,SND)脱氮工艺因其良好的脱氮效果引起广泛关注。以人工模拟养殖污水作为原水,研究了以可生物降解材料聚丁二酸丁二醇酯(Polybutylene succinate,PBS)作为碳源和载体的同步硝化反硝化反应器(PBS-SND)的脱氮效果。结果表明,在水力停留时间(Hydraulic Retention Time,HRT)为4 h、进水氨氮(NH+4-N)质量浓度为10 mg/L、硝酸氮(NO-3-N)质量浓度为50 mg/L、溶氧(Dissolve Oxygen,DO)质量浓度为(6.242±1.262)mg/L的条件下,SND反应器可在11 d内成功启动并稳定运行。反应器稳定运行后具有良好的脱氮能力,NH+4-N、NO-3-N和总氮(TN)的去除率分别为66.50%、98.55%、99.10%;反应器内载体表面生物量随空间位置升高逐渐递减,上、中、下三层的PBS颗粒表面的生物量分别为(0.549 6±0.021 7)×109CFU/g PBS、(6.563 9±3.078 1)×109CFU/g PBS、(29.148 7±0.884 7)×109CFU/g PBS。快速硝化测试试验中NH+4-N的去除率为22.93%,快速反硝化测试中NO-3-N的去除率最高达88.90%,其平均去除速率可达到1.481 7 mg/(L·h)。PBS-SND系统可实现低C/N比养殖废水的高效脱氮。  相似文献   

17.
为控制石油炼化含油废水对环境的污染,采用O3/H2O2方法对石油炼化含油废水进行处理,主要考察了臭氧浓度、H2O2投加量、反应温度、反应时间、pH等因素对处理效果的影响.实验表明,废水中石油烃类物质的去除率随着臭氧浓度、反应时间的增加而升高;石油烃类物质在pH值2-10、温度15-45 ℃、10-60 mL的H2O2投加量范围内,去除率分别呈现先增后降的趋势.处理1 L油质量浓度为110 mg/L的含油废水,臭氧质量浓度为7.23 mg/L,投加40 mL H2O2,pH为9,在35 ℃的条件下反应8 min,油去除率可以达到84%.同样条件下处理30 min,废水COD下降了65%.这将为该工艺处理实际含油废水提供实验依据.  相似文献   

18.
利用丝光沸石吸附高浓度氨氮的研究   总被引:8,自引:0,他引:8  
实验研究了丝光沸石对高浓度氨氮的吸附行为,考察了沸石投加量、温度、吸附时间、氨氮浓度、溶液pH值以及Ca2 、Mg2 竞争阳离子对丝光沸石吸附高浓度氨氮的影响,绘制了丝光沸石的吸附等温线.结果表明,在投加250 g/L丝光沸石,pH值6.5,温度25 ℃,吸附时间3 h的条件下,丝光沸石对高浓度氨氮的去除率可达90%以上.Ca2 、Mg2 竞争阳离子在一定程度上抑制丝光沸石对氨氮的吸附.丝光沸石对高浓度氨氮的吸附符合Freundlich等温吸附线.丝光沸石对实际养猪污水中800 mg/L的高浓度氨氮的去除率达到80%以上.  相似文献   

19.
鲫鱼(Carassius auratus Linnaeus)是重要的淡水鱼类,也是重要的食用鱼种.鱼体内胆碱酯酶(ChE)活性的降低是水体环境抗胆碱酯酶类药剂污染的重要生物化学标记.本文研究了鲫鱼体内乙酰胆碱酯酶(AChE)和丁酰胆碱酯酶(BuChE)的组织特异性分布及其对灭多威、硫双灭多威、克百威以及丁硫克百威等4种氨基甲酸酯类药剂的敏感度.AChE主要分布在鲫鱼的脑部,提取液中含有Triton X-100时,AChE的比活力要比无Triton-100时大,说明AChE是膜结合的.鲫鱼中肌肉、胰脏、肝脏、肠道中BuChE比活力较高.灭多威、硫双灭多威、克百威、丁硫克百威对鱼脑中的AChE的抑制中浓度(IC50)分别为9.47×10-7 mol/L,1.34×10-6 mol/L,2.40×10-7mol/L,2.75×10-6mol/L.上述4种氨基甲酸酯类农药对鱼脑中的AChE的抑制具有很好的剂量关系,表明鲫鱼脑AChE可以作为水体环境中氨基甲酸酯类药污染的生物化学标记.  相似文献   

20.
柚子皮生物炭的制备及对水体中锰离子的吸附   总被引:1,自引:0,他引:1  
以柚子皮为原料经硫化钠活化后炭化处理制备了生物质炭吸附剂,并将之应用于含锰废水的吸附。考察了溶液p H值、底液质量浓度、生物炭投加量等因素对柚子皮生物炭吸附能力的影响,并研究了柚子皮吸附剂对锰离子废水的吸附平衡和动力学特征。结果表明:柚子皮吸附剂对含锰废水具备较强吸附能力,在溶液p H值为6,底液质量浓度为50 mg/L,吸附剂投加量为2 g/L的条件下,对锰离子的去除率为93.5%;吸附平衡实验表明该等温吸附过程符合Langmuir方程,饱和吸附量为24.691 mg/g;吸附动力学研究表明,该吸附过程符合二级动力学方程,吸附速率常数为0.028 6 g/(mg·min)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号