首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: Major erosion of urban stream channels is found in smaller basins in the North Texas study area with contributing drainage areas of less than ten square miles. Within these basins, four basic channel types are identified based on bed and bank lithologies: alluvial banks and bottoms, alluvial banks and gravel bottoms, alluvial banks with rock bottoms, and rock banks with rock bottoms. Most channels (75 percent) have alluvial banks with gravel or rock bottoms. Channel slopes are steep (.38 to.76 percent). Rock consists predominantly of shale and limestone. Channel cross sections are divided into the following four zones based on weathering, scour and entrainment mechanisms: soil zone, slake zone, rock zone and bed material zone. Erodibility of the channels is determined using multiple techniques including reach hydraulics and stream power computations, submerged jet testing, slab entrainment thresholds, and slake durability rates. Procedures are based on both empirical and modeled time series estimates of channel erosion. Field and modeled results support rates of erosion of up to four inches per year. Rates are tied to flow regime, climate, and type of channel bed and banks.  相似文献   

2.
Human alterations to the Iowa landscape, such as elimination of native vegetation for row crop agriculture and grazing, channelization of streams, and tile and ditch drainage, have led to deeply incised channels with accelerated streambank erosion. The magnitude of streambank erosion and soil loss were compared along Bear Creek in central Iowa. The subreaches are bordered by differing land uses, including reestablished riparian forest buffers, row crop fields, and continuously grazed riparian pastures. Erosion pins were measured from June 1998 to July 2002 to estimate the magnitude of streambank erosion. Total streambank soil loss was estimated by using magnitude of bank erosion, soil bulk density, and severely eroded bank area. Significant seasonal and yearly differences in magnitude of bank erosion and total soil loss were partially attributed to differences in precipitation and associated discharges. Riparian forest buffers had significantly lower magnitude of streambank erosion and total soil loss than the other two riparian land uses. Establishment of riparian forest buffers along all of the nonbuffered subreaches would have reduced stream‐bank soil loss by an estimated 77 to 97 percent, significantly decreasing sediment in the stream, a major water quality problem in Iowa.  相似文献   

3.
Geomorphic, hydraulic and hydrologic principles are applied in the design of a stable stream channel for a badly disturbed portion of Badger Creek, Colorado, and its associated riparian and meadow complexes. The objective is to shorten the period of time required for a channel in coarse alluvium to recover from an impacted morphologic state to a regime condition representative of current watershed conditions. Channel geometry measurements describe the stream channel and the normal bankfull stage in relatively stable reaches. Critical shear stress equations were used to design a stable channel in noncohesive materials with dimensions which approximate those of less disturbed reaches. Gabion controls, spaced at approximately 300 m intervals, are recommended to help reduce the chance of lateral migration of the newly constructed channel. Controls are designed to allow for some vertical adjustment of the channel bed following increased bank stability due to revegetation. The flood plain is designed to dissipate flood flow energy and discourage multiple flood channels. The channel has approximately a 90 percent chance of remaining stable the first two years following construction, the time estimated for increased stability to occur due to revegetation.  相似文献   

4.
ABSTRACT: Stream channels are known to change their form as a result of watershed urbanization, but do they restabilize under subsequent conditions of constant urban land use? Streams in seven developed and developing watersheds (drainage areas 5–35 km2) in the Puget Sound lowlands were evaluated for their channel stability and degree of urbanization, using field and historical data. Protocols for determining channel stability by visual assessment, calculated bed mobility at bankfull flows, and resurveyed cross‐sections were compared and yielded nearly identical results. We found that channel restabilization generally does occur within one or two decades of constant watershed land use, but it is not universal. When (or if) an individual stream will restabilize depends on specific hydrologic and geomorphic characteristics of the channel and its watershed; observed stability is not well predicted by simply the magnitude of urban development or the rate of ongoing land‐use change. The tendency for channel restabilization suggests that management efforts focused primarily on maintaining stability, particularly in a still‐urbanizing watershed, may not always be necessary. Yet physical stability alone is not a sufficient condition for a biologically healthy stream, and additional rehabilitation measures will almost certainly be required to restore biological conditions in urban systems.  相似文献   

5.
Channelization is one of the most common solutions to urban drainage problems, despite the fact that channelized streams are frequently morphologically unstable, biologically unproductive, and aesthetically displeasing. There is increasing empirical and theoretical evidence to suggest that channelization may be counterproductive unless channels are designed to prevent the bank erosion and channel silting that often accompanies stream dredging. Many of the detrimental effects of channelization can be avoided, with little compromise in channel efficiency, by employing channel design guidelines that do not destroy the hydraulic and morphologic equilibria that natural streams possess. These guidelines include minimal straightening; promoting bank stability by leaving trees, minimizing channel reshaping, and employing bank stabilization techniques; and, emulating the morphology of natural stream channels. This approach, called stream restoration or stream renovation, is being successfully employed to reduce flooding and control erosion and sedimentation problems on streams in Charlotte, North Carolina.  相似文献   

6.
7.
ABSTRACT: Incised channels are caused by an imbalance between sediment transport capacity and sediment supply that alters channel morphology through bed and bank erosion. Consistent sequential changes in incised channel morphology may be quantified and used to develop relationships describing quasi‐equilibrium conditions in these channels. We analyzed the hydraulic characteristics of streams in the Yazoo River Basin, Mississippi in various stages of incised channel evolution. The hydraulic characteristics of incising channels were observed to follow the sequence predicted by previous conceptual models of incised channel response. Multiple regression models of stable slopes in quasi‐equilibrium channels that have completed a full evolutionary sequence were developed. These models compare favorably with analytical solutions based on the extremal hypothesis of minimum stream power and empirical relationships from other regions. Appropriate application of these empirical relationships may be useful in preliminary design of stream rehabilitation strategies.  相似文献   

8.
ABSTRACT: Incised channels are those in which an imbalance between sediment transport capacity and sediment supply has led to degradation of their beds. This is a frequent response to stream channelization, changes in land use, or lowering of base level. If the degradation causes a critical bank-height threshold to be exceeded, which is dependent on the geotechnical properties of the bank materials, then bank failure and channel widening follow. Interdependent adjustments of channel slope and cross-sectional area occur until a new state of dynamic equilibrium with the imposed discharge and sediment load is attained. These geomorphic adjustments can be described and quantified by using location-for-time substitution and a model of channel evolution can be formulated. Three approaches to rehabilitation of the degraded channels are possible; geomorphic, engineering and rational. The rational approach, which integrates elements of both the engineering and geomorphic approaches, is based on the channel evolution model, and it generally involves control of grade, control of discharge, or a combination of both.  相似文献   

9.
Abstract: Over the past 10 years the Rosgen classification system and its associated methods of “natural channel design” have become synonymous to some with the term “stream restoration” and the science of fluvial geomorphology. Since the mid 1990s, this classification approach has become widely adopted by governmental agencies, particularly those funding restoration projects. The purposes of this article are to present a critical review, highlight inconsistencies and identify technical problems of Rosgen’s “natural channel design” approach to stream restoration. This paper’s primary thesis is that alluvial streams are open systems that adjust to altered inputs of energy and materials, and that a form‐based system largely ignores this critical component. Problems with the use of the classification are encountered with identifying bankfull dimensions, particularly in incising channels and with the mixing of bed and bank sediment into a single population. Its use for engineering design and restoration may be flawed by ignoring some processes governed by force and resistance, and the imbalance between sediment supply and transporting power in unstable systems. An example of how C5 channels composed of different bank sediments adjust differently and to different equilibrium morphologies in response to an identical disturbance is shown. This contradicts the fundamental underpinning of “natural channel design” and the “reference‐reach approach.” The Rosgen classification is probably best applied as a communication tool to describe channel form but, in combination with “natural channel design” techniques, are not diagnostic of how to mitigate channel instability or predict equilibrium morphologies. For this, physically based, mechanistic approaches that rely on quantifying the driving and resisting forces that control active processes and ultimate channel morphology are better suited as the physics of erosion, transport, and deposition are the same regardless of the hydro‐physiographic province or stream type because of the uniformity of physical laws.  相似文献   

10.
ABSTRACT: The Hallett Quarry gravel pit lakes are an active sand and gravel extraction operation located 0.4 km north of the City of Ames, Iowa. During periods of drought, these lakes serve as a supplemental water supply for Ames. A modified version of the Vollenweider input-output model was used to predict future water quality under various watershed land use, drainage, and lake configurations. The dominant factor controlling the future water quality of the lakes was found to be the nutrient input. It is recommended that a management plan to protect the future water quality should be oriented towards reducing the sources of phosphorus to the lakes.  相似文献   

11.
Loss due to channel erosion in the Dallas, Texas, area is estimated to approach one-half million dollars in the last several years. Hydrogeomorphic analysis of natural and urban chalk and shale watersheds was performed in the central Texas area on watersheds ranging in size from 0.5 to 10 square miles in an effort to more adequately predict channel enlargement due to urbanization. Chalk watersheds were found to have greater drainage density, greater channel slope, lower sinuosity, and greater discharge per unit area than similar sized shale watersheds under natural conditions. With subsequent urbanization of the watersheds, chalk channel enlargement was from 12 to 67 percent greater than shale channel enlargement for similar sized watersheds. Greater enlargement in chalk channels is attributed to greater channel velocities and unit tractive force. Vegetation seems to play a significant role in influencing channel adjustments to the new flow regimes brought on by urbanization. Channel response to urbanization is documented and specific nonstructural guidelines are proposed which could reduce structural loss along urban stream channels.  相似文献   

12.
A system is proposed to classify running water habitats based on their channel form which can be considered in three different sedimentological settings: a cobble and boulder bed channel, a gravel bed channel, or a sand bed channel. Three physical factors (relief, lithology, and runoff) are selected as state factors that control all other interacting parameters associated with channel form. When these factors are integrated across the conterminous United States, seven distinct stream regions are evident, each representing a most probable succession of channel forms downstream from the headwaters to the mouth. Coupling these different channel profiles with typical biotic community structures usually associated with each of the channel types should result in considerable refinement of the applicability of the River Continuum Concept and other holistic ecosystem models by realizing the nonrandomness of the effects of geo-morphology on stream ecosystems. Thus, this regional perspective of streams should serve to make persons concerned with water resources more aware of the geographical considerations that affect their study areas.  相似文献   

13.
ABSTRACT The influence of a forest on the formation of steps in two small streams of the Colorado Rocky Mountains was studied. Steps provided by logs fallen across the channel added to flow energy reduction. The streams required additional gravel bars to adjust to slope. Average step length between logs and gravel bars was strongly related to channel gradient and median bed material size. Based on the average number of log steps per 50 feet of channel, an average of 116 percent of gravel bars were added at Fool Creek and 60 percent at Deadhorse Creek. The latter had 52 percent more logs in the channel and therefore required less bed material movement than the former. Although these are “rushing mountain streams,” most flow velocities ranged between 0.5 and 2.5 f.p.s. Exponents of a function relating rate of change of depth or velocity to discharge indicated that dynamic stream equilibrium was attained. Implications for forest management are that sanitation cuts (removal of dead and dying trees) would not be permissible where a stream is in dynamic equilibrium and bed material movement should be minimized.  相似文献   

14.
ABSTRACT: Rosgen analysis, developed for assessing channel stability in streams from the western United States, is applied to the Oswego River watershed in the New Jersey Pine Barrens. The Rosgen method requires calibration to local conditions due to the impact of peat substrates on channel morphology. In particular, the presence of peat induces low width to depth ratios and greater channel confinement, reversing typical downstream morphologic trends observed in other rivers. Therefore peat is added to those substrates already evaluated by Rosgen. A consistent sequence of Rosgen stream types develops along the Oswego River and its tributaries created by spatially overlapping processes of water table emergence, peat development, and channel formation. This sequence delineates a “natural” transition of stream channel morphology downslope through the watershed. First, as the water table reaches the surface of dry sloughs, Sphagnum growth is stimulated and peat substrates result. These substrates have lower permeability than the underlying gravelly sands. Next, surface runoff, through braided pathways over the peat, eventually erodes mainly anastomosing channels into the peat. Finally, single‐thread channels develop in underlying gravelly sands further downslope. This downslope sequence, expressed as Rosgen stream types, begins generally with DA7 streams arising from dry sloughs. These pass to E7, C7 or DA5 stream types that in turn pass to B5c, C5 and C4 stream types. Departures from the “natural” stream type sequence occur along the course of the Oswego and its tributaries due to human activities such as the construction of dams, bridges and drainage ditches, stream bank erosion at streamside camping and picnic areas and the clear‐cutting of adjacent stands of Atlantic white cedar.  相似文献   

15.
ABSTRACT: A flood-control dam was completed during 1979 on Bear Creek, a small tributary stream to the South Platte River in the Denver, Colorado, area. Before and after dam closure, repetitive surveys between 1977 and 1992 at five cross sections downstream of the dam documented changes in channel morphology. During this 15-year period, channel width increased slightly, but channel depth increased by more than 40 percent. Within the study reach, stream gradient decreased and median bed material sizes coarsened from sand in the pools and fine gravel on the rime to a median coarse gravel throughout the reach. The most striking visual change was from a sparse growth of streamside grasses to a dense growth of riparian woody vegetation.  相似文献   

16.
ABSTRACT: Rhodamine WT dye‐tracer injections in rivers of the Willamette Basin yield concentration‐time curves with characteristically long recession times suggestive of active transient storage processes. The scale of drainage areas contributing to the stream reaches studied in the Willamette Basin ranges from 10 to 12,000 km2. A transient storage assessment of the tracer studies has been completed using the U.S. Geological Survey's One‐dimensional Transport with Inflow and Storage (OTIS) model, which incorporates storage exchange and decay functions along with the traditional dispersion and advection transport equation. The analysis estimates solute transport of the dye. It identifies first‐order decay coefficients to be on the order of 10?5/sec for the nonconservative Rhodamine W.T. On an individual subreach basis, the first‐order decay is slower (typically by an order of magnitude) than the transient storage process, indicating that nonconservative tracers may be used to evaluate transient storage in rivers. In the transient storage analysis, a dimensionless parameter (As/A) expresses the spatial extent of storage zone area relative to stream cross section. In certain reaches of Willamette Basin pool‐and‐riffle, gravel‐bed rivers, this parameter was as large as 0.5. A measure of the storage exchange flux was calculated for each stream subreach in the simulation analysis. This storage exchange is shown subjectively to be higher at higher stream discharges. Hyporheic linkage between streams and subsurface flows is the probable physical mechanism contributing to a significant part of this inferred active transient storage. Hyporheic linkages are further suggested by detailed measurements of river discharge with an Acoustic Doppler Current Profiler system delineating zones in two large rivers where water alternately enters and leaves the surface channels through gravel‐and‐cobble riverbeds. Measurements show patterns of hyporheic exchange that are highly variable in time and space.  相似文献   

17.
ABSTRACT: Many natural and anthropogenic factors contribute to the stability or erodibility of stream channels. Although a stream rating procedure used by more than 60 percent of the U.S. National Forests provides an estimate of overall stability, it does not identify the cause of instability or indicate corrective management. To better sort natural from livestock influences, stream stability rating indicator variables were related to stream types and levels of ungulate bank damage in a large data base for streams in northern Nevada. Stability and the range in stability varied naturally with stream type. Ungulate bank damage had different effects on different stream types and on different parts of their cross-sections. Vegetation is more important for stability on certain stream types than on other types. Streams with noncohesive sand and gravel banks are most sensitive to livestock grazing. Range managers should consider the stream type when setting local standards, writing management objectives, or determining riparian grazing strategies.  相似文献   

18.
A fluvial geomorphological methodology for designing natural stable channels is being widely applied for river restoration. It is an analogue procedure, as the W/d ratio and sinuosity from a reference reach are scaled to determine the restoration design. The choice of reference reach is crucial and published criteria specify that it should be stable, correspond to the stream type at the restoration site, have the same valley type, and be from the same hydrophysiographic region. For stable, meandering gravel cobble bed rivers flowing through alluvial flood plains (C3 and C4 stream types), UK regime equations are used to evaluate the procedure. Successful design requires particular combinations of the ratios of bankfull discharge, bed material size and load, valley slope, and bank vegetation category between the reference and restoration sites. These critical ratios, which are confirmed by U.S. field data, provide guidelines for selecting a suitable reference reach for C3‐C4 stream types. They also indicate that the reference reach can be in any valley type or hydrophysiographic region. The geomorphological procedure will apply to all stable stream types, provided the reference reach is correctly identified. Specific guidelines for each stream type await the development of additional regime equations.  相似文献   

19.
A 0.9 km-reach of Uvas Creek, California, was reconstructed as a sinuous, meandering channel in November 1995. In February 1996, this new channel washed out. We reviewed project documents to determine the basis for the project design and conducted our own historical geomorphological study to understand the processes operating in the catchment and project reach. The project was designed using a popular stream classification system, based on which the designers assumed that a "C4" channel (a meandering gravel-bed channel) would be stable at the site. Our historical geomorphological analysis showed that the reach had been braided historically, typical of streams draining the Franciscan Formation in the California Coast Ranges, with episodic flows and high sand and gravel transport. After the project washed out, Uvas Creek reestablished an irregular, braided sand-and-gravel channel, although the channel here was narrower than it had been historically, probably due to such factors as incision caused by gravel mining. Our study casts doubt on several assumptions common in many stream restoration projects: that channel stability is always an appropriate goal; that channel forms are determined by flows with return periods of about 1.5 years; that a channel classification system is an easy, appropriate basis for channel design; and that a new channel form can be imposed without addressing the processes that determine channel form.  相似文献   

20.
In this laboratory study different combinations of bed (sand, pebble gravel [gravel], and a mix of sand and gravel) and flow (typical and overtopping) were experimented with to investigate the impact of porous deflectors in flow diversity, water quality, and fish performance in prismatic open channels. Deflectors changed the gradually varied flow to a rapidly varied flow, as a sudden change in the water depth was observed at the deflectors, and this change was large for smooth beds. With the presence of gravel, the scouring near the downstream deflector was almost twice that of the sand bed, and with the scouring at its own upstream deflector, irrespective of whether the flow was typical or overtopping. This behavior was a result of sand mobilization due to shear stress and sand mobilization aided gravel transport. The mixed bed showed less gravel movement compared to the gravel-only bed. The percentage of sediment washed out was minor for all bed scenarios, indicating that sediment transport was local. Relative to the sand bed without deflectors (representing a typical urban canal), deflectors resulted in reduced and improved water quality (in terms of sediment load) for sand, and mixed bed, respectively. The fishes found refuge and were comfortable in the pool areas created by deflectors unlike in channels without deflectors where they showed exhaustion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号