首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The release of P from lake sediments, which occurs as a part of internal loading, may contribute a significant portion of the total P load to a lake. Phosphorus release rates from sediments in Spring Lake, Michigan, and the degree to which alum reduces P release from these sediments, were investigated during the summer of 2003. Triplicate sediment cores were sampled from four sites in the lake, and exposed to one of four treatments in the laboratory: (i) aerobic water column/alum, (ii) aerobic water column/no alum, (iii) anaerobic water column/alum, or (iv) anaerobic water column/no alum. Total P (TP) release rates were virtually undetectable in the alum treatments (both aerobic and anaerobic). Low, but detectable, release rates were measured in the aerobic/no alum treatment. The highest release rates were measured in the anaerobic/no alum treatments, and ranged from 1.6 to 29.5 mg P m(-2) d(-1) depending on how the calculations were derived. These fluxes translated to mean internal loads that ranged between 2.7 (low range) and 6.4 (high range) Mg yr(-1) when extrapolated to a whole-lake basis. Internal P loads accounted for between 55 and 65% of the total P load to Spring Lake. Although alum is a potentially effective means of reducing the sediment source of P, there is considerable uncertainty in how long an alum treatment would remain effective in this system given the current rates of external loading and the lack of information on wind-wave action and bioturbation in Spring Lake.  相似文献   

2.
There is detailed literature on the mobilization of aluminum (Al) from soil to surface waters as a result of elevated acidic deposition to base‐poor forest watersheds. There is considerably less information on the mobilization and effects of Al from the application of alum that is used in some water supplies to control turbidity during high‐flow events. We report on the results of field measurements, laboratory sediment release experiments, and chemical equilibrium calculations conducted to evaluate the potential for the mobilization of Al from alum floc deposits in sediments of Kensico Reservoir, New York. Under ambient water quality conditions, mobilization of sediment Al is not a noteworthy concern at Kensico Reservoir. However, under experimental conditions of low pH, low acid neutralizing capacity (ANC), and low temperature, the inorganic fraction of monomeric Al can be mobilized from Kensico sediments to concentrations that would likely impair the health of aquatic organisms (>2 μmol/l). Elevated concentrations of monomeric Al were observed only when ANC decreased below 50 μeq/l, which is outside the range of values observed in Kensico during the 1997‐2007 interval (120‐460 μeq/l). Concentrations of complexing ligands are relatively low in Kensico waters (i.e., fluoride, naturally occurring organic solutes) and do not appear to substantially contribute to potential Al mobilization. For other water supplies with low ANC, the potential for sediment release of Al may exist.  相似文献   

3.
This study uses data from 46 riparian sites to examine the influence of landscape hydrogeology on patterns of groundwater flux and the buffer width required for effective nitrate removal in humid temperate agricultural regions. There is a considerable imbalance in the research focus on different hydrogeologic settings. More than 40% of the buffers are located in landscapes with surficial sand aquifers, whereas few buffers have been studied in glacial till and weathered bedrock landscapes which cover large areas. Annual groundwater fluxes for 29 of these sites ranged from <20 L/m/day for buffers on flat sand plains and uplands with fine‐textured deposits to 50‐1,200 L/m/day for many sites with upland sand aquifers. Despite a similar range of water fluxes, buffers in gently to moderately sloping landscapes with <4 m depths of sand sediments reached a 90% removal efficiency within 30‐60 m while sites with >4 m depths required a 150‐200 m width. The width for 90% efficiency in buffers with loamy sand and sandy loam sediments also increased from 10‐20 m with <4 m sediment depths to 50‐100 m for >4 m depths. Limited data for buffers with fine‐textured sediments suggest that 90% of the nitrate flux was often depleted in a 10‐20 m width. Groundwater flux did not have a significant relationship with nitrate removal percent per meter buffer width because of the variation in efficiency that occurred in buffers with similar fluxes in different hydrogeologic settings.  相似文献   

4.
ABSTRACT: An alum treatment in Long Lake (mean depth, 2 m) in 1980 has been effective at controlling internal loading of phosphorus for four years. The fifth summer after treatment, the lake returned to its pro-treatment state. Lake P content decreased from a summer average of 65 μg/L during 1976–1978 to about 30 μg/L during four years following treatment. In 1985, summer P content was 61 μg/L. Algal abundance, species composition, and transparency have responded proportionately with P. Alum effectiveness apparently declined because the floe layer tended to sink and become dispersed at a deeper level in the sediment, as well as become covered with new, P-rich sediment. Iron-reduction may be the principal mechanism for internal P loading, although the lake is unstratified and anoxia is usually not pronounced.  相似文献   

5.
Phosphorus flux from bottom sediments in Lake Eucha, Oklahoma   总被引:1,自引:0,他引:1  
Phosphorus inputs into reservoirs include external sources from the watershed and internal sources from the reservoir bottom sediments. This study quantified sediment P flux in Lake Eucha, northeastern Oklahoma, USA, and evaluated the effectiveness of chemical treatment to reduce sediment P flux. Six intact sediment-water columns were collected from three sites in Lake Eucha near the reservoir channel at depths of 10 to 15 m. Three intact sediment and water columns from each site were incubated for 21 d at approximately 22 degrees C under aerobic conditions, and three were incubated under anaerobic conditions (N2 with 300 ppm CO2); sediment P flux was estimated over the 21 d for each core. The overlying water in the cores was bubbled with air for approximately 1 wk and then treated with aluminum sulfate (alum). The cores were incubated at approximately 22 degrees C for an additional 14 d under aerobic or anaerobic conditions, and sediment P flux after alum treatment was estimated for each core. Sediment P flux was approximately four times greater under anaerobic conditions compared with aerobic conditions. Alum treatment of the intact sediment-water columns reduced (8x) sediment P flux under anaerobic conditions. Internal P flux (1.03 and 4.40 mg m(-2) d(-1) under aerobic and anaerobic conditions, respectively) was greater than external P flux (0.13 mg m(-2) d(-1)). The internal P load (12 Mg yr(-1)) from reservoir bottom sediments was almost 25% of the external P load (approximately 48 Mg yr(-1)) estimated using a calibrated watershed model.  相似文献   

6.
Increasing phosphorus (P) content and decreasing water quality of Saint-Augustin Lake, Quebec City, Canada, has led to implementation of an Integrated Watershed Management Plan to restore the lake. As a part of the plan, the effects of different restoration techniques on lake water quality and biological community (i.e., biological compatibility) were assessed during an isolated water enclosure study and laboratory microcosm assay, respectively. The restoration techniques include: (i) coagulation of P by alum only (20 mg L−1), (ii) active capping of sediments using a calcite layer of 10 cm, and (iii) a complete method involving both alum coagulation and calcite capping. The results showed that the total P (TP) was greatly decreased (76–95 %) by alum + calcite, followed by calcite only (59–84 %). Secchi depth was 106 % greater and chlorophyll a concentrations were declined by 19–78 % in the enclosure which received both alum and calcite. Results of the biological compatibility test showed that total phytoplankton biomass declined by 31 % in microcosms composed of alum + calcite. No significant (P > 0.05) toxic effect was found on the survival of Daphnia magna and Hyalella azteca in both alum only and alum + calcite microcosms. Although the alum + calcite technique impaired the survival of Chironomus riparius, the midge emergence was much higher compared to alum only and control. Overall, the alum + calcite application was effective in controlling P release from sediment and lowering water column P concentrations, and thus improving the water quality and aquatic life of Saint-Augustin Lake. However, the TP concentrations are still higher than the critical limit (20 μg L−1) for aquatic life and the water column remained in the eutrophic state even after treatment. Increased TP concentrations, to higher than ambient levels of the lake, in the water column of all four enclosures, due to bioturbation artefact triggered by the platform installation, likely cause insufficient dosages of alum and/or calcite applied and reduced their effectiveness.  相似文献   

7.
Characteristic levels of metal ions in post dredged sediment and dredged sediments materials of a municipal creek in the Niger Delta show that significant concentrations of heavy metals are found to be accumulated more on the surface (0–15cm depth) of the dredged material as compared to the sub surface (15–30cm) and post dredged sediments. The distribution patterns were in the following order Fe > Mn > Zn > Cu > Pb > Ni > Cd and Fe > Mn > Zn > Pb > Cu > Ni > Cd for the post dredged sediment and dredged sediment materials respectively. The levels of the various metals were far below the EPA screening levels for open water disposal, consequently total levels of heavy metal found in these sediments pose no problem by open-water or upland disposal  相似文献   

8.
Sedimentation is emerging as a key issue in sustainable reservoir management. One approach to controlling reservoir sedimentation is to trap sediment in hydraulic structures upstream of the reservoir. In the 1,163‐km2 catchment of the Dahan River (Taiwan) over 120 “sabo” dams were built to reduce sediment yield to Shihmen Reservoir. Built in 1963 for water supply, Shihmen has lost over 40% of its 290‐Mm3 storage capacity to sedimentation. Most of these upstream structures were small, but three had capacities >9 Mm3. Field measurements and historical data from the Water Resources Agency show most smaller dams had filled with sediment by 1976. The three largest were full or nearly so by 2007, when one (Barlin Dam) failed, releasing a pulse of 7.5 Mm3, most of its 10.4 Mm3 stored sediment downstream. The Central Range of Taiwan is rapidly eroding (denudation rates 3‐6 mm/yr), so geologically high loads make sediment problems manifest sooner. Even in other environments, however, eventually small dams built upstream of large reservoirs are likely to fill themselves, creating multiple small sediment‐filled reservoirs, some located in sites inaccessible to mechanical removal. Our analysis suggests sabo dams do not offer a long‐term basis for controlling reservoir sedimentation in such a high‐sediment yield environment. Sustainable solutions must somehow pass sediment downstream, as would be accomplished by a sediment bypass around Shihmen Reservoir, as now being studied.  相似文献   

9.
The transport of bedload and suspended sediments and particulate organic matter was evaluated in Huntington Creek, Utah, during a controlled release of water from Electric Lake Reservoir from August 7–10, 1979. Effects of the release on channel geometry and riffle composition also were assessed. Bedload transport rates increased from zero to 1,650 and 1,500 kg/hr at two cross sections as discharge was increased from 0.4 to 4.9 m3/s; transport rates then decreased erratically as discharge was held constant. Cross section measurements and sediment size analysis indicate that flows were insufficient to transport riffle sediments. Rapid increases in the transport rates of suspended sediments and particulate organic matter also occurred during rising discharge and again decayed when discharge became constant. Suspended sediment concentrations for samples obtained with an automatic pumping sampler were generally less than those found for samples obtained with a DH-48 sampler. Biological measurements still are needed to determine if such a release can improve fisheries habitat by removing fine sediments.  相似文献   

10.
A study was conducted to examine N and P removal by a laboratory-scale extended aeration treatment system employing oxidation-reduction potential (ORP) controlled aeration. The system was provided with a 90-L aeration tank. When ORP controlled aeration was applied, the aeration tank was divided into three zones, namely the ORP zone (45 L), the anaerobic zone (27 L) and the aerobic zone (18 L). An external anoxic selector of 3.8 L in volume was also added. An ORP set point of 70 mV was used for the ORP zone. The extended aeration treatment system operating without the ORP controlled aeration was used as the control.COD removal (97%) was not affected, but both N and P removal were enhanced significantly in the ORP reactor. Total N removal efficiency was increased from 49.1% (control) to 83.5%. Almost all P was captured (99%), leaving an average of 0.09 mg L−1 P in the effluent. The ORP reactor yielded a sludge P content of 3.1%, compared to only 1.8% for the control. This indicated luxury P uptake in ORP reactor. Very significant P release and denitrification were found in the anoxic selector. Fairly good simultaneous nitrification and denitrification had occurred in the ORP zone. However, P release was very limited in the anoxic zone. However, anoxic P uptake and nitrification were found in this zone.Low F/M bulking was observed in both the control and ORP operation before the installation of a selector. Bacterial Type 0041 was identified as the predominant bulking organism. For the Control, an aerobic selector cured the bulking problem in one sludge age while an anoxic selector fixed up the problem during the ORP operation.  相似文献   

11.
This unique study evaluates the cumulative 16‐year lifetime performance of a wetland retention basin designed to treat stormwater runoff. Sediment cores were extracted prior to basin excavation and restoration to evaluate accretion rates and the origin of materials, retention characteristics of fine particulate matter, and overall pollutant removal efficiency. The sediment and organic layers together accreted 3.2 cm of depth per year, and 7.0 kg/m2/yr of inorganic material. Average annual accretion rates in g/m2/yr were as follows: C, 280; N, 17.7; P, 3.74; S, 3.80; Fe, 194; Mn, 2.68; Ca, 30.8; Mg, 30.7; K, 12.2; Na, 2.54; Zn, 0.858; Cu, 0.203; and B, 0.03. The accretion of C, N, P and sediment was comparable to nonwastewater treatment wetlands, overall, and relatively efficient for stormwater treatment wetlands. Comparison of particle size distribution between sediment cores and suspended solids in stormwater runoff indicated the wetland was effective at removing fine particles, with sediment cores containing 25% clay and 56% silt. A majority of the accretion of most metals and P could be attributed to efficient trapping of allochthonous material, while over half the accretion of C and N could be attributed to accumulation of autochthonous organic matter. Stormwater treatment was shown to be effective when physical properties of a retention basin are combined with the biological processes of a wetland, although sediment accretion can be relatively rapid.  相似文献   

12.
Phosphorus (P) and sediment inputs from agricultural drainage contribute to the development of hypereutrophic conditions in lakes across the world. Two‐stage (2‐S) ditches, an agricultural best management practice gaining acceptance in the Midwestern United States, increase floodplain area within drainage ditches to help capture nutrients and sediment. While denitrification has been shown to increase on 2‐S benches, less is known about their P retention ability. This study assessed the abiotic and biotic P retention of two separate 2‐S ditches compared to their corresponding traditional reaches directly upstream within the Macatawa watershed, located in West Michigan. Soluble reactive P export was significantly reduced in 2‐S baseflow of both ditch systems. Equilibrium P concentration values suggest retention of P within the 2‐S sediment. P was bound within stable fractions in both 2‐S and traditional reaches. An analysis of P stock within the ditches revealed sediment held over 96% of total P (TP) within each reach compared to <4% in bench vegetation and periphyton combined. Turbidity, but not TP, was reduced in one study ditch, whereas TP, but not turbidity, was reduced in the other study ditch. Geomorphic stability may have been responsible for differing P retention between ditches. Ability to retain P appears to be impacted by physical as well as biogeochemical characteristics; hence, structure and age of 2‐S reaches influence P retention.  相似文献   

13.
ABSTRACT: The ability to predict how streams and wetlands retain phosphorus (P) is critical to the management of watersheds that contribute nutrients to adjacent aquatic systems such as lakes. Field and laboratory experiments were conducted to determine the P assimilatory capacity of a stream (Otter Creek) in the Taylor Creek/Nubbin Slough Basin located north of Lake Okeechobee, Florida. Dominant soils in this basin are sandy Spodosols; landuse is primarily dairy farms and beef cattle pastures. Estimates of P assimilation show that sediments assimilate approximately 5 percent of the P load. Phosphorus assimilation rates in the stream were estimated using first-order relationships based on the total P concentration of the water column as a function of distance from the primary source. This method assumes minimal lateral inputs. Stream lengths required for one turnover in P assimilation were estimated to be in the range of 3–16 km. Laboratory studies using intact sediment cores indicated a P assimilation rate of 0.025 m day?1, and equilibrium P concentration of 0.16 ± 0.03 mg L?1 in the water column. Dissolved P concentration gradients in the sediments showed upward flux of P at water column P concentration of <0.16 mg L?1. Approximately 56–77 percent of the P assimilated in the above-ground vegetation during active growth was released or translocated within six months of senesence, suggesting short-term storage in above-ground vegetation. Bottom sediments and recalcitrant detrital plant tissue provide for long-term P assimilation in the creek. Although stream sediments have the potential to adsorb P, high flow rate and low contact period between water and sediment limits this process.  相似文献   

14.
Concentrations of nutrients and heavy metals in streambank legacy sediments are needed to estimate watershed exports and to evaluate against upland inputs. Concentrations of nutrients and heavy metals were determined for legacy sediments in 15 streambanks across northeastern Maryland, southeastern Pennsylvania, and northern Delaware. Samples were collected from multiple bank depths from forested, agricultural, urban, and suburban sites. Analyses were performed for fine (<63 μm) and coarse sediment fractions. Nutrient and heavy metal concentrations were significantly higher in fine than coarse legacy sediments and water extractable nutrient concentrations were significantly greater for fine sediments. Nutrient and heavy metal concentrations were highest in streambank legacy sediments associated with urban land use, but few differences were found with bank depth. Total N (40–3,970 mg/kg) and P (25–1,293 mg/kg) and bioavailable P (0.25–48.8 mg/kg) concentrations for legacy sediments were lower than those for upland soils. This suggests that legacy sediments could serve as sink or source of N and P depending on the redox conditions and stream water nutrient concentrations. However, despite low concentrations, caution should be exercised since streambank erosion and legacy sediment mass loadings could be high, these sediments are in immediate proximity of aquatic ecosystems, and biogeochemical transformations could result in release of the nutrients.  相似文献   

15.
One by‐product of advances in modern chemistry is the accumulation of synthetic chemicals in the natural environment. These compounds include contaminants of emerging concern (CECs), some of which are endocrine disrupting compounds (EDCs) that can have detrimental reproductive effects. The role of sediments in accumulating these types of chemicals and acting as a source of exposure for aquatic organisms is not well understood. Here we present a small‐scale reconnaissance of CECs in bed sediments of the lower Columbia River and several tributaries and urban streams. Surficial bed sediment samples were collected from the Columbia River, the Willamette River, the Tualatin River, and several small urban creeks in Oregon. Thirty‐nine compounds were detected at concentrations ranging from <1 to >1,000 ng [g sediment]?1 dry weight basis. Concentrations and frequencies of detection were higher in tributaries and small urban creeks than in the Columbia River mainstem, suggesting a higher risk of exposure to aquatic life in lower order streams. Ten known or suspected EDCs were detected during the study. At least one EDC was detected at 21 of 23 sites sampled; several EDCs were detected in sediment from most sites. This study is the first to document the occurrence of a large suite of CECs in the sediments of the Columbia River basin. A better understanding of the role of sediment in the fate and effects of emerging contaminants is needed.  相似文献   

16.
Abstract: In 2006, we collected flow, sediment, and phosphorus (P) data at stream locations upstream and downstream of a small degraded wetland in south‐central Wisconsin traversed by a stream draining a predominantly agricultural watershed. The amount of sediment that left the wetland in the two largest storms, which accounted for 96% of the exported sediment during the observation period, was twice the amount that entered the wetland, even though only 50% of the wetland had been inundated. This apparently anomalous result is due to erosion of sediment that had accumulated in the low‐gradient channel and to the role of drainage ditches, which trapped sediment during the wetland‐filling phase. In the case of total P, the inflow to the wetland approximately equaled the outflow, although the wetland sequestered 30% of the incoming dissolved reactive P. The discrepancy is almost certainly due to net export of sediment. Many wetlands in the glaciated midwestern United States are ditched and traversed by low‐gradient channels draining predominantly agricultural areas, so the processes observed in this wetland are likely to be common in that region. Knowledge of this behavior presents opportunities to improve water quality in this and similar regions.  相似文献   

17.
Excess fine sediments in streambeds are among the most pervasive causes of degradation in streams of the United States. Simple criteria for acceptable streambed fines are elusive because streambed fines and biotic tolerances vary widely in the absence of human disturbances. In response to the need for sediment benchmarks that are protective of minimum aquatic life uses under the Clean Water Act, we undertook a case study using surveys of sediment, physical habitat, and macroinvertebrates from New Mexico streams. Our approach uses weight of evidence to develop suggested benchmarks for protective levels of surficial bedded sediments <0.06 mm (silt and finer) and <2.0 mm (sand and finer). We grouped streams into three ecoregions that were expected to produce similar naturally occurring streambed textures and patterns of response to human disturbances. Within ecoregions, we employed stressor response models to estimate fine sediment percentages and bed stability that are tolerated by resident macroinvertebrates. We then compared individual stream sediment data with distributions among least‐disturbed reference sites to determine deviation from natural conditions, accounting for natural variability across ecoregion, gradient, and drainage area. This approach for developing benchmark values could be applied more widely to provide a solid basis for developing bedded sediment criteria and other protective management strategies in other regions.  相似文献   

18.
Wetlands in the Rainwater Basin in Nebraska are vulnerable to sediment accumulation from the surrounding watershed. Sediment accumulation has a negative impact on wetland quality by decreasing the depth and volume of water stored, and the plant community species composition and density growing in the wetland. The objective of this study was to determine the amount of sediment that has accumulated in five selected wetlands in the Rainwater Basin in Nebraska. Soil cores were taken at five or six locations along transects across each wetland. This study used the fly ash, which is generated by coal‐burning locomotives that were present generally in the late 1800s and early 1900s, as a marker to quantify the sediment deposition rates. The cores were divided into 5 cm sections and the soils were analyzed using a fly ash extraction and identification technique. Results indicate that the average depth of sediment ranged from 23.00 to 38.00 cm. The annual average depth of sediment accumulation ranged from 0.18 cm/yr to 0.29 cm/yr. The annual sediment accumulation rate from both wind erosion and water erosion in these five sampling wetlands was between 1.946 and 3.225 kg/m2/yr. The results of this research can be used to develop restoration plans for wetlands. The fly ash testing technology can also be applied to other areas with the railroads across the United States.  相似文献   

19.
Abstract: Despite widespread interest, few sediment budgets are available to document patterns of erosion and sedimentation in developing watersheds. We assess the sediment budget for the Good Hope Tributary, a small watershed (4.05 km2) in Montgomery County, Maryland, from 1951‐1996. Lacking monitoring data spanning the period of interest, we rely on a variety of indirect and stratigraphic methods. Using regression equations relating sediment yield to construction, we estimated an upland sediment production of 5,700 m3 between 1951 and 1996. Regression equations indicate that channel cross‐sectional area is correlated with the extent of development; these relationships, when combined with historical land use data, suggest that upland sediment yield was augmented by 6,400 m3 produced by enlargement of first‐order and second‐order stream channels. We used dendrochronology to estimate that 4,000 m3 of sediment was stored on the floodplain from 1951‐1996. The sediment yield from the watershed, obtained by summing upstream contributions, totals 8,100 m3 of sediment, or 135 tons/km2/year. These results indicate that upland erosion, channel enlargement, and floodplain storage are all significant components of the sediment budget of our study area, and all three are approximately equal in magnitude. Erosion of “legacy” floodplain sediments originally deposited during poor agricultural practices of the 19th and early 20th Centuries has likely contributed between 0 and 20% of the total sediment yield, indicating that these remobilized deposits are not a dominant component of the sediment yield of our study area.  相似文献   

20.
ABSTRACT: Nitrogen and P fluxes, transformations and water quality functions of Lake Verret (a coastal Louisiana freshwater lake), were quantified. Ortho-P, total-P, NH4+-N NO3 -N and TKN in surface water collected from streams feeding Lake Verret averaged 104, 340, 59, 185, and 1,060 mg 1?1, respectively. Lake Verret surface water concentrations of ortho-P, total-P, NH+-N, NO3?-N and TKN averaged 66, 191, 36, 66, and 1,292 μg 1?1. The higher N and P concentrations were located in areas of the lake receiving drainage. Nitrification and denitrification processes were significant in removing appreciable inorganic N from the system. In situ denitrification rates determined from acetylene inhibition techniques show the lake removes 560 mg N m?2 yr?1. Laboratory investigations using sediment receiving 450 μg NH+4-N (N-15 labeled) showed that the lake has the potential to remove up to 12.8 g N m?2 yr?1. Equilibrium studies of P exchanges between the sediment and water column established the potential or adsorption capacity of bottom sediment in removing P from the overlying water. Lake Verret sediment was found to adsorb P from the water column at concentrations above 50 μg P 1?1 and the adsorption rates were as great as 300 μg P cm?2 day?1 Using the 137C s dating techniques, approximately 18 g N m?2 yr?1 and 1.2 g P m?2 yr?1 were removed from the system via sedimentation. Presently elevated nutrient levels are found only in the upper reaches of the lake receiving nutrient input from runoff from streams draining adjacent agricultural areas. Nitrification, denitrification, and adsorption processes at the sediment water interface over a relatively short distance reduces the N and P levels in the water column. However, if the lake receives additional nutrient loading, elevated levels will likely cover a larger portion of the lake, further reducing water quality in the lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号