首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为考察蓝藻水华对氧化亚氮(N_2O)排放的影响,于2016年8月对太湖不同藻华暴发区表层水体中N_2O浓度进行了测定。结果表明,太湖水体中N_2O浓度具有较大的空间差异性,其中河口区最高,平均约26.8μmol·m~(-3),而梅梁湾东北部区和太湖开敞区最低,平均仅4.0μmol·m~(-3)。相关性分析结果表明,太湖表层水体中N_2O与叶绿素a(Chl-a)浓度呈显著正相关(P0.05)。室内微宇宙模拟试验结果显示,在硝酸盐氮充足的条件下添加少量蓝藻的处理组[ρ(Chl-a)约为80μg·L~(-1)]N_2O释放通量显著高于对照组[ρ(Chl-a)约为30μg·L~(-1),P0.001]。但是随着蓝藻添加量的增加,N_2O的释放通量又呈显著下降趋势(P0.001),这表明在氮不受限的条件下,一定浓度的蓝藻可促进N_2O的产生,而高浓度的蓝藻则可能对N_2O的释放起抑制效应。乙炔抑制试验中,N_2O产生速率则随着Chl-a浓度的增加急剧升高,说明微宇宙中的高浓度蓝藻可能同时加快了N_2O的产生和消耗,从而抑制了水体中N_2O的排放。  相似文献   

2.
太湖表层沉积物中多磷酸盐检出的环境意义   总被引:1,自引:0,他引:1  
在氮限制型富营养化湖泊中,沉积多磷酸盐(Poly-P)可以用来示踪营养盐磷的输入和湖泊的富营养化过程。太湖是一个典型的磷限制型富营养化湖泊,通过对太湖表层沉积物中总有机碳(TOC)、总氮(TN)、总磷(TP)、氢氧化钠可提取磷(NaOH-P)以及Poly-P的提取分析,初步探讨了太湖营养盐磷输入的历史记录,并揭示了该湖Poly-P的主要来源和保存机制。太湖Poly-P的质量浓度较低,变化范围为0.004~0.065mg·g-1。NaOH-P占TP组成的22%,是太湖沉积物总磷的主要组成部分之一。结果显示,在湖泊水体藻类生物量较大和NaOH-P是沉积物TP重要组成部分的磷限制型湖泊中,Poly-P也是沉积物磷汇组成的一个重要部分,同时还是一个可以反映由人为磷输入增大导致湖泊富营养化程度加剧的敏感指标。  相似文献   

3.
本研究基于GC-MS分析了巢湖湖区及入湖河流共40个采样点的表层水及表层沉积物样品中有机氯杀虫剂(OCPs)的含量.研究结果表明,在一年内不同季节中,巢湖湖区及入湖河流表层水体∑OCPs浓度均较低,春季6.09—11.53 ng·L~(-1),夏季6.32—11.10 ng·L~(-1),秋季6.76—16.23 ng·L~(-1),冬季5.97—16.29 ng·L~(-1);相应季节OCPs平均浓度分别为8.33±1.19 ng·L~(-1),8.43±1.21 ng·L~(-1),9.25±1.96 ng·L~(-1)和8.33±2.14 ng·L~(-1).表层水体中OCPs主要为工业生产六六六(HCHs)以及杀虫剂林丹.湖区及入湖河流表层沉积物中OCPs浓度(ng·g~(-1)级别)远高于表层水体(ng·L~(-1)级别)的浓度,∑OCPs浓度范围为2.55—19.03 ng·g~(-1),平均浓度为5.80±4.07 ng·g~(-1),且巢湖西部地区OCPs污染大于东部区域,其中较高浓度的狄氏剂和硫丹成分说明巢湖区域受到这两类物质的污染.异构体分析表明,表层沉积物中OCPs的来源也与周边农田土壤和地表径流所带来的污染以及不同程度工业品HCHs粉剂和林丹的陆源性输入有关;在绝大多数采样点的表层沉积物中滴滴涕类农药(DDTs)的检出为历史的残留污染.生态风险评价表明,巢湖湖区及入湖河流表层水体中OCPs对该区域的生态风险几乎没有影响且表层沉积物中OCPs亦处于较低的风险状态.  相似文献   

4.
为探究滇杨(Populus yunnanensis)在Cd、Pb胁迫下的生长及其光合生理反应,采用水培的方式对滇杨幼苗开展胁迫试验。结果表明,在Cd胁迫下,滇杨株高无显著变化,总根长显著降低,地径在Cd浓度为100μmol·L~(-1)时显著增加;在Pb胁迫下,滇杨株高、总根长均显著降低,地径则在Pb浓度为50和100μmol·L~(-1)时显著增加。Cd、Pb胁迫下丙二醛含量随着胁迫浓度增加而上升,总酚含量仅在胁迫浓度为100和200μmol·L~(-1)时显著提高。200μmol·L~(-1) Cd处理、100和200μmol·L~(-1) Pb处理的叶绿素含量显著低于对照。PSⅡ最大光化学效率和PSⅡ潜在活性仅在Cd浓度为100μmol·L~(-1)时显著低于对照。在Cd胁迫下,滇杨的净光合速率随着胁迫浓度的增加而降低,而在Pb胁迫下,净光合速率则随着胁迫浓度的增加先升后降。滇杨在Cd浓度为50μmol·L~(-1)时耐受性最强,在Pb浓度为100μmol·L~(-1)时耐受性最强,滇杨对Cd的耐受性强于Pb。  相似文献   

5.
考虑物种权重校验保护太湖水生生物的铅基准   总被引:1,自引:0,他引:1  
孙雪华  孙成  刘红玲 《环境化学》2020,39(6):1578-1589
铅是一种有毒重金属元素,位列我国水中优先控制污染物"黑名单".我国水系众多,水生生物多样,研究保护区域水生生物的铅基准十分必要.太湖作为中国周边经济最发达、大中城市最密集且污染最严重的淡水湖泊之一,本研究选取8种太湖本土水生生物实验补充铅的急性毒性数据并两步外推得到慢性毒性数据.结合文献建立铅的本土毒性数据库,基于水体硬度对铅毒性的影响,建立硬度和毒性关系.考虑太湖生物区系和水质特征,采用物种权重敏感度分布方法,得到保护太湖水生生物铅的最大浓度基准值(CMC)和持续浓度基准值(CCC)值分别为50.04—58.87μg·L~(-1)和3.99—4.69μg·L~(-1);现行地表水铅的Ⅲ类标准限值(50μg·L~(-1))下受铅急性毒性和慢性毒性影响的生物比例分别为4.42%和23.00%.  相似文献   

6.
本文研究了汉江水相和沉积物中10种药品和个人护理品(PPCPs)的浓度分布、组成特征和污染来源;分析了汉江水相和沉积物中PPCPs含量的时空变化;结果表明,10种PPCPs物质的检出频率不同.枯水期和丰水期水样中∑PPCPs浓度分别为37.47—275.83 ng·L~(-1)和72.02—292.96 ng·L~(-1),枯水期和丰水期沉积物样品中∑PPCPs浓度分别为24.71—85.12μg·kg~(-1)和3.35—171.84μg·kg~(-1).水样中总浓度最高点出现在集家嘴的丰水期,且酮基布洛芬(KTP)的检出浓度最高,达250.59 ng·L-1.沉积物中浓度最高点出现在丹江口的丰水期,且以酮基布洛芬(KTP)和三氯卡班(TCC)为主.所有沉积物样品中各组分占比以酮基布洛芬(KTP)为主.采用风险商(RQ)法对汉江水相和沉积物中的10种PPCPs进行生态风险评估,结果表明,主要是酮基布洛芬(KTP)、三氯生(TCS)和三氯卡班(TCC)对细菌类、藻类、无脊椎动物和鱼类有明显不同的生态风险.汉江流域PPCPs的生态风险需引起关注.  相似文献   

7.
针对环境持久性药物污染物(EPPPs)的污染问题,采用固相萃取-高效液相色谱/串联质谱法,调查分析了22种环境持久性药物污染物在天津地区水体和沉积物中的残留水平和分布特征。结果显示,水源地水样中有19种EPPPs的检出率为100%,质量浓度范围为0.21~0.69μg·L~(-1),平均值为0.43μg·L~(-1)。地表水样中,除吉他霉素检出率为80%外,其余21种EPPPs的检出率均为100%,质量浓度范围为0.52~3.88μg·L~(-1),平均值为1.60μg·L~(-1)。沉积物样中共检出11种EPPPs,检出率为100%,含量范围为0.04~1.10μg·kg~(-1),平均值为0.52μg·kg~(-1)。其中蓟县于桥水库、蓟运河滨海新区段水样和独流减河滨海新区段沉积物样中检出的EPPPs残留水平较高,水体中环丙沙星、诺氟沙星与菲诺洛芬检出浓度较高,沉积物中则为吲哚美辛、水杨酸及氟苯尼考。对比国内外其他地区,天津地区水环境中EPPPs残留处于较高水平。  相似文献   

8.
为了解东平湖菹草-上覆水-沉积物系统中重金属汞(Hg)和砷(As)的含量特征及相互关系,于2015年5月菹草生长的旺盛期在东平湖沿湖采集了33个点位的菹草、上覆水和表层沉积物样品,测定了Hg和As的总量,并采用生物富集系数法评价了菹草对上覆水和表层沉积物中Hg和As的富集能力.结果表明,东平湖上覆水中Hg和As浓度的均值分别为0.769μg·L~(-1)和7.86μg·L~(-1),以地表水环境质量Ⅲ类水标准(GB 3838—2002)为参比,As全部达标;Hg超标率为73.3%,其均值是Ⅲ类水标准值的7.7倍.表层沉积物中Hg和As的含量均值分别为0.072 mg·kg~(-1)和17.09 mg·kg~(-1),分别为山东省土壤背景值的3.6倍和1.8倍.菹草中Hg和As的含量均值分别为0.169(干重)和2.11 mg·kg~(-1)(干重).菹草对上覆水、表层沉积物中Hg、As的富集系数空间差异性较大,且对上覆水中Hg和As的富集系数(16.2—2581.9)远高于对表层沉积物中的富集系数(0.07—26.2).表层沉积物中Hg、As与有机质之间均呈显著正相关性,但Hg、As在菹草-上覆水-沉积物系统中相关性不显著,说明了该系统中Hg、As迁移的复杂性.  相似文献   

9.
目前广泛使用的水质基准推导方法—物种敏感度分布法存在曲线拟合模型不确定、曲线拟合效果不佳、种内差异欠考虑、基准值不准确等诸多问题,概率物种敏感度分布法可有效解决上述问题。应用概率物种敏感度分布法构建了太湖水体中5种重金属Ag、Pb、Cd、Hg和Zn的概率物种敏感度分布曲线,在此基础上得到了保护水生生物的急性水质基准分别为1.079μg·L~(-1)、637.973μg·L~(-1)、19.465μg·L~(-1)、8.729μg·L~(-1)和105.506μg·L~(-1),慢性水质基准分别为0.108μg·L~(-1)、63.797μg·L~(-1)、1.947μg·L~(-1)、2.340μg·L~(-1)和52.753μg·L~(-1);不同类群间生物对重金属的敏感度存在差异,不同重金属对同一类群生物的毒性也存在差异;通过与国内外已有的重金属水质基准值比较,发现水质基准具有明显的区域性,目前基于国外水质基准或我国整体水域特点来制定的太湖水质标准,往往造成对太湖水生生物欠保护或过保护的状况。  相似文献   

10.
本文研究了添加外源褪黑素对As~(3+)胁迫下水稻种子萌发及生理指标的影响。结果表明:添加外源褪黑素能促进As~(3+)胁迫下水稻种子的萌发,提高水稻的发芽势和发芽率,促进水稻幼苗的生长。当As~(3+)浓度为100μmol·L~(-1)时,添加100μmol·L~(-1)褪黑素能使水稻种子发芽率和总根长比对照分别提高57.1%和50.0%。添加褪黑素能显著提高As~(3+)胁迫下水稻幼苗中抗氧化酶系统过氧化氢酶(CAT)、过氧化物酶(POD)活性和超氧化物歧化酶(SOD)的活性,并降低水稻幼芽中丙二醛(MDA)的含量。当As~(3+)浓度为100μmol·L~(-1)时,添加50μmol·L~(-1)和100μmol·L~(-1)褪黑素导致水稻幼芽中POD活性比对照处理分别提高57.5%和114.8%,CAT活性提高29.4%和53.8%,SOD活性提高31.5%和56.0%,丙二醛含量比对照处理降低16.5%和31.9%。添加褪黑素也能显著提高As~(3+)胁迫下水稻的根系活力,当As~(3+)浓度为100μmol·L~(-1)时,50、100μmol·L~(-1)褪黑素处理后根系活力比对照分别提高42.4%和124.1%。这说明添加外源褪黑素可缓解As~(3+)胁迫对水稻的脂质过氧化损害,有效降低As对水稻内膜的破坏,显著缓解As污染对水稻的毒害作用。  相似文献   

11.
河流生态系统是内陆水体温室气体重要的排放源,城市河流由于受人为活动干扰较大其温室气体排放特征及控制因子与自然河流不同。为探讨人为活动对城市河流温室气体的排放的影响,选择天津市海河为研究对象,于2019年12月(冬季)及2020年7月(夏季),对水体温室气体溶存浓度及扩散通量进行监测,分析海河温室气体排放时空特征及关键驱动因素。结果表明,冬季海河水体CH_4、CO_2、N_2O平均浓度分别为(0.32±0.42)μmol·L~(-1)、(102.19±64.07)μmol·L~(-1)、(63.78±34.21)nmol·L~(-1),其平均通量分别为(5.54±9.72)μmol·m~(-2)·h~(-1)、(865.85±394.74)μmol·m~(-2)·h~(-1)、(965.87±844.63) nmol·m~(-2)·h~(-1)。夏季海河水体CH_4、CO_2、N_2O平均浓度分别为(0.72±0.81)μmol·L~(-1)、(75.00±57.87)μmol·L~(-1)、(19.43±6.23) nmol·L~(-1),其平均通量分别为(27.99±29.60)μmol·m~(-2)·h~(-1)、(3 281.88±3 425.55)μmol·m~(-2)·h~(-1)、(558.73±298.67) nmol·m~(-2)·h~(-1)。在海河水体中CO_2浓度和通量呈现出上游大于下游的空间特征,而CH_4、N_2O浓度和通量呈现出上游小于下游的空间特征。海河二道闸的存在及人为调控对海河上下游水质及温室气体排放影响较大。在季节特征上,除CO_2通量、CH_4浓度和通量外,均呈现冬季大于夏季的季节分布特征。海河水体中DO、NO_3--N、DOC和CODMn是控制海河中温室气体浓度和通量的关键影响因子。海河水体中温室气体的产生不仅与水体中微生物功能有关,还与富含氮、磷等营养物质的工农业废水和生活污水的排放有关,人为活动影响和决定了海河温室气体排放模式及主要控制因子。  相似文献   

12.
研究有机磷类农药毒死蜱和对硫磷、氨基甲酸酯类农药克百威和残杀威单独及联合染毒大鼠嗜铬细胞瘤株(PC12细胞)所致的DNA损伤情况及联合作用模式。分别以0μmol·L~(-1)、50μmol·L~(-1)、100μmol·L~(-1)、200μmol·L~(-1)、400μmol·L~(-1)的有机磷农药毒死蜱、对硫磷与0μmol·L~(-1)、25μmol·L~(-1)、50μmol·L~(-1)、100μmol·L~(-1)、200μmol·L~(-1)的氨基甲酸酯类农药克百威、残杀威单独及两两联合染毒PC12细胞12 h后进行彗星实验,采用彗尾长度、尾部DNA百分含量、尾矩3个指标来衡量DNA损伤程度。结果表明:毒死蜱、克百威、对硫磷、残杀威染毒PC12细胞12 h后,细胞出现拖尾,呈现典型的彗星图像。染毒后PC12细胞彗尾长度、尾部DNA百分含量、尾矩较对照组显著增加,差异有统计学意义(P0.01)。析因分析表明,无论低剂量联合还是高剂量联合,毒死蜱与克百威、对硫磷与残杀威均有交互作用(P0.01),作用模式为协同作用。以上结果提示,有机磷及氨基甲酸酯类农药单独及联合作用均可引起PC12细胞DNA损伤,联合作用后损伤程度要高于单独作用,且低剂量和高剂量联合时均存在交互作用,作用模式为协同作用。  相似文献   

13.
吕凯  刘晓薇  邓呈逊  郑坤  李兰兰  史江红  郭伟 《环境化学》2019,38(11):2415-2424
针对磺胺类、喹诺酮类、四环素类、大环内酯类共14种典型抗生素,建立了水和沉积物中固相萃取-高分离快速液相色谱-串联质谱(SPE-RRLC-MS/MS)前处理方法和仪器检测方法.14种抗生素在5—100μg·L~(-1)范围内线性良好,相关系数r≥0.990.优化后的前处理方法采用乙腈/0.1 mol·L~(-1) EDTA-Mcllvaine(1∶1,V/V)作为沉积物样品中目标抗生素的提取剂,甲醇/丙酮(85∶15,V/V)作为固相萃取柱的洗脱液.表层水中14种抗生素的加标回收率为56%—117%,相对标准偏差(n=3)为0.10%—12%;沉积物中14种抗生素的加标回收率为57%—127%,相对标准偏差(n=3)为0.10%—25%.表层水和沉积物中抗生素的方法检出限分别为0.18—5.88 ng·L~(-1)和0.25—2.94 ng·g~(-1).该方法用于检测合肥市南淝河表层水和沉积物中的抗生素,5种抗生素被检出,浓度范围分别为32—308 ng·L~(-1)和2.70—329 ng·g~(-1).  相似文献   

14.
多环芳烃(polycyclic aromatic hydrocarbons,PAHs)是环境中普遍存在的稠环类化合物,由于其对人体健康和生态环境产生较大危害,美国环保局将16种PAHs列为优先控制的污染物。PAHs也是太湖流域的主要污染物之一。作为华东地区的重要水系和水源地,研究太湖环境质量的变化对改善太湖流域水生生态系统和提高沿岸居民身体健康具有重要意义。论文研究了太湖胥口湾水域表层水和沉积物的PAHs。结果显示,表层水和沉积物的PAHs总浓度分别为7.2~83 ng·L~(-1)和66~620ng·g~(-1)干重;年均值为29 ng·L~(-1)和218 ng·g~(-1)干重;年均毒性当量浓度为2.4 ng·L~(-1)和28 ng·g~(-1)干重。沉积物中的主要污染物为荧蒽、芘和,影响毒性当量浓度的主要是苯并(a)芘和二苯并(a,h)蒽。4环PAHs在沉积物中占主要,其浓度百分比为44%~48%,而5环PAHs则占毒性当量总浓度的90%以上,说明其危害主要来自5环PAHs。PAHs特征化合物比值分析表明,胥口湾沉积物中PAHs主要来源于煤和木材燃烧,表层水大部分为燃烧和石油的混合来源。污染水平的时空变化特点为丰水期(8月)表层水PAHs浓度偏高,沉积物偏低。湖区和湖岸的PAHs浓度只在丰水期有显著差异,表层水PAHs浓度湖区高于湖岸,沉积物相反;其他时期湖区和湖岸PAHs浓度无显著差异。根据加拿大沉积物环境质量标准,胥口湾整体生态风险水平较低。从时空分布特征来看,个别生态风险较高的点主要分布在湖岸,5月平水期可能是沉积物中PAHs生态风险较高的频发期。  相似文献   

15.
作为一种中等毒性的有机磷杀虫剂,三唑磷在稻区的使用十分普遍。为弄清其对淡水生态系统的影响,选择5组浓度(0、0.35、1.75、17.5、52.5μg·L~(-1)),在以藻类作为营养源的室内微宇宙系统内进行研究,采用多变量分析软件CANOCO 5对数据进行分析。非限制性排序和多重比较的结果表明,给药后0~6 d,三唑磷对于浮游动物群落的最高无作用浓度(NOEC_(community))和最低有效浓度(LOEC_(community))分别为17.5μg·L~(-1)和52.5μg·L~(-1)。给药后第9天,最高浓度组(52.5μg·L~(-1))的群落结构开始恢复,此刻三唑磷在水中的实测浓度平均值为4.35μg·L~(-1)。对于单个物种种群密度做差异显著性分析和多重比较,结果显示浮游动物当中受影响最大的是绿色湖湾介Strandesia viridis。给药30 d后,该物种在52.5μg·L~(-1)处理组的种群密度明显下降,历时57 d的试验结束时,种群密度仍未恢复到对照水平。对于藻类,非限制性排序和多重比较的结果显示三唑磷在群落层次的影响未达到能够明显区分NOEC_(community)和LOEC_(community)的程度。在单物种层面,在给药后9~12 d,三唑磷对单细胞的羊角月牙藻Selenastrum capricornutum种群有刺激作用。其NOECspecies和LOECspecies分别为1.75μg·L~(-1)和17.5μg·L~(-1)。没有迹象表明三唑磷的引入能够明显改变水体pH、电导、浊度和水体C循环状况。结合暴露评估软件GNEEC(Version 2.0)输出的环境浓度(峰值为2.44μg·L~(-1)),本研究结果显示三唑磷在正常使用剂量下有可能对稻田周边浮游动物群落的内部结构造成扰动,但是它不会对整个系统造成不可恢复的影响。  相似文献   

16.
杜氏盐藻(Dunaliella salina)细胞内含有大量的蛋白质、多糖、甘油、脂类、β-胡萝卜素等物质,不仅是水产养殖育苗常用的饵料,而且在食品、医药和保健品等日常生活用品中具有独特的经济价值。研究常见氮源形式和浓度对盐藻生长和细胞物质组成的影响,探索适宜于不同培养目的的氮源供给方式,可为盐藻的大量培养、开发应用提供依据。文章针对NaNO_3、NH_4Cl和CH_4N_2O等3种不同形式及200、600和1 800μmol·L~(-1)等3种不同浓度的氮源,研究了不同的氮源供给条件下杜氏盐藻的生长情况和细胞的物质组成。结果表明,盐藻生长可利用所测试的3种氮源。就氮源形式而言,最终生物量表现为CH_4N_2O≥NaNO_3NH_4Cl,盐藻更偏好有机氮源CH_4N_2O;就氮源浓度而言,最终生物量表现为1 800μmol·L~(-1)≥600μmol·L~(-1)200μmol·L~(-1),600μmol·L~(-1)以上的浓度上升对于进一步提高生物量没有显著性贡献。在200μmol·L~(-1)时,有机氮源CH_4N_2O比无机氮源NaNO_3、NH_4Cl更有利于盐藻生长。氮源形式对盐藻细胞中蛋白质含量的影响不显著,但显著地影响细胞中糖和脂肪的积累。有利于糖积累的氮源形式表现为NH_4Cl≥NaNO_3CH_4N_2O,而有利于脂肪积累的氮源形式表现为NH_4Cl≥NaNO_3≥CH_4N_2O。高氮源浓度有利于盐藻细胞蛋白质的积累,但对糖和脂肪的积累效果不显著,对盐藻细胞糖和脂肪的积累最佳的氮源是200μmol·L~(-1) NH_4Cl。针对以脂肪为目标物质的盐藻培养,推荐采用二段培养方案,即在第一段培养时采用200μmol·L~(-1) CH_4N_2O为氮源,以获得较大的生物量;在第二段培养时采用200μmol·L~(-1) NH_4Cl,以提高单位细胞的脂肪含量。  相似文献   

17.
草、藻型湖泊水体生态及理化特性的实验对比   总被引:4,自引:0,他引:4  
2006年9月,根据营养水平和种植水草的差异设计了6个浅水湖泊模拟系统,实验用水草为菹草(Potamogeton crispusLinn.)和马来眼子菜(Potamogeton malaianus-Miq).在15个月实验期间,通过多次监测各系统的景观外貌和水质,对草、藻型湖泊生态及理化特性的差异进行研究,得出以下结论:(1)草、藻型系统分别对应清水和浊水2种状态,景观外貌差异很大.(2)水草可使湖泊系统维持在清水状态,在一定条件下,甚至可使富营养化湖泊维持在清水状态;但是水草腐烂分解等也可使水质迅速恶化,甚至引起湖泊草、藻状态的转变;关键在于,对于不断变化的环境条件,系统内水草能否健康生长.(3)由于营养和生产力水平低,贫营养系统的水质指标随时间变化较小,草、藻型系统间的差异不明显,DO变化范围分别为8.1~14.4 mg·L~(-1)、7.5~11.6 mg·L~(-1),pH 8.71~9.89、8.25~9.22,TP 0.006~0.012 mg·L~(-1)、0.006~0.053 mg·L~(-1),TN 0.11~0.71 mg·L~(-1)、0.10~0.83 mg·L~(-1),NH_4~+-N 0.01~0.17 mg·L~(-1)、0.01~0.26 mg·L~(-1),PO_4~(3-)-P 0.002~0.012 mg·L~(-1)、0.000~0.008mg·L~(-1).(4)由于水草和藻类的大量生长等,中营养与富营养系统湖水的DO、pH、水温和NH_4~+-N的日变化明显,日变化曲线呈“⌒”形,且具有季节性变化规律;由于水草向底泥中输氧气等原因,与藻型湖泊相比,草型湖泊水中TP、TN和NH_4~+-N的浓度较低,PO_4~(3-)-P浓度较高,草、藻型系统的TP均值分别为0.16、0.51 mg·L~(-1),TN 1.30、8.32 mg·L~(-1),NH_4~+-N 0.19、0.43mg·L~(-1),PO_4~(3-)-P 0.07、0.01 mg·L~(-1).  相似文献   

18.
以体外培养人Bel-7402肝癌细胞为模型,研究铅的3种常见化合物氯化铅(Pb Cl2)、乙酸铅(Pb(CH3COO)2)、硝酸铅(Pb(NO3)2)的细胞毒性和去甲基化表观遗传毒性。应用MTS方法检测细胞的存活率,以前期研究建立的评价方法评价铅化合物的去甲基化表观遗传毒性。结果显示,Pb Cl2、Pb(CH3COO)2、Pb(NO3)2均会抑制Bel-7402细胞的增值,计算求得Pb Cl2、Pb(CH3COO)2、Pb(NO3)2相应的50%细胞存活浓度(IC50)值分别为2 524μmol·L~(-1)、1 977μmol·L~(-1)、1 899μmol·L~(-1);80%细胞存活浓度(IC80)值分别为264μmol·L~(-1)、221μmol·L~(-1)、281μmol·L~(-1),通过对3种染毒物不同染毒浓度的细胞存活率进行随机区组设计的方差分析显示3种化合物间的差异无统计学意义(F=0.11;P=0.897)。去甲基化表观遗传毒性检测结果显示,Pb Cl2、Pb(CH3COO)2、Pb(NO3)2均可观察到明显的去甲基化表观遗传毒性,其相对于5-氮杂-2-脱氧胞苷(5-Aza-Cd R)的去甲基化表观遗传毒性当量分别为2.82E-03、1.50E-03、5.09E-04,三者间也无显著性差异。结果表明,铅化合物会使Bel-7402细胞的细胞存活率和转染进细胞的质粒上增强型绿色荧光蛋白基因启动子的DNA甲基化水平下降。  相似文献   

19.
本文以汾河流域作为研究对象,系统研究了水相及沉积物中6种邻苯二甲酸酯(PAEs)的含量、组成和空间分布,同时对汾河流域水体和沉积物中PAEs进行生态风险评价.研究表明,汾河流域丰水期水相中PAEs总量为2.79—206.33μg·L~(-1),平均浓度按DEHP(邻苯二甲酸(2-乙基己基)酯)DBP(邻苯二甲酸二丁酯)BBP(邻苯二甲酸丁基节基酯)DEP(邻苯二甲酸二乙酯)DMP(邻苯二甲酸二甲酯)DNOP(邻苯二甲酸二正辛酯)的顺序递减.其空间分布结果表现为,干流PAEs浓度低于支流,从上游到下游干流PAEs浓度呈现先升后降的趋势.依据国家地表水环境质量标准(GB3838—2002)对DBP、DEHP标准限值的规定,丰水期有60%的站点超过3μg·L~(-1)和8μg·L~(-1)的限值.丰水期沉积物中PAEs浓度范围为0.064—3.551μg·L~(-1),平均浓度按DEHPDBPDMPDEPBBP的顺序递减,干流PAEs高于支流,中下游PAEs含量高于上游,其中中游的太原段沉积相中PAEs污染相对严重.生态风险评价结果表明,汾河流域水相中PAEs的生态风险大小排序依次为DBPDEHPDEPDMP,DBP和DEHP在大部分采样点存在一定的潜在生态风险,DMP和DEP的生态风险在可接受范围;沉积物PAEs中所有种类的平均含量未超过风险评价的低值(ERL),对生物的潜在危害较小.  相似文献   

20.
连续的沉积物记录为研究湖泊富营养化的长期过程提供了可能。分析了洱海湖中心沉积柱的营养盐浓度垂向分布和沉积物年代记录,并结合湖心水质变化情况,研究了洱海沉积物营养盐的时间演化特征及生态意义。结果显示:Cal.AD 1960年以前,洱海沉积物营养盐稳定在较低水平,总有机碳(TOC)平均质量分数为1.45%,总氮(TN)平均质量分数为0.20%,总磷(TP)质量分数低于1 000 mg·kg~(-1);Cal.AD 1960年以后,TOC和TN质量分数均急剧升高,尤其在1990年之后呈直线上升态势,最高值分别为5.8%和0.84%,TP质量分数从1 000 mg·kg~(-1)。左右直线上升至1 345 mg·kg~(-1),反映了洱海近几十年来的人为富营养化加剧过程。沉积物TP与TOC、TN呈极显著正相关(P=0.001),TOC与TN的Pearson相关系数最大。洱海沉积物的TOC/TN比值总体比较稳定,数值在5.8~11.5之间波动,反映出这3种营养物质的藻类同源性。沉积物的营养物累积过程伴随水质变化呈不断恶化趋势,1990年后沉积物营养盐的时间演变规律与湖心区水质随时间的变化趋势基本一致。洱海表层沉积物TN、TP浓度明显高于东部平原湖区的湖泊,其营养盐内源负荷不容忽视。与同地区湖泊相比,沉积物TN浓度水平与抚仙湖和滇池相当,而TP浓度明显低于这两个湖泊,说明洱海沉积物对P仍具有较强的吸附容量及潜在缓冲能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号