首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of addition of a range of organic amendments (biosolids, spent mushroom compost, green waste compost and green waste-derived biochar), at two rates, on some key chemical, physical and microbial properties of bauxite-processing residue sand were studied in a laboratory incubation study. Levels of exchangeable cations were not greatly affected by additions of amendments but extractable P was increased significantly by mushroom and green waste composts and massively (i.e. from 11.8 to 966 mg P kg?1) by biosolids applications. Levels of extractable NO3?–N were also greatly elevated by biosolids additions and there was a concomitant decrease in pH. Addition of all amendments decreased bulk density and increased mesoporosity, available water holding capacity and water retention at field capacity (?10 kPa), with the higher rate having a greater effect. Addition of biosolids, mushroom compost and green waste compost all increased soluble organic C, microbial biomass C, basal respiration and the activities of β-glucosidase, L-asparaginase and alkali phosphatase enzymes. The germination index of watercress grown in the materials was greatly reduced by biosolids application and this was attributed to the combined effects of a high EC and high concentrations of extractable P and NO3?. It was concluded that the increases in water storage and retention and microbial activity induced by additions of the composts is likely to improve the properties of bauxite-processing residue sand as a growth medium but that allowing time for soluble salts, originating from the organic amendments, to leach out may be an important consideration before sowing seeds.  相似文献   

2.
Urban soils may suffer mild to severe degradation as a result of physical and chemical alterations. To reconstruct these soils, a new upper horizon must be created, usually through the application of organic matter, one source of which is biosolids. Different soil mixtures were evaluated with regard to loss of nitrates in percolates and the uptake and incorporation of nutrients and heavy metals into plant tissues. The experiment was conducted in trays; treatments were mixtures of biosolids and a coarse material (e.g., sand or pine wood sawdust), combined in different proportions. Randomized trays were seeded with a mix of tall fescue (Festuca arundinacea L.) and perennial ryegrass (Lolium perenne L.). Plant biomass was quantified. Nitrates in percolates were measured, as were nutrients and heavy metals in mixtures and plant tissues. Plants accumulated substantially more N, and biomass was 40% higher, in the treatments with higher levels of biosolids. The same treatments released more nitrogen and resulted in higher percolate nitrate levels. Plants had normal concentrations of all nutrients, except nitrogen, which was low. Heavy metal concentrations were not significantly different among treatments. Based on the analysis of these data, the proportion of biosolids appears to be the most important factor affecting the quality of reconstructed soil and the rate of improvement. The type of coarse material used did not significantly affect the outcome.  相似文献   

3.
Surface incorporation of a liming agent in combination with compost or biosolids is a proven way to revegetate acidic minespoils, but little is known about the effect of the surface amendments on subsoil chemistry. We conducted a greenhouse column experiment to investigate how different surface amendments affected plant growth and subsoil chemistry in highly acidic minespoil material. Columns were filled with shale minespoil material (pH approximately 2.5), amended with CaCO3, CaSO4 x 2H2O (gypsum), and two rates of compost, and seeded with birdsfoot trefoil (Lotus corniculatus L.) and 'Kentucky 31' tall fescue (Festuca arundinacea Schreb.). We measured leachate and plant growth over a 170-d period with extensive irrigation. Without CaCO3, plants could only grow at the high compost rate (68.8 g kg(-1)), even though the soil pH in those treatments was below 3.5, indicating the capability of natural organic matter to detoxify Al(3+) by forming Al-organic matter complexes. Compost had no effect on the subsoil. When CaCO3 or gypsum was added to the surface, extractable Ca increased in the subsoil, but there was no relevant increase in subsoil pH. Even in the first 5 cm of subsoil material, extractable Al did not decrease very much, possibly because a jurbanite-like solid phase controlled subsoil Al(3+) activities. During the reclamation of highly acidic minespoil material one should therefore not expect significant effects of the surface treatment on the untreated subsoil. A sufficient root zone would have to be achieved by incorporating the liming agent down to the desired rooting depth.  相似文献   

4.
Coal combustion by-products (CCB) include fly ash and bottom ash and are generated nationally at rates of 10(8) Mg yr(-1). Land applications of CCB have improved physicochemical properties of soil, yet inherent bulkiness and trace metal content of CCB often limit their use. Likewise, utilization of biosolids and manure as fertilizer can be problematic due to unfavorable nutrient ratios. A 2-yr field study evaluated environmental and technical parameters associated with CCB-organic waste utilization as growth media in turfgrass sod production. Experimental growth media formulated with CCB and organic waste and a sand-compost control mixture were uniformly spread at rates from 200 to 400 m3 ha(-1) and sprigged with hybrid bermudagrass [Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy]. Leaf clippings were collected and analyzed for total elemental content each year. In Year 2, growth media samples were collected during establishment 47 and 84 days after planting (DAP) and viable Escherichia coli organisms were quantified. At harvest (99 or 114 DAP), sod biomass and physicochemical properties of the growth media were measured. During sod propagation, micronutrient and metal content in leaf clippings varied by growth media and time. After 47 d of typical sod field management, viable E. coli pathogens were detected in only one biosolids-amended plot. No viable E. coli were measured at 84 DAP. In both years, sod biomass was greatest in media containing biosolids and fly ash. Following installation of sod, evaluations did not reveal differences by media type or application volume. Using CCB-organic waste mixes at the rates described herein is a rapid and environmentally safe method of bermudagrass sod production.  相似文献   

5.
Nutrient salts present in liquid by-products following waste treatment are lost resources if not effectively recycled, and can cause environmental problems if improperly disposed. This research compared the growth response and mineral nutrient status of two nursery and two turfgrass species, hydroponically supplied with nutritive by-product extracts derived from anaerobically digested municipal solid waste (MSW) and aerobically composted organic wastes from the mushroom and MSW industries. Forsythia (Forsythia x intermedia 'Lynwood') and weigela (Weigela florida 'Red Prince'), and creeping bentgrass (Agrostis palustris Huds.) and Kentucky bluegrass (Poa pratensis L.), were grown in nutrient solutions/extracts prepared from: (i) half-strength Hoagland's #2 solution (HH; control), (ii) Plant Products liquid fertilizer (PP; g kg(-1): 180 N; 39 P; 224 K), (iii) spent mushroom compost (SMC), (iv) MSW compost (GMC), and (v) intra-process wastewater from the anaerobic digestion of MSW (ADW). Additional nutrient solutions (SMC-A, GMC-A, and ADW-A) were prepared by amending the original solutions with N, P, and/or K to concentrations in HH (mg L(-1): 105 N; 15 P; 118 K). Plants receiving the SMC-A extract grew best or at least as well as those in HH, PP, and the amended GMC-A and ADW-A solutions. This study indicated that, with proper amendments of N, P, K and other nutrients, water-soluble constituents derived from organic waste treatment have potential for use as supplemental nutrient sources for plant production.  相似文献   

6.
Reclamation of trace element polluted soils often requires the improvement of the soil quality by using appropriate organic amendments. Low quality compost from municipal solid waste has been tested for reclamation of soils, but these materials can provide high amounts of heavy metals. Therefore, a high-quality compost, with low levels of heavy metals, produced from the main by-product of the Spanish olive oil extraction industry ("alperujo") was evaluated for remediation of soils affected by a pyritic mine sludge. Two contaminated soils were selected from the same area: they were characterised by differing pH values (4.6 and 7.3) and total metal concentrations, which greatly affected the fractionation of the metals. Compost was applied to soil at two rates (equivalent to 48 and 72 Tm ha(-1)) and compared with an inorganic fertiliser treatment. Compost acted as an available nutrient source (C, N and P) and showed a low mineralisation rate, suggesting a slow release of nutrients and thus favouring long term soil fertility. In addition, the liming effect of the compost led to a significant reduction of toxicity for soil microorganisms in the acidic soil and immobilisation of soil heavy metals (especially Mn and Zn), resulting in a clear increase in both soil microbial biomass and nitrification. Such positive effects were clearly greater than those provoked by the mineral fertiliser even at the lowest compost application rate, which indicates that this type of compost can be very useful for bioremediation programmes (reclamation and revegetation of polluted soils) based on phytostabilisation strategies.  相似文献   

7.
Concerns over the possible increase in phytoavailability of biosolids-applied trace metals to plants have been raised based on the assumption that decomposition of applied organic matter would increase phytoavailability. The objectives of this study were to assess the effect of time on chemical extractability and concentration of Cd, Cu, Ni, and Zn in plants on plots established by a single application of biosolids with high trace metals content in 1984. Biosolids were applied to 1.5 by 2.3 m confined plots of a Davidson clay loam (clayey, kaolinitic, thermic Rhodic Kandiudults) at 0, 42, 84, 126, 168, and 210 Mg ha(-1). The highest biosolids application supplied 4.5, 760, 43, and 620 kg ha(-1) of Cd, Cu, Ni, and Zn, respectively. Radish (Raphanus sativus L.), romaine lettuce (Lactuca sativa L. var. longifolia), and barley (Hordeum vulgare L.) were planted at the site for 3 consecutive years, 17 to 19 yr after biosolids application. Extractable Cd, Cu, Ni, and Zn (as measured by DTPA, CaCl(2,) and Mehlich-1) were determined on 15-cm depth samples from each plot. The DTPA-extractable Cu and Zn decreased by 58 and 42%, respectively, 17 yr after application despite a significant reduction in organic matter content. Biosolids treatments had no significant effect on crop yield. Plant tissue metal concentrations increased with biosolids rate but were within the normal range of these crops. Trace metal concentrations in plants generally correlated well with the concentrations extracted from soil with DTPA, CaCl(2), and Mehlich-1. Metal concentrations in plant tissue exhibited a plateau response in most cases. The uptake coefficient values generated for the different crops were in agreement with the values set by the Part 503 Rule.  相似文献   

8.
Monitoring of repeated composted biosolids applications is necessary for improving beneficial reuse program management strategies, because materials will likely be reapplied to the same site at a future point in time. A field trial evaluated a single and a repeated composted biosolids application in terms of long-term (13–14 years) and short-term (2–3 years) effects, respectively, on soil chemistry and plant community in a Colorado semi-arid grassland. Six composted biosolids rates (0, 2.5, 5, 10, 21, 30 Mg ha?1) were surface applied in a split-plot design study with treatment (increasing compost rates) as the main factor and co-application time (1991, or 1991 and 2002) as the split factor applications. Short- and long-term treatment effects were evident in 2004 and 2005 for soil 0–8 cm depth pH, EC, NO3-N, NH4-N, total N, and AB-DTPA soil Cd, Cu, Mo, Zn, P, and Ba. Soil organic matter increases were still evident 13 and 14 years following composted biosolids application. The repeated composted biosolids application increased soil NO3-N and NH4-N and decreased AB-DTPA extractable Ba as compared to the single composted biosolids application in 2004; differences between short- and long-term applications were less evident in 2005. Increasing biosolids rates resulted in increased native perennial grass cover in 2005. Plant tissue Cu, Mo, Zn, and P concentrations increased, while Ba content decreased depending on specific plant species and year. Overall, the lack of many significant negative effects suggests that short- or long-term composted biosolids application at the rates studied did not adversely affect this semi-arid grassland ecosystem.  相似文献   

9.
Little research has been conducted in the Lake States (Minnesota, Wisconsin, and Michigan) to evaluate the effects of municipal and industrial by-product applications on the early growth of short rotation woody crops such as hybrid poplar. Anticipated shortages of harvestable-age aspen in the next decade can be alleviated and rural development can be enhanced through the application of by-products to forest soils. This study was conducted to evaluate the effects of inorganic fertilizer, boiler ash, biosolids, and the co-application of ash and biosolids application on tree growth and soil properties by measuring hybrid poplar clone NM-6 (Populus nigra L. x P. maximowiczii A. Henry) yield, nutrient uptake, and select post-harvest soil properties after 15 wk of greenhouse growth. Treatments included a control of no amendment; agricultural lime; inorganic N, P, and K; three types of boiler ash; biosolids application rates equivalent to 70, 140, 210, and 280 kg available N ha(-1); and boiler ash co-applied with biosolids. All of the by-products treatments showed biomass production that was equal to or greater than inorganic fertilizer and lime treatments. A trend of increased biomass with increasing rates of biosolids was observed. Soil P concentration increased with increasing rates of biosolids application. None of the by-products treatments resulted in plant tissue metal concentrations greater than metal concentrations of plant tissue amended with inorganic amendments. Biosolids, boiler ash, and the co-application of biosolids and boiler ash together on forest soils were as beneficial to plant growth as inorganic fertilizers.  相似文献   

10.
In this study, seven organic amendments (biosolid compost, farm yard manure, fish manure, horse manure, spent mushroom, pig manure, and poultry manure) were investigated for their effects on the reduction of hexavalent chromium [chromate, Cr(VI)] in a mineral soil (Manawatu sandy soil) low in organic matter content. Addition of organic amendments enhanced the rate of reduction of Cr(VI) to Cr(III) in the soil. At the same level of total organic carbon addition, there was a significant difference in the extent of Cr(VI) reduction among the soils treated with organic amendments. There was, however, a significant positive linear relationship between the extent of Cr(VI) reduction and the amount of dissolved organic carbon in the soil. The effect of biosolid compost on the uptake of Cr(VI) from the soil, treated with various levels of Cr(VI) (0-1200 mg Cr kg(-1) soil), was examined with mustard (Brassica juncea L.) plants. Increasing addition of Cr(VI) increased Cr concentration in plants, resulting in decreased plant growth (i.e., phytotoxicity). Addition of the biosolid compost was effective in reducing the phytotoxicity of Cr(VI). The redistribution of Cr(VI) in various soil components was evaluated by a sequential fractionation scheme. In the unamended soil, the concentration of Cr was higher in the organic-bound, oxide-bound, and residual fractions than in the soluble and exchangeable fractions. Addition of organic amendments also decreased the concentration of the soluble and exchangeable fractions but especially increased the organic-bound fraction in soil.  相似文献   

11.
Biosolids produced by sewage treatment facilities can exceed guideline thresholds for contaminant elements. Phytoextraction is one technique with the potential to reduce these elements allowing reuse of the biosolids as a soil amendment. In this field trial, cuttings of seven species/cultivars of Salix(willows) were planted directly into soil and into biosolids to identify their suitability for decontaminating biosolids. Trees were irrigated and harvested each year for three consecutive years. Harvested biomass was weighed and analyzed for the contaminant elements: As, Cd, Cu, Cr, Hg, Pb, Ni, and Zn. All Salix cultivars, except S. chilensis, growing in soils produced 10 to 20 t ha(-1) of biomass, whereas most Salix cultivars growing in biosolids produced significantly less biomass (<6 t ha(-1)). Salix matsudana (30 t ha(-1)) and S. × reichardtii A. Kerner (18 t ha(-1)) had similar aboveground biomass production in both soil and biosolids. These were also the most successful cultivars in extracting metals from biosolids, driven by superior biomass increases and not high tissue concentrations. The willows were effectual in extracting the most soluble/exchangeable metals (Cd, 0.18; Ni, 0.40; and Zn, 11.66 kg ha(-1)), whereas Cr and Cu were extracted to a lesser degree (0.02 and 0.11 kg ha(-1)). Low bioavailable elements, As, Hg, and Pb, were not detectable in any of the aboveground biomass of the willows.  相似文献   

12.
Depth and area of rooting are important to long-term survival of plants on metal-contaminated, steep-slope soils. We evaluated shoot and root growth and metal uptake of four cool-season grasses grown on a high-Zn soil in a greenhouse. A mixture of biosolids, fly ash, and burnt lime was placed either directly over a Zn-contaminated soil or over a clean, fine-grained topsoil and then the Zn-contaminated soil; the control was the clean topsoil. The grasses were 'Reliant' hard fescue (Festuca brevipila R. Tracey), 'Oahe' intermediate wheatgrass [Elytrigia intermedia (Host) Nevski subsp. intermedia], 'Ruebens' Canada bluegrass (Poa compressa L.), and 'K-31' tall fescue (Festuca arundinacea Schreb.). Root growth in the clean soil and biosolids corresponded to the characteristic rooting ability of each species, while rooting into the Zn-contaminated soil was related to the species' tolerance to Zn. While wheatgrass and tall fescue had the strongest root growth in the surface layers (0-5 cm) of clean soil or biosolids, wheatgrass roots were at least two times more dense than those of the other grasses in the second layer (5-27 cm) of Zn-contaminated soil. When grown over Zn-contaminated soil in the second layer, hard fescue (with 422 mg/kg Zn) was the only species not to have phytotoxic levels of Zn in shoots; tall fescue had the highest Zn uptake (1553 mg/kg). Thus, the best long-term survivors in high-Zn soils should be wheatgrass, due to its ability to root deeply into Zn-contaminated soils, and hard fescue, with its ability to effectively exclude toxic Zn uptake.  相似文献   

13.
Some of the most fertile agricultural land in Atlantic Canada includes dykelands, which were developed from rich salt marshes along the Bay of Fundy through the construction of dykes. A 2-yr field experiment was conducted on dykeland soil to evaluate the effect of fertility treatments: source-separated municipal solid waste (SS-MSW) compost, solid manure, commercial fertilizer, and gypsum on (1) timothy/red clover forage productivity, (2) N, S, and other nutrients uptake, and (3) residual NO(3)-N and NH(4)-N in the soil profile. All fertility treatments increased dry matter yields from the two cuts each year relative to the control. Residual soil NO(3)-N and NH(4)-N concentrations in the fall of the second year decreased with depth, and beyond 20-cm depth were lower than 1 mg kg(-1). Gypsum application equivalent to 40 kg S ha(-1) increased dry matter yields and N uptake by forage, and increased soil Mehlich 3-extractable S, tissue S, and uptake of S, Ca, P, Cu, Fe, and Mn relative to the control. High rates of compost can provide sufficient N, S, and perhaps other nutrients to a perennial forage system under the cool wet climate of Atlantic Canada with no heavy metal enrichment of forage. However, the chemical N provided greater total N uptake than organic sources, except the high rate of compost, suggesting that the N availability from organic sources was not well synchronized with forage N demand. Municipal solid waste compost may also increase soil and forage tissue Na, which might be of concern.  相似文献   

14.
Extracted organic C and microbial biomass were evaluated as stability parameters in 3 different ligno-cellulosic waste composts. Organic C was extracted by both water and alkali and further separated in humic-like carbon (HLC) and nonhumic carbon (NHC). Conventional humification parameters, such as humification index and degree of humification were calculated from NHC and HLC. Microbial biomass carbon (B(C)) was determined as an indicator of the degree of biochemical transformation, whereas ninhydrin reactive N (B(NIN)) was measured to obtain the stability parameter B(NIN)/N(TOT) (N(TOT), total N). The water-extracted organic C did not provide reliable information on the transformations underwent by the ligno-cellulosic wastes during composting, since its content remained almost unaltered during the whole process. In contrast, parameters based on the alkali-extracted organic C and microbial biomass clearly reflected organic matter (OM) changes during the process. There was an increase in the net amount of HLC in the alkali extracts throughout composting, especially in the first 7 to 12 wk of the process, as well as a relative enrichment of HLC with respect to NHC. Values of humification index and degree of humification in end products were consistent with an adequate level of compost stability. The stability parameter B(NIN)/N(TOT) showed to be a reliable indicator of stability in ligno-cellulosic wastes. Parameters based on the alkali-extracted C and microbial biomass clearly reflected the transformation of the OM during composting and can be used as stability parameters in ligno-cellulosic waste composts.  相似文献   

15.
Debate exists over the biosolid phase (organic or inorganic) responsible for the reduction in phytoavailable Cd in soils amended with biosolids as compared with soils amended with inorganic salts. To test the importance of these two phases, adsorption isotherms were developed for soil samples (nine biosolids-amended soils and their five companion controls) and two biosolids samples from five experimental sites with documented histories of biosolids application. Subsamples were treated with 0.7 M NaClO to remove organic carbon. Cadmium nitrate was added to both moist soil samples and their soil inorganic fractions (SIF) in a 0.01 M Ca(NO3)2 solution at three pH levels (6.5, 5.5, and 4.5), and equilibrated at 22 +/- 1 degrees C for at least 48 h. Isotherms of Cd adsorption for biosolids-amended soil were intermediate to the control soil and biosolids. Decreasing pH did not remove the difference between these isotherms, although adsorption of Cd decreased with decreasing pH level. Organic matter removal reduced Cd adsorption on all soils but had little influence on the observed difference between biosolids-amended and control soils. Thus, increased adsorption associated with biosolids application was not limited to the organic matter addition from biosolids; rather, the biosolids application also altered the adsorptive properties of the SIF. The greater affinity of the inorganic fraction of biosolids-amended soils to adsorb Cd suggests that the increased retention of Cd on biosolids-amended soils is independent of the added organic matter and of a persistent nature.  相似文献   

16.
Brazil produces approximately 242,000 t of waste per day, 76% of it being dumped outdoors and only 0.9% recycled, including composting, which is an alternative still little known in Brazil. In search of a better destination for residues produced by domestic activities, composting stands as a feasible alternative. Organic compost from waste may be used for various purposes, among which are soil recovery, commercial production, pastures, lawns and reforestry and agriculture. However, the quality of the compost determines the growth and the development of plants. The effect of compost made from urban waste on corn plant (Zea mays L.) growth was investigated. Two types of compost were used: the selected compost (SC), produced from organic waste selectively collected; and the non-selected compost (NSC), taken from a 15-year-old cell from the Canabrava land-fill, located in Salvador, Bahia, Brazil (altitude 51 m, 12°22′–13°08′S, 38°08′–38°47′W). Corn was seeded in polyethylene pots, with soil-compost mixing substrate in the proportion of 0, 15, 30, 45 and 60 t ha−1 equivalent doses. Chemical analyses of the compost and growth properties of the plant like chlorophyll content; height and stem diameter; aerial and radicular dry biomasses, were used to evaluate compost quality. Plants cultivated with SC presented a superior gain, being of 52.5% in stem diameter, 71.1 and 81.2% in root and stem biomasses, respectively. Chlorophyl content alterations were observed in plants from treatments using 30 t compost ha−1 dose onwards. Conventional and multivariate statistical methods were used to evaluate these results. The beneficial action of organic compost in plant growth was confirmed with this research.  相似文献   

17.
A wide array of organic chemicals occur in biosolids and other residuals recycled to land. The extent of our knowledge about the chemicals and the impact on recycling programs varies from high to very low. Two significant challenges in regulating these materials are to accurately determine the concentrations of the organic compounds in residuals and to appropriately estimate the risk that the chemicals present from land application or public distribution. This paper examines both challenges and offers strategies for assessing the risks related to the occurrence of organic compounds in residuals used as soil amendments. Important attributes that must be understood to appropriately characterize and manage the potential risks for organic chemicals in biosolids include toxicity and dose response, transport potential, chemical structure and environmental stability, analytical capability in the matrix of interest, concentrations and persistence in waste streams, plant uptake, availability from surface application versus incorporation, solubility factors, and environmental fate. This information is complete for only a few chemicals. Questions persist about the far greater number of chemicals for which toxicity and environmental behavior are less well understood. This paper provides a synopsis of analytical issues, risk assessment methodologies, and risk management screening alternatives for organic constituents in biosolids. Examples from experience in Wisconsin are emphasized but can be extrapolated for broader application.  相似文献   

18.
Lead poisoning of waterfowl from direct ingestion of wetland mine tailings has been reported at the Coeur d'Alene River basin in Idaho. A greenhouse study was conducted to evaluate the effects of surface applications of amendments on lead bioavailability in the tailings. Treatments included sediment only, and sediment with three different surface amendments: (i) biosolids compost plus wood ash, (ii) compost + wood ash + a low SO4(2-) addition as K2SO4, and (iii) compost + wood ash + a high SO4(2-) addition. Measured variables included growth and tissue Pb, Zn, and Cd concentration of arrowhead (Sagittaria latifolia Willd.) and cattail (Typha latifolia L.) and soil pH, redox potential (Eh), pore water Pb, Pb speciation by X-ray absorption spectroscopy, and in vitro Pb bioavailability. The compost + ash amendment alleviated phytotoxicity for both plant species. Bioavailability of Pb as measured by a rapid in vitro extract decreased by 24 to 34% (over control) in the tailings directly below the amendment layer in the compost + SO4 treatments. The ratio of acid volatile sulfide (AVS) to simultaneously extracted metals (SEM) also indicated a reduction in Pb bioavailability (1:40 control, 1:20 compost, 1:8 compost + low SO4, and 1:3 compost + high SO4). Extended X-ray adsorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) spectroscopy data indicated that lead sulfide was greater after 99 d in the treatments that included additions of sulfate. These results indicated that, under reducing conditions, surface amendments of compost + wood ash (with or without sulfate) decreased the bioavailability of Pb in metal-contaminated mine tailings.  相似文献   

19.
The effects of addition of carbonated residue mud (RMC) or seawater neutralized residue mud (RMS), at two rates, in the presence or absence of added green waste compost, on the chemical, physical and microbial properties of gypsum-treated bauxite residue sand were studied in a laboratory incubation study. The growth of two species commonly used in revegetation of residue sand (Lolium rigidum and Acacia saligna) in the treatments was then studied in a 18-week greenhouse study. Addition of green waste-based compost increased ammonium acetate-extractable (exchangeable) Mg, K and Na. Addition of residue mud at 5 and 10% w/w reduced exchangeable Ca but increased that of Mg and Na (and K for RMS). Concentrations of K, Na, Mg and level of EC in saturation paste extracts were increased by residue mud additions. Concentrations of cations in water extracts were considerably higher than those in saturation paste extracts but trends with treatment were broadly similar. Addition of both compost and residue mud caused a significant decrease in macroporosity with a concomitant increase in mesoporosity and microporosity, available water holding capacity and the quantity of water held at field capacity. Increasing rates of added residue mud reduced the percentage of sample present as discrete sand particles and increased that in aggregated form (particularly in the 1-2 and >10mm diameter ranges). Organic C content, C/N ratio, soluble organic C, microbial biomass C and basal respiration were increased by compost additions. Where compost was added, residue mud additions caused a substantial increase in microbial biomass and basal respiration. L.?rigidum grew satisfactorily in all treatments although yields tended to be reduced by additions of mud (especially RMC) particularly in the absence of added compost. Growth of A.?saligna was poor in sand alone and mud-amended sand and was greatly promoted by additions of compost. However, in the presence of compost, addition of carbonated mud had a marked depressive effect on both top and root growth. The significant positive effect of compost was attributed to substantial inputs of K and marked reductions in the Na/K ratio in soil solution while the depressive effect of RMC was attributed to its greater alkalinity and consequently higher concentrations of HCO(3)(-) in solution.  相似文献   

20.
The amendment of soil with compost may significantly influence the mobility and persistence of pesticides and thus affect their environmental fate. Factors like adsorption, kinetics, and rate of degradation of pesticides could be altered in amended soils. The aim of this study was to determine the effects of the addition of compost made from source-separated municipal waste and green waste, on the fate of triasulfuron [(2-(2-chloroethoxy)-N-[[4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl]benzenesulfonamide], a sulfonylurea herbicide used in postemergence treatment of cereals. Two native soils with low organic matter content were used. A series of analyses was performed to evaluate the adsorption and degradation of the herbicide in soil and in solution after the addition of compost and compost-extracted organic fractions, namely humic acids (HA), fulvic acids (FA), and hydrophobic dissolved organic matter (HoDOM). Results have shown that the adsorption of triasulfuron to soil increases in the presence of compost, and that the HA and HoDOM fractions are mainly responsible for this increase. Hydrophobic dissolved organic matter applied to the soils underwent sorption reactions with the soils, and in the sorbed state, served to increase the adsorption capacity of the soil for triasulfuron. The rate of hydrolysis of triasulfuron in solution was significantly higher at acidic pH and the presence of organic matter fractions extracted from compost also slightly increased the rate of hydrolysis. The rate of degradation in amended and nonamended soils is explained by a two-stage degradation kinetics. During the initial phase, although triasulfuron degradation was rapid with a half-life of approximately 30 d, the presence of compost and HoDOM was found to slightly reduce the rate of degradation with respect to that in nonamended soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号