首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to investigate the effect of different application techniques on greenhouse gas emission from co-fermented slurry. Ammonia (NH3), nitrous oxide (N2O), and methane (CH4) emissions were measured in two field experiments with four different application techniques on arable and grassland sites. To gather information about fermentation effects, unfermented slurry was also tested, but with trail hose application only. Co-fermented slurry was applied in April at a rate of 30 m3 ha(-1). Measurements were made every 4 h on the first day after application and were continued for 6 wk with gradually decreasing sampling frequency. Methane emissions were <150 g C ha(-1) from co-fermentation products and seemed to result from dissolved CH4. Only in the grassland experiment were emissions from unfermented slurry significantly higher, with wetter weather conditions probably promoting CH4 production. Nitrous oxide emission was significantly increased by injection on arable and grassland sites two- and threefold, respectively. Ammonia emissions were smallest after injection or trail shoe application and are discussed in the preceding paper. We evaluated the climatic relevance of the measured gas emissions from the different application techniques based on the comparison of CO2 equivalents. It was evident that NH3 emission reduction, which can be achieved by injection, is at least compensated by increased N2O emissions. Our results indicate that on arable land, trail hose application with immediate shallow incorporation, and on grassland, trail shoe application, bear the smallest risks of high greenhouse gas emissions when fertilizing with co-fermented slurry.  相似文献   

2.
We measured NH? emissions from litter in broiler houses, during storage, and after land application and conducted a mass balance of N in poultry houses. Four state-of-the-art tunnel-ventilated broiler houses in northwest Arkansas were equipped with NH? sensors, anemometers, and data loggers to continuously record NH? concentrations and ventilation for 1 yr. Gaseous fluxes of NH?, N?O, CH?, and CO? from litter were measured. Nitrogen (N) inputs and outputs were quantified. Ammonia emissions during storage and after land application were measured. Ammonia emissions during the flock averaged approximately 15.2 kg per day-house (equivalent to 28.3 g NH?per bird marketed). Emissions between flocks equaled 9.09 g NH? per bird. Hence, in-house NH? emissions were 37.5 g NH? per bird, or 14.5 g kg(-1) bird marketed (50-d-old birds). The mass balance study showed N inputs for the year to the four houses totaled 71,340 kg N, with inputs from bedding, chicks, and feed equal to 303, 602, and 70,435 kg, respectively (equivalent to 0.60, 1.19, and 139.56 g N per bird). Nitrogen outputs totaled 70,396 kg N. Annual N output from birds marketed, NH? emissions, litter or cake, mortality, and NO? emissions was 39,485, 15,571, 14,464, 635, and 241 kg N, respectively (equivalent to 78.2, 30.8, 28.7, 1.3, and 0.5 g N per bird). The percent N recovery for the N mass balance study was 98.8%. Ammonia emissions from stacked litter during a 16-d storage period were 172 g Mg(-1) litter, which is equivalent to 0.18 g NH? per bird. Ammonia losses from poultry litter broadcast to pastures were 34 kg N ha (equivalent to 15% of total N applied or 7.91 g NH? per bird). When the litter was incorporated into the pasture using a new knifing technique, NH? losses were virtually zero. The total NH? emission factor for broilers measured in this study, which includes losses in-house, during storage, and after land application, was 45.6 g NH? per bird marketed.  相似文献   

3.
Manipulation of the diets of pigs may alter the composition of the manure and thereby the environmental and agricultural qualities of the manure. Laboratory studies were performed to quantify the effect of manipulation of pig diets on the chemical composition of the derived manure (slurry), the potential emission of methane (CH4) and ammonia (NH3) during anaerobic storage of the manure, and the potential nitrous oxide (N2O) and carbon dioxide (CO2) emission after application of the manure to soil. The diets differed in contents of crude protein and salt (CaSO4), and the type and contents of nonstarch polysaccharides (NSP). Emissions of NH3 and CH4 during storage were smaller at a low than at a high dietary protein content. The emission of NH3 was significantly related to the contents of ammonium (NH4), total N, and pH. The emission of CH4 was significantly related to contents of dry matter, total C, and volatile fatty acids in the manure. The effect of manure composition on N2O emission markedly differed between the two tested soils, which points at interactions with soil properties such as the organic matter content. These types of interactions require soil-specific recommendations for mitigation of N2O emission from soil-applied pig manure by manipulation of the diet. From the tested diets, decreasing the protein content has the largest potential to simultaneously decrease NH3 and CH4 emissions during manure storage and N2O emission from soil. An integral assessment of the environmental and agricultural impact of handling and application of pig manure as a result of diet manipulation provides opportunities for farmers to maximize the value of manures as fertilizer and soil conditioner and to minimize N and C emissions to the environment.  相似文献   

4.
Manure can provide valuable nutrients, especially N, for grass forage, but high NH, volatilization losses from standard surface-broadcast application limits N availability and raises environmental concerns. Eight field trials were conducted to evaluate the emission of NH, from liquid dairy manure, either surface broadcast or applied in narrow surface bands with a trailing-foot implement. Manure was applied using both techniques at rates of approximately 25 and 50 m3 ha(-1) on either orchardgrass (Dactylis glomerata L.) on a well-drained silt loam or reed canarygrass (Phalaris arundinacea L.) on a somewhat poorly drained clay soil. Ammonia emission was measured with a dynamic chamber/equilibrium concentration technique. High NH3 emission rates in broadcast treatments, especially at the high rate (2 to 13 kg ha(-1) h(-1)), occurred during the first few hours after spreading, followed by a rapid reduction to low levels (<0.5 kg ha(-1) h(-1) in most cases) by 24 h after spreading and in subsequent days. Band treatments often followed the same pattern but with initial rates substantially lower and with a less dramatic decrease over time. Total estimated NH3 losses from broadcast application, as a percent of total ammoniacal N (TAN) applied, averaged 39% (range of 20 to 59%) from the high manure rate and 25% (range of 9 to 52%) from the low rate. Band spreading reduced total NH3 losses by an average of 52 and 29% for the high and low manure rates, respectively. Results show that the trailing-foot band application method can reduce NH3 losses and conserve N for perennial forage production.  相似文献   

5.
Excess crude protein (CP) in dairy cow diets is excreted mostly as urea nitrogen (N), which increases ammonia (NH) emissions from dairy farms and heightens human health and environmental concerns. Feeding less CP and more tannin to dairy cows may enhance feed N use and milk production, abate NH emissions, and conserve the fertilizer N value of manure. Lab-scale ventilated chambers were used to evaluate the impacts of CP and tannin feeding on slurry chemistry, NH emissions, and soil inorganic N levels after slurry application to a sandy loam soil and a silt loam soil. Slurry from lactating Holstein dairy cows (Bos taurus) fed two levels of dietary CP (low CP [LCP], 155 g kg; high CP [HCP], 168 g kg) each fed at four levels of dietary tannin extract, a mixture from red quebracho (Schinopsis lorentzii) and chestnut (Castanea sativa) trees (0 tannin [0T]; low tannin [LT], 4.5 g kg; medium tannin [MT], 9.0 g kg; and high tannin [HT], 18.0 g kg) were applied to soil-containing lab-scale chambers, and NH emissions were measured 1, 3, 6, 12, 24, 36, and 48 h after slurry application. Emissions from the HCP slurry were 1.53 to 2.57 times greater ( < 0.05) than from the LCP slurry. At trial's end (48 h), concentrations of inorganic N in soils were greater ( < 0.05) in HCP slurry-amended soils than in LCP slurry-amended soils. Emissions from HT slurry were 28 to 49% lower ( < 0.05) than emissions from 0T slurry, yet these differences did not affect soil inorganic N levels. Emissions from the sandy loam soil were 1.07 to 1.15 times greater ( < 0.05) than from silt loam soil, a result that decreased soil inorganic N in the sandy loam compared with the silt loam soil. Larger-scale and longer-term field trails are needed to ascertain the effectiveness of feeding tannin extracts to dairy cows in abating NH loss from land-applied slurry and the impact of tannin-containing slurry on soil N cycles.  相似文献   

6.
Concentrated animal feeding operations emit trace gases such as ammonia (NH?), methane (CH?), carbon dioxide (CO?), and nitrous oxide (N?O). The implementation of air quality regulations in livestock-producing states increases the need for accurate on-farm determination of emission rates. The objective of this study was to determine the emission rates of NH?, CH?, CO?, and N?O from three source areas (open lots, wastewater pond, compost) on a commercial dairy located in southern Idaho. Gas concentrations and wind statistics were measured each month and used with an inverse dispersion model to calculate emission rates. Average emissions per cow per day from the open lots were 0.13 kg NH?, 0.49 kg CH?, 28.1 kg CO?, and 0.01 kg N?O. Average emissions from the wastewater pond (g m(-2) d(-1)) were 2.0 g NH?, 103 g CH?, 637 g CO?, and 0.49 g N?O. Average emissions from the compost facility (g m(-2) d(-1)) were 1.6 g NH?, 13.5 g CH?, 516 g CO?, and 0.90 g N?O. The combined emissions of NH?, CH?, CO?, and N?O from the lots, wastewater pond and compost averaged 0.15, 1.4, 30.0, and 0.02 kg cow(-1) d(-1), respectively. The open lot areas generated the greatest emissions of NH?, CO?, and N?O, contributing 78, 80, and 57%, respectively, to total farm emissions. Methane emissions were greatest from the lots in the spring (74% of total), after which the wastewater pond became the largest source of emissions (55% of total) for the remainder of the year. Data from this study can be used to develop trace gas emissions factors from open-lot dairies in southern Idaho and potentially other open-lot production systems in similar climatic regions.  相似文献   

7.
Biosolids are applied to vineyards to supply organic matter. However, there is concern that this practice can increase the concentration of macronutrients and heavy metals in the soil, some of which can leach. We evaluated the environmental hazard of sewage sludge compost applied in March 1999 at 10, 30, and 90 Mg ha-1 fresh weight in a vineyard in southeastern France. Soil organic matter increased in all plots by 3 g kg-1 18 mo after the amendment. Neither total nor available heavy metal concentrations increased in the soil. Mineral nitrogen (N) in the topsoil of amended plots of 10, 30, and 90 Mg ha-1 increased by 5, 14, and 26 kg (NO3(-)-N + NH4(+)-N) ha-1, respectively, the first summer and by 2, 5, and 10 kg (NO3(-)-N + NH4(+)-N) ha-1, respectively, the second summer compared with controls. At the recommended rate, risks of N leaching is very low, but phosphorus (P) appeared to be the limiting factor. Phosphorus significantly increased only in plots amended with the highest rate in the topsoil and subsoil. At lower rates, although no significant differences were observed, P added was greater than the quantities absorbed by vines. In the long run, P will accumulate in the soil and may reach concentrations that will pose a risk to surface waters and ground water. Therefore, although the current recommended rate (10 Mg ha-1) increased soil organic matter without the risk of N leaching, total sewage sludge loading rates on vineyards should be based on P concentrations.  相似文献   

8.
In the United States, swine (Sus scrofa) operations produce more than 14 Tg of manure each year. About 30% of this manure is stored in anaerobic lagoons before application to land. While land application of manure supplies nutrients for crop production, it may lead to gaseous emissions of ammonia (NH3) and nitrous oxide (N2O). Our objectives were to quantify gaseous fluxes of NH3 and N2O from effluent applications under field conditions. Three applications of swine effluent were applied to soybean [Glycine max (L.) Merr. 'Brim'] and gaseous fluxes were determined from gas concentration profiles and the flux-gradient gas transport technique. About 12% of ammonium (NH4-N) in the effluent was lost through drift or secondary volatilization of NH3 during irrigation. An additional 23% was volatilized within 48 h of application. Under conditions of low windspeed and with the wind blowing from the lagoon to the field, atmospheric concentrations of NH3 increased and the crop absorbed NH3 at the rate of 1.2 kg NH3 ha(-1) d(-1), which was 22 to 33% of the NH3 emitted from the lagoon during these periods. Nitrous oxide emissions were low before effluent applications (0.016 g N2O-N ha(-1) d(-1)) and increased to 25 to 38 g N2O-N ha(-1) d(-1) after irrigation. Total N2O emissions during the measurement period were 4.1 kg N2O-N ha(-1), which was about 1.5% of total N applied. The large losses of NH3 and N2O illustrate the difficulty of basing effluent irrigation schedules on N concentrations and that NH3 emissions can significantly contribute to N enrichment of the environment.  相似文献   

9.
Landfill leachate recirculation is efficient in reducing the leachate quantity handled by a leachate treatment plant. However, after land application of leachate, nitrification and denitrification of the ammoniacal N becomes possible and the greenhouse gas nitrous oxide (N2O) is produced. Lack of information on the effects of leachate recirculation on N2O production led to a field study being conducted in the Likang Landfill (Guangzhou, China) where leachate recirculation had been practiced for 8 yr. Monthly productions and fluxes of N2O from leachate and soil were studied from June to November 2000. Environmental and chemical factors regulating N2O production were also accessed. An impermeable top liner was not used at this site; municipal solid waste was simply covered by inert soil and compacted by bulldozers. A high N2O emission rate (113 mg m-2 h-1) was detected from a leachate pond purposely formed on topsoil within the landfill boundary after leachate irrigation. A high N2O level (1.09 micrograms L-1) was detected in a gas sample emitted from topsoil 1 m from the leachate pond. Nitrous oxide production from denitrification in leachate-contaminated soil was at least 20 times higher than that from nitrification based on laboratory incubation studies. The N2O levels emitted from leachate ponds were compared with figures reported for different ecosystems and showed that the results of the present study were 68.7 to 88.6 times higher. Leachate recirculation can be a cost-effective operation in reducing the volume of leachate to be treated in landfill. However, to reduce N2O flux, leachate should be applied to underground soil rather than being irrigated and allowed to flow on topsoil.  相似文献   

10.
In the Red River Valley of the upper midwestern United States, soil temperatures often remain below freezing during winter and N2O emissions from frozen cropland soils is assumed to be negligible. This study was conducted to determine the strength of N2O emissions and denitrification when soil temperatures were below zero for a manure-amended, certified organic field (T2O) compared with an unamended, conventionally managed field (T2C). Before manure application, both fields were similar with respect to autotrophic and heterotrophic N2O production and N2O flux at the soil surface (0.15+/-0.05 mg N2O-N m-2 d-1 for T2O and 0.12+/-0.06 mg N2O-N m-2 d-1 for T2C). After application of pelletized, dehydrated manure, average daily flux (based on time-integrated fluxes from 20 November to 8 April), was 1.19+/-0.34 mg N2O-N m-2 d-1 for T2O and 0.47+/-0.37 mg N2O-N m-2 d-1 for T2C. Denitrification for intact cores measured in the laboratory at -2.5 degrees C was greater for organically managed soils, although only marginally significant (p<0.1). Cumulative emissions for all winter measurements (from 16 November to 8 April) averaged 1.63 kg N2O-N ha-1 for T2O and 0.64 kg N2O-N ha-1 for T2C. Biological N2O production was evident at sub-zero soil temperatures, with winter emissions exceeding those measured in late summer. Late autumn manure application enhanced cumulative N2O-N emissions by 0.9 kg ha-1.  相似文献   

11.
Reducing ammonia (NH3) emissions through slurry incorporation or other soil management techniques may increase nitrate (NO3) leaching, so quantifying potential losses from these alternative pathways is essential to improving slurry N management. Slurry N losses, as NH3 or NO3 were evaluated over 4 yr in south-central Wisconsin. Slurry (i.e., dairy cow [Bos taurus] manure from a storage pit) was applied each spring at a single rate (-75 m3 ha(-1)) in one of three ways: surface broadcast (SURF), surface broadcast followed by partial incorporation using an aerator implement (AER-INC), and injection (INJ). Ammonia emissions were measured during the 120 h following slurry application using chambers, and NO3 leaching was monitored in drainage lysimeters. Yield and N3 uptake of oat (Avena sativa L.), corn (Zea mays L.), and winter rye (Secale cereale L.) were measured each year, and at trial's end soils were sampled in 15- to 30-cm increments to 90-cm depth. There were significant tradeoffs in slurry N loss among pathways: annual mean NH3-N emission across all treatments was 5.3, 38.3, 12.4, and 21.8 kg ha(-1) and annual mean NO3-N leaching across all treatments was 24.1, 0.9, 16.9, and 7.3 kg ha' during Years 1, 2, 3, and 4, respectively. Slurry N loss amounted to 27.1% of applied N from the SURF treatment (20.5% as NH3-N and 6.6% as NO,-N), 23.3% from AER-INC (12.0% as NH3-N and 11.3% as NO3-N), and 9.19% from INJ (4.4% as NH3-N and 4.7% as NO3-N). Although slurry incorporation decreased slurry N loss, the conserved slurry N did not significantly impact crop yield, crop N uptake or soil properties at trial's end.  相似文献   

12.
Removing solids from slurry manure helps balance nutrients to plant needs and may increase soil infiltration rate toreduce loss of ammonia. The long-term effects of applying the separated liquid fraction (SLF) of dairy slurry with surface banding applicators are not well known. This 6-yr study compared the yield, N recovery, and stand persistence of tall fescue (Festuca arundinacea Schreb.) receiving SLF at 300 (SLF300) and 400 (SLF400) kg ha(-1) yr(-1) of total ammoniacal N (TAN); whole dairy slurry (WS) at 200 (WS200), 300 (WS300), and 400 (WS400) kg TAN ha(-1) yr(-1); and mineral fertilizerat 300 kg N ha(-1) yr(-1). The slurries were applied four times per year by surface banding, a technique that reduces ammonia emission and canopy contamination. Grass yield and N uptake were significantly higher for SLF300 than WS300 atequivalent rates of TAN. At similar total N, yield and N uptake were much greater for SLF than WS (2 Mg DM ha(-1) and 75 kg N ha(-1), respectively). Apparent total N recoverywas 63% greater for SLF300 than WS300 due to less ammonia loss and less immobile N. The apparent recovery of total N was 31% higher for Fert300 than for SLF300. Yield and N uptake for SLF300 and WS300 were similar in Harvests 1 and4, but SLF had higher values under hot and dry conditions in Harvests 2 and 3. Using SLF rather than WS will increase crop yield and allow higher application volumes near barns, whichwill reduce hauling costs.  相似文献   

13.
Intensively managed grasslands are potentially a large source of NH3, N2O, and NO emissions because of the large input of nitrogen (N) in fertilizers. Addition of nitrification inhibitors (NI) to fertilizers maintains soil N in ammonium form. Consequently, N2O and NO losses are less likely to occur and the potential for N utilization is increased, and NH3 volatilization may be increased. In the present study, we evaluated the effectiveness of the nitrification inhibitor 3,4-dimethylpyrazol phosphate (DMPP) on NH3, N2O, NO, and CO2 emissions following the application of 97 kg N ha(-1) as ammonium sulfate nitrate (ASN) and 97 kg NH4+ -N ha(-1) as cattle slurry to a mixed clover-ryegrass sward in the Basque Country (northern Spain). After slurry application, 16.0 and 0.7% of the NH4+ -N applied was lost in the form of N2O and NO, respectively. The application of DMPP induced a decrease of 29 and 25% in N2O and NO emissions, respectively. After ASN application 4.6 and 2.8% of the N applied was lost as N2O and NO, respectively. The application of DMPP with ASN (as ENTEC 26; COMPO, Münster, Germany) unexpectedly did not significantly reduce N2O emissions, but induced a decrease of 44% in NO emissions. The amount of NH4+ -N lost in the form of NH3 following slurry and slurry + DMPP applications was 7.8 and 11.0%, respectively, the increase induced by DMPP not being statistically significant. Levels of CO2 emissions were unaffected in all cases by the use of DMPP. We conclude that DMPP is an efficient nitrification inhibitor to be used to reduce N2O and NO emissions from grasslands.  相似文献   

14.
The interactive effects of soil texture and type of N fertility (i.e., manure vs. commercial N fertilizer) on N(2)O and CH(4) emissions have not been well established. This study was conducted to assess the impact of soil type and N fertility on greenhouse gas fluxes (N(2)O, CH(4), and CO(2)) from the soil surface. The soils used were a sandy loam (789 g kg(-1) sand and 138 g kg(-1) clay) and a clay soil (216 g kg(-1) sand, and 415 g kg(-1) clay). Chamber experiments were conducted using plastic buckets as the experimental units. The treatments applied to each soil type were: (i) control (no added N), (ii) urea-ammonium nitrate (UAN), and (iii) liquid swine manure slurry. Greenhouse gas fluxes were measured over 8 weeks. Within the UAN and swine manure treatments both N(2)O and CH(4) emissions were greater in the sandy loam than in the clay soil. In the sandy loam soil N(2)O emissions were significantly different among all N treatments, but in the clay soil only the manure treatment had significantly higher N(2)O emissions. It is thought that the major differences between the two soils controlling both N(2)O and CH(4) emissions were cation exchange capacity (CEC) and percent water-filled pore space (%WFPS). We speculate that the higher CEC in the clay soil reduced N availability through increased adsorption of NH(4)(+) compared to the sandy loam soil. In addition the higher average %WFPS in the sandy loam may have favored higher denitrification and CH(4) production than in the clay soil.  相似文献   

15.
We evaluated the effects of irrigated crop management practices on nitrous oxide (N(2)O) emissions from soil. Emissions were monitored from several irrigated cropping systems receiving N fertilizer rates ranging from 0 to 246 kg N ha(-1) during the 2005 and 2006 growing seasons. Cropping systems included conventional-till (CT) continuous corn (Zea mays L.), no-till (NT) continuous corn, NT corn-dry bean (Phaseolus vulgaris L.) (NT-CDb), and NT corn-barley (Hordeum distichon L.) (NT-CB). In 2005, half the N was subsurface band applied as urea-ammonium nitrate (UAN) at planting to all corn plots, with the rest of the N applied surface broadcast as a polymer-coated urea (PCU) in mid-June. The entire N rate was applied as UAN at barley and dry bean planting in the NT-CB and NT-CDb plots in 2005. All plots were in corn in 2006, with PCU being applied at half the N rate at corn emergence and a second N application as dry urea in mid-June followed by irrigation, both banded on the soil surface in the corn row. Nitrous oxide fluxes were measured during the growing season using static, vented chambers (1-3 times wk(-1)) and a gas chromatograph analyzer. Linear increases in N(2)O emissions were observed with increasing N-fertilizer rate, but emission amounts varied with growing season. Growing season N(2)O emissions were greater from the NT-CDb system during the corn phase of the rotation than from the other cropping systems. Crop rotation and N rate had more effect than tillage system on N(2)O emissions. Nitrous oxide emissions from N application ranged from 0.30 to 0.75% of N applied. Spikes in N(2)O emissions after N fertilizer application were greater with UAN and urea than with PCU fertilizer. The PCU showed potential for reducing N(2)O emissions from irrigated cropping systems.  相似文献   

16.
Livestock slurry storages are sources of methane (CH?), nitrous oxide (NO?), and ammonia (NH?) emissions. Total solids (TS) content is an indicator of substrate availability for CH? and N?O production and NH? emissions and is related to crust formation, which can affect these gas emissions. The effect of TS on these emissions from pilot-scale slurry storages was quantified from 20 May through 16 Nov. 2010 in Nova Scotia, Canada. Emissions from six dairy slurries with TS ranging from 0.3 to 9.5% were continuously measured using flow-through steady-state chambers. Methane emissions modeled using the USEPA methodology were compared with measured data focusing on emissions when empty storages were filled, and retention times were >30 d with undegraded volatile solids (VS) remaining in the system considered available for CH? production (VS carry-over). Surface crusts formed on all the slurries. Only the slurries with TS of 3.2 and 5.8% were covered completely for ~3 mo. Nitrous oxide contributed <5% of total greenhouse gas emissions for all TS levels. Ammonia and CH? emissions increased linearly with TS despite variable crusting, suggesting substrate availability for gas production was more important than crust formation in regulating emissions over long-term storage. Modeled CH? emissions were substantially higher than measured data in the first month, and accounting for this could improve overall model performance. Carried-over VS were a CH? source in months 2 through 6. The results of this study suggest that substrate availability regulates emissions over long-term storage and that modifying the USEPA model to better describe carbon cycling is warranted.  相似文献   

17.
In manure disposal systems, denitrification is a major pathway for N loss and to reduce N transport to surface and ground water. We measured denitrification and the changes in soil N pools in a liquid manure disposal system at the interface of a pasture and a riparian forest. Liquid swine manure was applied weekly at two rates (approximately 800 and 1600 kg N ha-1 yr-1) to triplicate plots of overland flow treatment systems with three different vegetation treatments. Denitrification (acetylene block technique on intact cores) and soil N pools were determined bimonthly for 3 yr. The higher rate of manure application had higher denitrification rates and higher soil nitrate. Depth 1 soil (0-6 cm) had higher denitrification, nitrate, and ammonium than depth 2 soil (6-12 cm). The vegetation treatment consisting of 20 m of grass and 10 m of forest had lower denitrification. Denitrification did not vary significantly with position in the plot (7, 14, 21, and 28 m downslope), but nitrate decreased in the downslope direction while ammonium increased downslope. Denitrification ranged from 4 to 12% of total N applied in the manure. Denitrification rates were similar to those from a nearby dairy manure irrigation site, but were generally a lower percent of N applied, especially at the high swine effluent rate. Denitrification rates for these soils range from 40 to 200 kg N ha-1 yr-1 for the top 12 cm of soil treated with typical liquid manure that is high in ammonium and low in nitrate.  相似文献   

18.
Ammonia (NH3) volatilization commonly causes a substantial loss of crop-available N from surface-applied cattle slurry. Field studies were conducted with small wind tunnels to assess the effect of management factors on NH3 volatilization. Two studies compared NH3 volatilization from grass sward and bare soil. The average total NH3 loss was 1.5 times greater from slurry applied to grass sward. Two studies examined the effect of slurry dry matter (DM) content on NH3 loss under hot, summer conditions in Maryland, USA. Slurry DM contents were between 54 and 134 g kg(-1). Dry matter content did not affect total NH3 loss, but did influence the time course of NH3 loss. Higher DM content slurries had relatively higher rates of NH3 volatilization during the first 12 to 24 h, but lower rates thereafter. Under the hot conditions, the higher DM content slurries appeared to dry and crust more rapidly causing smaller rates of NH3 volatilization after 12 to 24 h, which offset the earlier positive effects of DM content on NH3 volatilization. Three studies compared immediate incorporation with different tillage implements. Total NH3 loss from unincorporated slurry was 45% of applied slurry NH4+-N, while losses following immediate incorporation with a moldboard plow, tandem-disk harrow, or chisel plow were, respectively, 0 to 3, 2 to 8, and 8 to 12%. These ground cover and DM content data can be used to improve predictions of NH3 loss under specific farming conditions. The immediate incorporation data demonstrate management practices that can reduce NH3 volatilization, which can improve slurry N utilization in crop-forage production.  相似文献   

19.
The influence of increasing pig slurry applications on leaching and crop uptake of N and P by cereals was evaluated in a 3-yr study of lysimeters filled with a sandy soil. The slurry was applied at N rates of 50 (S50), 100 (S100), 150 (S150), and 200 (S200) kg ha(-1) during 2 of the 3 yr. The P rates applied with slurry were: 40 (S50), 80 (S100), 120 (S150), and 160 (S200) kg ha(-1) yr(-1). Simultaneously, NH4NO3 and Ca(H2PO4)2 were applied at rates of 100 kg N ha(-1) and 50 kg P ha(-1), respectively, to additional lysimeters (F100), while others were left unfertilized (F0). During the 3-yr period, the leaching load of total N tended to increase with increasing slurry application to, on average, 139 kg ha(-1) at the highest application rate (S200). The corresponding N leaching loads (kg ha(-1)) in the other treatments were: 75 (F0), 103 (F100), 93 (S50), 120 (S100), and 128 (S150). The loads of slurry-derived N in the S100, S150, and S200 treatments were significantly larger (P < 0.05) than those of fertilizer-derived N. In contrast, P leaching tended to decrease with increasing input of slurry, and it was lower in all treatments that received P at or above 50 kg P ha(-1) yr(-1) with slurry or fertilizer than in the unfertilized treatment. The crop use efficiency of added N and P was clearly higher when NH4NO3 and Ca(H2PO4)2 were used rather than slurry (60 vs. 35% for N, 38 vs. 6-9% for P), irrespective of slurry application rate. Therefore, from both a production and water quality point of view, inorganic fertilizers seem to have environmental benefits over pig slurry when used on sandy soils.  相似文献   

20.
Slurry application with methods such as trailing shoe (TS) results in reduced emissions of ammonia (NH3) compared with broadcast application using splashplate (SP). Timing the application during cool and wet weather conditions also contributes to low NH3 emissions. From this perspective, we investigated whether reduced NH3 emissions due to improved slurry application method and timing results in an increase in the nitrogen (N) fertilizer replacement value (NFRV). The effects of application timing (June vs. April) and application method (TS vs. SP) on the apparent N recovery (ANR) and NFRV from cattle slurry applied to grassland were examined on three sites over 3 yr in randomized block experiments. The NFRV was calculated using two methods: (i) NFRV(N) based on the ANR of slurry N relative to mineral N fertilizer; and (ii) NFRV(DM) based on DM yield. The TS method increased the ANR, NFRV(N), and NFRV(DM) compared with SP in the 40- to 50-d period following slurry application by 0.09, 0.10, and 0.10 kg kg(-1), respectively. These values were reduced to 0.07, 0.06, and 0.05 kg kg(-1), respectively, when residual harvests during the rest of the year were included. The highest NFRV(DM) for the first harvest period was with application in April using STS (0.30 kg kg(-1)), while application in June with SP had the Slowest (0.12 kg kg(-1)). The highest NFRV(DM) for the cumulative harvest period was with application in April using TS (0.38 kg kg(-1)), while application in June with SP had the lowest (0.17 kg kg(-1)). Improved management of application method, by using TS instead of SP, and timing, by applying slurry in April rather than June, offer potential to increase the NFRV(DM) of cattle slurry applied to grassland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号