首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
介绍我国粘胶纤维生产废气治理研究的发展情况,说明普通活性炭不适合作为粘胶纤维生产废气的吸附剂、建议采用密封窗封闭操作、用TF法脱除H2S,再用改性活性炭脱除CS2,同时应重视研究开发新型溶剂代替CS2进行无害化清洁生产.关键词:粘胶纤维废气治理硫化氢二硫化炭  相似文献   

2.
介绍我国粘胶纤维生产废气治理研究的发展情况,说明普通活性炭不适合作为粘胶纤维生产废气的吸附剂、建议采用密封窗封闭操作、用TF法脱除H2S,再用改性活性炭脱除CS2,同时应重视研究开发新型溶剂代替CS2进行无害化清洁生产。  相似文献   

3.
活性炭吸附-微波技术再生处理粘胶纤维废气的研究   总被引:1,自引:0,他引:1  
针对粘胶纤维厂冷凝处理后的废气浓度低的特点,开发了吸附-微波再生处理技术。主要考察了吸附剂的种类、H2S和CS2进口浓度、湿度的影响,同时还对微波再生条件和效果进行了实验。结果表明,活性炭对二硫化碳的吸附效果较好;H2S和CS2进口浓度很低(Ci<200mg/m3)时对吸附影响不明显;湿度对吸附影响很大。实验亦证实,微波再生后的活性炭性能有很大的改善。  相似文献   

4.
活性炭吸附-微波技术再生处理粘胶纤维废气的研究   总被引:1,自引:0,他引:1  
针对粘胶纤维厂冷凝处理后的废气浓度低的特点,开发了吸附-微波再生处理技术.主要考察了吸附剂的种类、H2S和CS2进口浓度、湿度的影响,同时还对微波再生条件和效果进行了实验.结果表明,活性炭对二硫化碳的吸附效果较好;H2S和CS2进口浓度很低(Ci<200 mg/m^3)时对吸附影响不明显;湿度对吸附影响很大.实验亦证实,微波再生后的活性炭性能有很大的改善.  相似文献   

5.
粘胶纤维生产的废气含有二硫化碳和硫化氢 ,均为对人体有害、污染环境的气体。本文介绍了目前治理粘胶纤维生产废气的工艺方法。  相似文献   

6.
治理粘胶纤维生产废气的研究进展   总被引:4,自引:1,他引:3  
粘胶纤维生产的废气含有二硫化碳和硫化氢,均为对人体有害,污染环境的气体,本文介绍了目前治理粘胶纤维生产废气的工艺方法.  相似文献   

7.
工业废气中氮氧化物的治理研究   总被引:4,自引:0,他引:4  
对碱液吸收和活性炭吸附两级联合治理氮氧化物废气进行了实验研究,结果表明:对于氮氧化物进口浓度为7000~10 000 mg/m3的氮氧化物废气,氮氧化物的平均脱除率可以达到99%,出口浓度低于99 mg/m3;还进行了以硝酸溶液、双氧水溶液和高锰酸钾溶液为氧化剂湿法氧化碱吸收的实验研究,结果显示3种氧化剂都能显著提高氮氧化物的脱除率,其中以高锰酸钾溶液作氧化剂的脱除效果最好,其次是双氧水溶液.  相似文献   

8.
提出利用低品位硼矿脱除硫酸生产中废气SO2,并使硼矿得到富集的新工艺。研究了硼矿脱硫的工艺条件。以贫治废,为硫酸生产的废气治理开辟了新的途径。  相似文献   

9.
双介质阻挡放电(DDBD)联合催化降解有机废气具有广阔的应用前景,探讨其副产物影响因素以便控制其浓度很重要。为此,采用自制高压电源与新型阵列式DDBD联合催化(以TiO_2/Al_2O_3或Co/活性炭为催化剂)反应器,考察了其反应放电特性与波形,研究了甲苯初始浓度、气量、相对湿度和能量密度对脱除甲苯废气产生副产物(O_3和NO_2)的影响。结果表明:O_3和NO_2的浓度均随着甲苯初始浓度、气量、相对湿度的增加而降低,但随着能量密度的增加而升高。催化剂可以显著降低O_3和NO_2浓度,其中Co/活性炭在降低O_3和NO_2浓度方面效果最显著。当甲苯初始质量浓度为300mg/m~3、气体相对湿度为55%、气量为100m~3/h、能量密度为7.2J/L时,DDBD联合Co/活性炭催化剂脱除甲苯废气产生的O_3质量浓度最低,为16.9mg/m~3;当甲苯初始质量浓度为50mg/m~3、相对湿度为85%、气量为100m~3/h、能量密度为7.2J/L时,DDBD联合Co/活性炭脱除甲苯废气产生的NO_2质量浓度最低,为23.5mg/m~3。  相似文献   

10.
利用活性炭纤维有机废气吸附回收装置治理二氯甲烷废气   总被引:1,自引:0,他引:1  
文章介绍了一种化工生产过程中排出的二氯甲烷废气的治理装置———活性炭纤维有机废气吸附回收装置和治理工艺。由于采用了优越的吸附材料和先进的工艺设计 ,使吸附回收率达 97%以上 ,收到了很好的环境效益和经济效益  相似文献   

11.
本文对采用电化学方法去除SO2/NOx废气这一新的研究方法进行了综述.在用酞花青钴(CoPc)修饰的碳气体扩散电极上,SO2在空气中的体积百分数在20%以下时可以完全被氧化为硫酸,以连二硫酸盐(S2O2-4)作还原剂,Fe2+-EDTA作络合剂时,NO以90%以上的程度还原为NH+4与NH2(SO3H)等低价含氮化合物,产物中未见N2、N2O与NO2等气体,氧化产物SO2-3(或HSO-3)在Pb阴极上还原再生为S2O2-4.用Ce4+作氧化剂可将SO2/NO2氧化为相应的酸,还原产物Ce3+经电解氧化后循环使用.  相似文献   

12.
In this study, in order to understand accurate calculation of greenhouse gas emissions of urban solid waste incineration facilities, which are major waste incineration facilities, and problems likely to occur at this time, emissions were calculated by classifying calculation methods into 3 types. For the comparison of calculation methods, the waste characteristics ratio, dry substance content by waste characteristics, carbon content in dry substance, and 12C content were analyzed; and in particular, CO2 concentration in incineration gases and 12C content were analyzed together. In this study, 3 types of calculation methods were made through the assay value, and by using each calculation method, emissions of urban solid waste incineration facilities were calculated then compared. As a result of comparison, with Calculation Method A, which used the default value as presented in the IPCC guidelines, greenhouse gas emissions were calculated for the urban solid waste incineration facilities A and B at 244.43 ton CO2/day and 322.09 ton CO2/day, respectively. Hence, it showed a lot of difference from Calculation Methods B and C, which used the assay value of this study. It is determined that this was because the default value as presented in IPCC, as the world average value, could not reflect the characteristics of urban solid waste incineration facilities. Calculation Method B indicated 163.31 ton CO2/day and 230.34 ton CO2/day respectively for the urban solid waste incineration facilities A and B; also, Calculation Method C indicated 151.79 ton CO2/day and 218.99 ton CO2/day, respectively.

Implications: This study intends to compare greenhouse gas emissions calculated using 12C content default value provided by the IPCC (Intergovernmental Panel on Climate Change) with greenhouse gas emissions calculated using 12C content and waste assay value that can reflect the characteristics of the target urban solid waste incineration facilities. Also, the concentration and 12C content were calculated by directly collecting incineration gases of the target urban solid waste incineration facilities, and greenhouse gas emissions of the target urban solid waste incineration facilities through this survey were compared with greenhouse gas emissions, which used the previously calculated assay value of solid waste.  相似文献   


13.
本文以大量翔实的数据介绍了香港对城市固体废物的系统管理,即分类、收集、监测分析、处理和预测评价。香港环保署自80 年代开始对城市固体废物进行监测并系统管理。在全港设置了3 个大型策略性填埋场、5 个垃圾转运站、1 个垃圾焚烧厂(1997 年5 月关闭) 和1个化学废物处理中心。目前,香港政府正筹建一个新的、技术先进的焚烧厂。从1986 ~1997年,这些废物处理设施处理全港废物量为8960 ~24300t/d,其中城市固体废物比例每年不等,最低为30 .7 % ,最高为65 .5 % 。1997 年,这些废物中可循环再利用物接近50 % ,出口部分达120 多万吨,回收资金20 多亿港元。根据历年来城市固体废物量与本地生产总值(GDP)和人口数量的密切相关性,预测出2011 年城市固体废物人均产率为2 .56kg/ 人·d, 城市固体废物量为12810 t/d。城市固体废物系统管理紧迫而重要,香港的经验是值得我们借鉴的。  相似文献   

14.
Shih CJ  Lin CF 《Chemosphere》2003,53(7):691-703
A preliminary survey of an arsenic contaminated site from an abandoned copper smelting facility and feasibility study of using solidification/stabilization (S/S) process to treat the contaminant waste were undertaken. It was found that the waste, located in the three-flue gas discharge tunnels, contained 2-40% arsenic. The pH of the contaminated waste is extremely low (ranging from 1.8 to 3.6). The X-ray diffraction evidence indicates that the arsenic particles present in the flue gas mainly exist as As(III), or As(2)O(3). The total amount of arsenic contaminated waste is estimated to be 700 ton in the studied area. About 50% of the particle sizes are less than 2 mm. Arsenic is easily extracted from wastes with a variety of leaching solutions. In order to meet the arsenic leaching standard of the toxicity characteristic leaching procedure (TCLP), an extremely high cement dosage is required in the S/S process (cement/waste weight ratio>6). The waste with lower particle size having higher specific surface area exhibits somewhat positive effect on the S/S performance. The use of fly ash from municipal waste incinerators, in conjunction with the reduced amount of cement, is able to meet the TCLP arsenic and lead standards. The use of lime alone could meet the TCLP arsenic standard, but lead leaching concentrations exceeded leaching Pb standard. The results of semi-dynamic leaching tests of some solidified samples indicate higher accumulated arsenic leaching concentrations after only a few leachant renewals.  相似文献   

15.
In Korea, the amount of greenhouse gases released due to waste materials was 14,800,000 t CO2eq in 2012, which increased from 5,000,000 t CO2eq in 2010. This included the amount released due to incineration, which has gradually increased since 2010. Incineration was found to be the biggest contributor to greenhouse gases, with 7,400,000 t CO2eq released in 2012. Therefore, with regards to the trading of greenhouse gases emissions initiated in 2015 and the writing of the national inventory report, it is important to increase the reliability of the measurements related to the incineration of waste materials.

This research explored methods for estimating the biomass fraction at Korean MSW incinerator facilities and compared the biomass fractions obtained with the different biomass fraction estimation methods. The biomass fraction was estimated by the method using default values of fossil carbon fraction suggested by IPCC, the method using the solid waste composition, and the method using incinerator flue gas.

The highest biomass fractions in Korean municipal solid waste incinerator facilities were estimated by the IPCC Default method, followed by the MSW analysis method and the Flue gas analysis method. Therefore, the difference in the biomass fraction estimate was the greatest between the IPCC Default and the Flue gas analysis methods. The difference between the MSW analysis and the flue gas analysis methods was smaller than the difference with IPCC Default method. This suggested that the use of the IPCC default method cannot reflect the characteristics of Korean waste incinerator facilities and Korean MSW.

Implications: Incineration is one of most effective methods for disposal of municipal solid waste (MSW). This paper investigates the applicability of using biomass content to estimate the amount of CO2 released, and compares the biomass contents determined by different methods in order to establish a method for estimating biomass in the MSW incinerator facilities of Korea. After analyzing the biomass contents of the collected solid waste samples and the flue gas samples, the results were compared with the Intergovernmental Panel on Climate Change (IPCC) method, and it seems that to calculate the biomass fraction it is better to use the flue gas analysis method than the IPCC method. It is valuable to design and operate a real new incineration power plant, especially for the estimation of greenhouse gas emissions.  相似文献   


16.
近年来,化工园区面临绿色转型升级,废气管理提升重要程度日益突显。本文分析了化工园区废气管理存在的主要问题,并提出了化工园区废气管理对策,以期提升化工园区废气综合管理水平,改善化工园区空气环境质量。  相似文献   

17.
废物乙醇发酵是废物资源化的途径之一,包括废物的预处理,乙醇发酵菌株的选育,乙醇发酵新技术,新工艺的采用等重要内容。同酵母发酵乙醇相比,利用细菌发酵产乙醇具有产率和转化率高,平均发酵速度快等优点,是研究的热点之一,特别是热纤核菌和热糖核菌能直接发酵纤维类废物为乙醇,它们的发现使纤维类废弃物的资源化向前迈进了一大步。同时,人们利用基因工程的手段,改变原菌株的遗传物质,构建“超级菌”,来满足乙醇发酵的要求,同一般发酵技术相比,细胞固定化拄术具有使发酵过程连续运行又具有细胞浓度大,产乙醇效率高等优点。有效的乙醇分离技术包括分离膜、萃取、真空等,它们能降低发酵液中乙醇的浓度,保证酵母的发酵活性,从而提高乙醇的产量。因此,废物乙醇化技术是一个具有巨大潜力的处理废物的新领域。  相似文献   

18.
To find a better composting process with low greenhouse gas emission and high humus production, the effect of adding kitchen waste on reduction and humification of organic matter during straw composting was studied. Three processes were compared, consisting of different ratios of straw and kitchen waste (1:2, 1:1, and 2:1). At four time points over a 62-d incubation, the reduction and humification of compost was evaluated by measuring the total mass, carbon content, and humic material content of the compost. Treatment 1 (straw/kitchen waste ratio of 1:2) reduced the total mass of compost the most. Treatment 2 (straw/kitchen waste ratio of 1:1) reduced the total carbon content the most, reflecting the highest emission of greenhouse gas. Treatment 3 produced the most humic acid material and released the lowest amount of carbon. Hence, from the point of view of reducing greenhouse gas emissions and increasing stable organic matter such as humus and humic acid during composting, treatment #3 was optimal. The three treatments resulted in significant differences in microbial biomass and enzyme activity during composting. The highest amount of active microbial biomass was associated with the largest reduction in compost mass (treatment 1). Higher proportions of straw (treatments 2 and 3), which contains more lignin, were associated with greater β-glycosidase activity, which may generate more humus that can improve soil quality. Dehydrogenase activity seemed to be the most important microbial factor in organic carbon catabolism or humification.  相似文献   

19.
In The Netherlands, a small and densely populated country, the disposal of solid waste requires strict precautions. Because the landscape is flat and the watertable just under groundlevel, landfilling and dumping must be avoided as much as possible. Incineration of municipal and industrial waste are presently under consideration. But even when excellent flue gas cleaning systems are used, air pollution can present a problem, for instance, by dioxines produced during the process. For these reasons the government has published a waste disposal policy plan in which recycling, composting and prevention of waste production play a major role. Eventually about one third of the solid waste production will be incinerated or dumped. No solid waste will be exported.  相似文献   

20.
Gohlke O  Busch M 《Chemosphere》2001,42(5-7):545-550
The SYNCOM process involves oxygen enrichment of underfire air, recirculation of flue gas and a combustion control system using infrared thermography of the waste layer on the grate. At the demonstration plant in Coburg, operational reliability and plant availability using SYNCOM could be proven under real disposal conditions with a waste throughput of 7 t/h. Oxygen enrichment of the underfire air promotes the destruction of pollutants due to the high oxygen partial pressures and temperatures. This is then reflected in very low residual amounts of organic combustion by-products in the bottom ash and flue gas from the SYNCOM unit. The flue gas concentrations of organic pollutants are reduced, as compared with conventional operation, by over 35% (for CO, total hydrocarbons and PCDD/F) at the boiler outlet. As the flue gas flow is reduced by oxygen enrichment and flue gas recirculation, the resulting reduction in terms of kg of pollutant per Mg of waste is even higher. In the bottom ash, the level of organic residues is reduced, by 45% in the case of loss on ignition and by 55% in the case of TOC and dioxins (I-TE of PCDD/F). This is due to the higher oxygen partial pressures and the fuel bed temperature which is increased by 135 to 1200 degrees C. Other important features of the process include more intense sintering and thus improved immobilization of the bottom ash, as well as reduced flue gas and fly ash flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号