首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
溢油向岸滩漂移会造成海岸带人工构筑物的严重污染。采用混凝土片模拟滨海构筑物,研究投加生物柴油及营养对石油污染物的去除效果。结果表明,施加生物柴油可以促进滨海构筑物上的石油进入水中,生物柴油施加量越大,构筑物上残余的石油量越小;同时施加生物柴油和营养能够促进海水中降解石油微生物的增殖和石油的降解;营养和微生物条件一致的情况下,投加2 mL和5 mL生物柴油的系统中石油的总去除率分别为37.5%和32.7%,表明生物柴油的投加量有一个适宜值。研究结果可为生物柴油-营养联合修复石油污染海岸带提供数据支持。  相似文献   

2.
溢油向岸滩漂移会造成海岸带人工构筑物的严重污染。采用混凝土片模拟滨海构筑物,研究投加生物柴油及营养对石油污染物的去除效果。结果表明,施加生物柴油可以促进滨海构筑物上的石油进入水中,生物柴油施加量越大,构筑物上残余的石油量越小;同时施加生物柴油和营养能够促进海水中降解石油微生物的增殖和石油的降解;营养和微生物条件一致的情况下,投加2 mL和5 mL生物柴油的系统中石油的总去除率分别为37.5%和32.7%,表明生物柴油的投加量有一个适宜值。研究结果可为生物柴油-营养联合修复石油污染海岸带提供数据支持。  相似文献   

3.
针对柴油污染土壤生物修复技术效率低的问题,通过构建高效降解菌群修复柴油污染的土壤,采用组合优化和正交实验构建最佳组合与接种比例的菌群,并研究其柴油降解特性。结果表明,通过筛选、鉴定并命名的4株柴油降解菌为Bacillus sp. VOC18-L1、 Enterococcus faecalis-L2、 Lysinibacillus-L3、 Rhodococcus equi-L4;当4株菌接种比例为3∶1∶3∶4,pH=7.0,30℃,转速150 r·min~(-1)时,柴油降解的效果最佳,14 d对7.0 mL·L~(-1)的柴油降解率达到89.0%。通过气相色谱质谱联用仪(GC-MS)检测柴油降解产物,发现该混合菌株能将柴油中的烷烃降解为短链烷烃,最终转化为小分子物质。同时利用KEGG数据库获得代谢丰度图并初步预测每种菌的功能,根据微生物多样性测试结果,进一步证明了混合菌对柴油完全降解的效果优于单种菌种。通过人工构建的微生物菌群可以有效地应用于柴油污染土壤的修复。  相似文献   

4.
土壤柴油污染修复的抽气提取去除实验研究   总被引:2,自引:1,他引:1  
陈家军  田亮  李玮  金岚 《环境工程学报》2008,2(10):1416-1420
为得到土壤气相抽提(SVE)去除柴油的优化条件,进行了一维土柱抽气提取去除柴油污染物的实验研究,研究不同初始含水率、不同抽气量对污染土壤中柴油去除率的影响及不同深度残留柴油的变化规律。结果表明:在本实验模拟的范围内,抽气量越大,SVE处理效果越好;初始含水率越低,处理效果越好;此外,不同深度去除率变化的规律基本上是随深度的增大而减小。实验结果可为土壤轻油污染实际治理提供实验数据基础。  相似文献   

5.
生物修复剂在清除海滩石油污染中的应用   总被引:5,自引:0,他引:5  
介绍了生物修复石油污染海滩时常用的修复剂类型及其特点.当实验室环境条件能较好控制时,生物强化剂一般是有效的;然而污染现场得出的证据不能表明其对生物降解有促进作用.实验室和现场的研究均表明营养型生物促进剂能有效促进石油的生物降解.水溶性营养易被波浪和潮汐冲刷掉;缓释型营养盐面临的主要挑战是如何控制其释放速率,以保证孔隙水中能较长时间维持理想的营养浓度;亲油型肥料中含有有机碳,有可能在微生物降解石油之前被优先降解.建议根据污染环境的特点选用适合的生物促进剂.  相似文献   

6.
研究了生化黄腐酸(BFA)对污染水体生物修复的强化作用。生化黄腐酸能提高水体中微生物活性,加快微生物对目标污染物的降解。在污染水体生物修复强化作用的试验中,投加生化黄腐酸,CODCr、NH3-N、TP和浊度的去除率分别增加了29.47%、20.61%、35%和19.86%,同时有利于水体DO的提升。  相似文献   

7.
复合酶生物促进剂强化生物处理模拟PVA废水研究   总被引:1,自引:0,他引:1  
采用连续流活性污泥系统(以下简称系统)处理模拟聚乙烯醇(PVA)废水,对比了投加复合酶生物促进剂的加药系统与对照系统对PVA降解效果的差异,讨论了复合酶生物促进剂强化作用的原因,并通过动力学角度深入分析了PVA降解过程.结果表明,投加复合酶生物促进剂可以有效提高PVA的去除率.加药系统平均PVA去除率为94.4%,平均COD去除率为92.8%,较对照系统分别提高了2.1%和2.6%.模拟PVA废水在系统内的降解过程符合Monod模型,胞外聚合物降解PVA模拟废水遵循一级反应动力学.加药系统PVA半饱和常数和最大比降解速率为112.4 mg/L和0.589 h-1,对照系统PVA半饱和常数和最大比降解速率分别为142.6 mg/L和0.509 h-1.投加复合酶生物促进剂可以减少胞外聚合物糖类含量,强化PVA降解酶等胞外蛋白质的分泌.胞外聚合物构成的改变是复合酶生物促进剂强化生物降解模拟废水中PVA的根本原因.  相似文献   

8.
石油污染土壤的生物修复室内模拟实验研究   总被引:1,自引:0,他引:1  
在实验室模拟的条件下,利用从克拉玛依的石油污染土壤中筛选出的4株高效降解菌,以石油烃降解率、脱氢酶活性、呼吸强度、微生物量碳氮和土壤毒性作为评价指标,研究不加生物菌剂不翻耕、不加生物菌剂翻耕、加生物菌剂不翻耕、加生物菌剂翻耕、加固定化菌剂不翻耕和加固定化菌剂翻耕6种不同实验条件对石油污染土壤修复的效果。结果表明,在63 d的修复过程中,加固定化菌剂翻耕实验F组的石油去除率达到了78.7%,比不加生物菌剂不翻耕实验A组的石油去除率提高了49.5%。随着土壤毒性逐渐降低,玉米(Zea mays L.)和赤子爱胜蚓(Eisenia fetida)可以在F组土壤中良好的生长,达到了修复的效果。  相似文献   

9.
生物柴油萃取高浓度吡啶废水   总被引:1,自引:0,他引:1  
农药、医药等行业的生产过程中产生含有高浓度吡啶的废水,采用溶剂萃取法萃取废水中的吡啶既可改善废水的可生化性,又可实现吡啶的循环利用.实验以生物柴油为萃取剂,讨论了体系的pH值、温度、相比及时间等条件对萃取分配系数(D)及吡啶去除率的影响.结果表明,较为适宜吡啶萃取的条件是:萃取时间为30 min,pH值为6,温度为30℃,相比为1:1.在上述萃取条件下,生物柴油与吡啶水溶液进行六级错流萃取后,水中吡啶浓度从15%降至0.84%,吡啶去除率达到94.40%.  相似文献   

10.
生物强化技术提高SBR系统对低温苯胺废水处理能力的研究   总被引:3,自引:2,他引:1  
为了考察高效菌株生物强化效能,解决低温条件下含苯胺废水处理效果差的问题.选择实验室筛选的高效低温苯胺降解菌JH-9为研究对象,考察了其苯胺降解能力和絮凝特性,并采用生物强化的方法将其投加到SBR反应系统中,考察其对提高系统低温条件下(12℃)含苯胺废水的处理能力的改善.结果表明:JH-9细菌在初始苯胺浓度为250 ms/L的培养液中培养52 h,去除率可达100%,其对石化废水中的其他污染物也有一定的降解能力,并且具有产絮能力.将其应用于SBR的强化系统对提高系统低温条件下(12℃)对苯胺去除效果很有效,针对含有苯胺174 mg/L的石化废水,强化系统对苯胺的去除率达到97.8%.除此以外该菌对系统TOC的去除、污泥的MLSS、MLVSS、SV等指标均有一定改善,利于保证系统快速启动和稳定运行.  相似文献   

11.
鼠李糖脂对不同菌株降解柴油污染物的影响   总被引:1,自引:0,他引:1  
李玉瑛  李冰 《环境工程学报》2010,4(9):2088-2092
通过一系列实验分析了鼠李糖脂对柴油污染物生物降解的影响。单菌株柴油降解实验结果表明,在添加生物表面活性剂鼠李糖脂后,各菌株细胞表面疏水性均发生不同程度的增加,并且对柴油的降解率均有所提高。在混合菌的柴油污染物降解实验中,发现当向土壤中添加了200 mg/L鼠李糖脂时,对柴油的降解才有较大的提高;而当添加100 mg/L的鼠李糖脂到水体中时,对柴油的降解就有较大的提高,而当鼠李糖脂浓度提高为200 mg/L时,柴油的降解率却没有进一步明显的提高。这说明鼠李糖脂对柴油降解的影响程度不仅与环境介质有关,还与添加的鼠李糖脂浓度有关。进一步分析表明,添加适当浓度的鼠李糖脂不仅可以提高对柴油的降解率,而且可加速其降解速度,缩短生物修复所需时间。  相似文献   

12.
This study examined the efficiency of cotton grass fibers in removing diesel oil from the surface of water in conditions prevailing in the Baltic Sea. The effect of low temperature, salinity, and bacterial amendments were tested in laboratory-scale set-ups, whereas 600-L mesocosms filled with Baltic Sea water were used for testing the effects of diesel oil and rapid removal of the oil on microorganisms, phytoplankton, and mussels. Cotton grass proved to be an excellent sorbent for diesel oil from the water surface at a low temperature. Inoculation with diesel-enriched microorganisms enhanced degradation of oil significantly in laboratory-scale experiments. In mesocosm experiments, the addition of diesel oil (0.66 mg L(-1), 0.533 L m(-2)) to the basins resulted in higher microbial density than in all other basins, including inoculated ones, suggesting that the Baltic Sea contains indigenous hydrocarbon degraders. The removal of oil with cotton grass significantly improved the survival of mussels in the mesocosm tests: 100% mortality in diesel basins versus 0% mortality in basins with cotton grass, respectively. However, the surviving mussels suffered from histopathological changes such as inflammatory responses, degenerations, and cell death. The observed rescuing effect was observable even when the cotton grass-bound oil was left in the water. The results underline the importance of rapid action in limiting damage caused by oil spills.  相似文献   

13.
从广州石化污水处理厂废水中自行分离出 30株除油菌 ,用市售的 90 # 柴油作为油品进行筛选 ,所得菌种用于处理石化厂物理隔油后的废水。通过研究含油量和接种量对除油率、COD的去除率和pH值的影响以及酸、碱、盐对除油率和COD去除率的影响来比较这些菌种对石化废水的处理效果。结果表明 ,6 # 菌株除油和去除有机物的效果都比较好 ,除油率约在 70 %左右 ,最高为 83.6 7% ,COD去除率约为 5 5 %左右 ,最高为 6 0 .0 1% ;5 # 菌株对环境要求较高 ,在碱性环境下表现出较好的除油和去除有机物的能力 ,除油率和COD去除率分别为 5 5 %和 5 0 %左右。实验菌株在消除石化废水的异味方面也有一定的效果。  相似文献   

14.
ABSTRACT

Stationary diesel engines, especially diesel generators, are increasingly being used in both developing countries and developed countries because of increased power demand. Emissions from such engines can have adverse effects on the environment and public health. In this study, particulate emissions from a domestic stationary diesel generator running on ultra-low-sulfur diesel (ULSD) and biodiesel derived from waste cooking oil were characterized for different load conditions. Results indicated a reduction in particulate matter (PM) mass and number emissions while switching diesel to biodiesel. With increase in engine load, it was observed that particle mass increased, although total particle counts decreased for all the fuels. The reduction in total number concentration at higher loads was, however, dependent on percentage of biodiesel in the diesel-biodiesel blend. For pure biodiesel (B100), the reduction in PM emissions for full load compared to idle mode was around 9%, whereas for ULSD the reduction was 26%. A large fraction of ultrafine particles (UFPs) was found in the emissions from biodiesel compared to ULSD. Nearly 90% of total particle concentration in biodiesel emissions comprised ultrafine particles. Particle peak diameter shifted from a smaller to a lower diameter with increase in biodiesel percentage in the fuel mixture.

IMPLICATIONS There has been an increased usage of stationary diesel engines, especially backup power generators to meet the growing energy demand. Biodiesel derived from waste cooking oil has received increasing attention as an alternative fuel. However, data are only sparsely available in the literature on particulate emissions from stationary engines, fueled with blends of diesel and biodiesel. This study provides insights into the influence of waste-cooking-oil-derived biodiesel on engine performance and the particulate emissions from a stationary engine. The results of the study form a scientific basis to evaluate the impact of biodiesel emissions on the environment and human health.  相似文献   

15.
Guo R  Ebenezer V  Ki JS 《Chemosphere》2012,86(5):512-520
The designation of biodiesel as an environmental-friendly alternative to diesel oil has improved its commercialization and use. However, most biodiesel environmental safety studies refer to air pollution and so far there have been very few literature data about its impacts upon other biotic systems, e.g. water, and exposed organisms. Spill simulations in water were carried out with neat diesel and biodiesel and their blends aiming at assessing their genotoxic potentials should there be contaminations of water systems. The water soluble fractions (WSF) from the spill simulations were submitted to solid phase extraction with C-18 cartridge and the extracts obtained were evaluated carrying out genotoxic and mutagenic bioassays [the Salmonella assay and the in vitro MicroFlow® kit (Litron) assay]. Mutagenic and genotoxic effects were observed, respectively, in the Salmonella/microsome preincubation assay and the in vitro MN test carried out with the biodiesel WSF. This interesting result may be related to the presence of pollutants in biodiesel derived from the raw material source used in its production chain. The data showed that care while using biodiesel should be taken to avoid harmful effects on living organisms in cases of water pollution.  相似文献   

16.
Biodiesels are often marketed as being cleaner than regular diesel for emissions. Emission test results depend on the biodiesel blend, but laboratory tests suggest that biodiesels decrease particulate matter, carbon monoxide, hydrocarbons, and air toxins when compared to regular diesel. Results for the amount of oxides of nitrogen (NOx) have been less conclusive. Tests have also not evaluated the commonly available ranges of biodiesel blends in the laboratory. Additionally, little information is available from on-road studies, so the effectiveness of using biodiesels to reduce actual emissions is unknown. A more complex relationship exists between engine operation and the rate of emission production than is typically evaluated using engine or chassis dynamometer tests. On-road emissions can vary dramatically because emissions are correlated to engine mode. Additionally, activity such as idling, acceleration, deceleration, and operation against a grade can produce higher emissions than more stable engine operating modes. Because these modes are not well captured in a laboratory environment, understanding on-road relationships is critical in evaluating the emissions reductions that may be possible with biodiesels. More tests and quantifications of the effects of different blends on engine and vehicle performance are required to promote widespread use of biodiesel. The objective of this research was to conduct on-road tests to compare the emission impacts of different blends of biodiesel to regular diesel fuel under different operating conditions. The team conducted on-road tests that utilized a portable emissions monitoring system that was used to instrument transit buses. Regular diesel and different blends of biodiesel were evaluated during on-road engine operation by instrumenting three in-use transit buses, from the CyRide system of Ames, Iowa, along an existing transit route.  相似文献   

17.
Horel A  Schiewer S 《Chemosphere》2011,83(5):652-660
Bioremediation of sandy soil contaminated with fish-biodiesel, conventional diesel, and blends of both was studied in microcosm experiments at different temperatures, simulating the subarctic environment. While distinct lag, exponential, and stationary phases were observed at 20 °C, degradation at 6 °C was slow and the lag phase continued throughout the 4-week experiment. A three-phase 1st order kinetic model successfully described respiration at 20 °C, a one-phase model was sufficient at 6 °C. For temperatures fluctuating between ∼6 and ∼20 °C, higher than expected microbial activity persisted at 6 °C for several days, due to the presence of active cultures, even though the soil temperature closely followed the air temperature. At 20 °C, respiration peaked already after 1 week, and 18-51% of the initially added fuel was mineralized within 4 weeks, whereby degradation was higher at higher biodiesel percentages. Biodiesel addition accelerated mineralization of blends with regular diesel beyond expectations. In blends with 20% biodiesel, the degradation rate constant was twice as high as for conventional diesel. These synergistic effects are likely due to an active microbial population. Addition of biodiesel to conventional diesel could reduce the impact of diesel spills.  相似文献   

18.
The chemical speciation of the 16 polycyclic aromatic hydrocarbons associated to the particulate matter of conventional diesel fuel, rapeseed methyl esters, waste cooking oil methyl esters, waste cooking oil ethyl esters and their conventional fuel blends has been carried out. The speciation of these individual compounds was made by a combination of thermal extraction, solid phase micro-extraction and GC/MS analysis. This PAH speciation method was applied to a real samples obtained from a diesel engine under two different operating modes, urban and extraurban modes. The purpose of this work was to study the relationship between the amount, type and carcinogenic potency of polycyclic aromatic hydrocarbons in engine emissions and the multi-component biodiesel fuel composition.  相似文献   

19.
Bioremediation of coal tar PAH in soils using biodiesel   总被引:5,自引:0,他引:5  
Taylor LT  Jones DM 《Chemosphere》2001,44(5):1131-1136
The addition of biodiesel together with nitrate and phosphate to soil containing coal tar, in laboratory and field experiments, resulted in degradation of coal tar polycyclic aromatic hydrocarbons (PAH) that was not apparent when the nutrients alone were added. The addition of motor diesel fuel instead of biodiesel was also tested. Over the 55 days of the field and laboratory experiments, the biodiesel resulted in an increased degradation of naphthalene in the coal tar by 52% and 85%, respectively, and motor diesel resulted in increased depletions of 85% and 96%, respectively. Other PAH containing up to four rings were depleted to lesser extents. The increases in PAH biodegradation by the diesel treatments were ascribed to tar solubilisation and dispersion thereby increasing the PAH bioavailability. The ready biodegradability and low phytotoxicity of biodiesel suggest that it may be suitable as a novel treatment for the bioremediation of coal tar contaminated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号