首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many marine organisms have pelagic larval stages that settle into benthic habitats occupied by older individuals; however, a mechanistic understanding of intercohort interactions remains elusive for most species. Patterns of spatial covariation in the densities of juvenile and adult age classes of a small temperate reef fish, the common triplefin (Forsterygion lapillum), were evaluated during the recruitment season (Feb–Mar, 2011) in Wellington, New Zealand (41°17′S, 174°46′E). The relationship between juvenile and adult density among sites was best approximated by a dome-shaped curve, with a negative correlation between densities of juveniles and adults at higher adult densities. The curve shape was temporally variable, but was unaffected by settlement habitat type (algal species). A laboratory experiment using a “multiple-predator effects” design tested the hypothesis that increased settler mortality in the presence of adults (via enhanced predation risk or cannibalism) contributed to the observed negative relationship between juveniles and adults. Settler mortality did not differ between controls and treatments that contained either one (p = 0.08) or two (p = 0.09) adults. However, post hoc analyses revealed a significant positive correlation between the mean length of juveniles used in experimental trials and survival of juveniles in these treatments, suggesting that smaller juveniles may be vulnerable to cannibalism. There was no evidence for risk enhancement or predator interference when adults were present alongside a heterospecific predator (F. varium). These results highlight the complex nature of intercohort relationships in shaping recruitment patterns and add to the growing body of literature recognizing the importance of age class interactions.  相似文献   

2.
Four decades of observations on the limnology and fishes of Oneida Lake, New York, USA, provided an opportunity to investigate causes of mortality during winter, a period of resource scarcity for most juvenile fishes, in age-0 yellow perch (Perca flavescens) and age-0 white perch (Morone americana). This time series contains several environmental (e.g., winter severity) and biological (e.g., predator abundance) signals that can be used to disentangle multiple effects on overwinter mortality of these fishes. A multiple regression analysis indicated that age-0 yellow perch winter mortality was inversely related to fish length in autumn and to the abundance of alternative prey (gizzard shad [Dorosoma cepedianum] and white perch). However, no length-selective predation of yellow perch by one of the main predators, adult walleye (Sander vitreus), was detected. In contrast, white perch mortality was directly associated with total predator biomass and abundance of white perch in autumn, and inversely related to yellow perch abundance as a potential buffer species, but not to the abundance of gizzard shad. Winter severity was not a significant predictor of mortality for either perch species. Predicted winter starvation mortality, from a model described in the literature, was much lower than observed mortality for yellow perch. Similar models for white perch were correlated with observed mortality. These results collectively suggest that predation is the main mechanism shaping winter mortality of yellow perch, while both predation and starvation may be important for white perch. This analysis also revealed that gizzard shad buffer winter mortality of yellow perch. Although winter duration determines the northern limit of fish distributions, in mid-latitude Oneida Lake and for these species, predator-prey interactions seem to exert a greater influence on winter mortality than starvation.  相似文献   

3.
Pike DA  Pizzatto L  Pike BA  Shine R 《Ecology》2008,89(3):607-611
Survival rates of juvenile reptiles are critical population parameters but are difficult to obtain through mark-recapture programs because these small, secretive animals are rarely caught. This scarcity has encouraged speculation that survival rates of juveniles are very low, and we test this prediction by estimating juvenile survival rates indirectly. A simple mathematical model calculates the annual juvenile survival rate needed to maintain a stable population size, using published data on adult survival rates, reproductive output, and ages at maturity in 109 reptile populations encompassing 57 species. Counter to prediction, estimated juvenile survival rates were relatively high (on average, only about 13% less than those of conspecific adults) and highly correlated with adult survival rates. Overall, survival rates during both juvenile and adult life were higher in turtles than in snakes, and higher in snakes than in lizards. As predicted from life history theory, rates of juvenile survival were higher in species that produce large offspring, and higher in viviparous squamates than in oviparous species. Our analyses challenge the widely held belief that juvenile reptiles have low rates of annual survival and suggest instead that sampling problems and the elusive biology of juvenile reptiles have misled researchers in this respect.  相似文献   

4.
Mesograzers are thought to play a critical role in seagrass beds by preventing overgrowth of ephemeral algae. On the Swedish west coast, eelgrass Zostera marina has decreased in recent decades as a result of eutrophication and increased growth of macroalgal mats (mainly filamentous Ulva spp. and Ectocarpales), with no indication of grazer control of the algae. The aim of this study was to investigate the ability of the amphipod Gammarus locusta to control algal blooms during nutrient-enriched and ambient conditions, using a combination of laboratory, field and model studies. Laboratory experiments demonstrated that juvenile and adult G. locusta could consume both Ulva spp. and Ectocarpales, but that consumption of Ulva spp. was significantly higher. Cannibalism was common in individual treatments involving multiple size-classes of G. locusta, but only large, male gammarids consumed smaller juveniles in the presence of Ulva spp. as an alternative food source. However, no negative effects of cannibalism were found on total grazing impact. A model using size-specific grazing rates and growth rates of G. locusta and of Ulva spp. suggests that approximately 62 young juvenile, or 27 adult G. locusta are needed per gram DW of Ulva spp. to control the algal growth during ambient nutrient conditions, and approximately 2.6 times as many gammarids during enhanced nutrient conditions. On the Swedish west coast, densities and mean sizes of G. locusta in eelgrass beds are below these critical values, suggesting that the gammarids will not be able to control the growth of the filamentous macroalgae. However, in the field cage experiment, immigration of juveniles and reproduction of encaged adult G. locusta resulted in unexpectedly high densities of G. locusta (>4,000 individual m−2), and very low biomass of Ulva spp. in both ambient and nutrient-enriched treatments. Although the high numbers of juveniles in all cages precluded any significant treatment effects, this suggests that in the absent of predators, the population of G. locusta can grow significantly and control the biomass of Ulva spp. Furthermore, low grazing of Ectocarpales in the laboratory and high biomass of these filamentous brown algae in the field indicate a preference for the more palatable green algae Ulva spp. This study indicates that the high grazing capacity of G. locusta, in combination with high reproduction and growth rates, would allow the amphipod to play a key role in Z. marina ecosystems by controlling destructive blooms of filamentous green algae. However, high predation pressure appears to prevent large populations of G. locusta in eelgrass beds on the Swedish west coast today.  相似文献   

5.
The increase in the number of juveniles in a mammal population with a normally dispersed reproduction is simulated using a computer. The effect of juvenile mortality and its age-dependency on the recruitment curve is discussed. The maximum number of juveniles is reached before all juveniles are born. The ratio of the period of time between the beginning of the reproduction period and the maximum of juveniles and of births (the coefficient of reduction of the apparent reproduction period) is related to the juvenile mortality rate and the ratio of the maximum number of juveniles to the total number of births. These relationships can be used to estimate the total number of births and the juvenile mortality rate from a series of counts of the juveniles. The simulation model used is programmed in CSMP-III.  相似文献   

6.
Laboratory studies show that predatory cane toads (Bufo marinus) exhibit specialized toe-luring behavior that attracts smaller conspecifics, but field surveys of toad diet rarely record cannibalism. Our data resolve this paradox, showing that cannibalism is common under specific ecological conditions. In the wet–dry tropics of Australia, desiccation risk constrains recently metamorphosed toads to the edges of the natal pond. Juvenile toads large enough to consume their smaller conspecifics switch to a primarily cannibalistic diet (67% of prey biomass in stomachs of larger toads). Cannibalistic attack was triggered by prey movement, and (perhaps as an adaptive response to this threat) small (edible-sized) toads were virtually immobile at night (when cannibals were active). Smaller metamorphs were consumed more frequently than were larger conspecifics. The switch from insectivory to cannibalism reflects the high dry season densities of small conspecifics (in turn, due to desiccation-imposed constraints to dispersal) and the scarcity of alternative (insect) prey during dry weather. Our study pond (102 m in circumference) supported >400 juvenile toads, which consumed many metamorphs over the course of our study. Toads appear to be low-quality food items for other toads; in laboratory trials, juvenile toads that fed only on conspecifics grew less rapidly than those that ate an equivalent mass of insects. This effect was not due to parotoid gland toxins per se. Thus, cane toads switch to intensive cannibalism only when seasonal precipitation regimes increase encounter rates between large and small toads, while simultaneously reducing the availability of alternative prey.  相似文献   

7.
Abstract: Reintroduction of captive‐reared animals has become increasingly popular in recent decades as a conservation technique, but little is known of how demographic factors affect the success of reintroductions. We believe whether the increase in population persistence associated with reintroduction is sufficient to warrant the cost of rearing and relocating individuals should be considered as well. We examined the trade‐off between population persistence and financial cost of a reintroduction program for Crested Coots (Fulica cristata). This species was nearly extirpated from southern Europe due to unsustainable levels of hunting and reduction in amount and quality of habitat. We used a stochastic, stage‐based, single‐sex, metapopulation model with site‐specific parameters to examine the demographic effects of releasing juveniles or adults in each population for a range of durations. We parameterized the model with data from an unsuccessful reintroduction program in which juvenile captive‐bred Crested Coots were released between 2000 and 2009. Using economic data from the captive‐breeding program, we also determined whether the strategy that maximized abundance coincided with the least expensive strategy. Releasing adults resulted in slightly larger final abundance than the release of nonreproductive juveniles. Both strategies were equally poor in achieving a viable metapopulation, but releasing adults was 2–4 times more expensive than releasing juveniles. To obtain a metapopulation that would be viable for 30 years, fecundity in the wild would need to increase to the values observed in captivity and juvenile survival would need to increase to almost unity. We suggest that the most likely way to increase these vital rates is by increasing habitat quality at release sites.  相似文献   

8.
Growth rates of juvenile Capitella sp. I were determined on different rations of six food types: Gerber's mixed cereal, TetraMin fish flakes, benthic diatoms, Ulva sp., spring detritus, and summer detritus. A simple growth model estimated maximum growth rate and maintenance ration for each food. There were differences in the growth response among foods relative to nitrogen content. As juveniles increased in size, differences in growth between foods became more pronounced. For all juveniles, growth rates were correlated with levels of the amino acids histidine, phenylalanine, threonine, and valine, and the polyunsaturated fatty acid 20:5w3; correlations with histidine and phenylalanine levels were the most significant. Regressions of growth rates as a function of these two amino acids suggest a daily maintenance ration of 300 pg histidine and phenylalanine mg-1 nitrogen biomass. Juvenile worms grew on spring detritus but not on summer detritus, indicating the probable importance of micronutrients (polyunsaturated fatty acids, amino acids) for growth of juvenile Capitella sp. I in the field.  相似文献   

9.
Effective conservation of endangered species often is hampered by inadequate knowledge of demography. We extracted information on survival and fecundity from an 18-month, live-trapping study of Dipodomys stephensi , and from this we developed an age-structured demographic model to assess population viability. Adult Stephens' kangaroo rats persisted longer than juveniles, and adult females persisted longer than adult males. Disappearance rates were high in the first months after initial capture. Thereafter, the fraction of animals persisting decreased slowly and in an approximately linear fashion on a semilogarithmic scale, suggesting age-independent mortality factors such as predation. Juvenile persistence did not differ substantially between two years of strikingly different rainfall. Onset of breeding followed the start of winter rains. Length of the breeding season, average number of litters per female, and the fraction of first-year females breeding were much greater in the year of higher rainfall. We propose a birth-pulse demographic model for D. stephensi that distinguishes juvenile and adult age classes. Temporal environmental variation can be modeled adequately with a constant survivorship schedule and variable fecundity determined by yearly precipitation. Several issues should be resolved, however, before conservation decisions are based on the model. Better estimates of juvenile survivorship are critical, the quantitative relationship between precipitation and fecundity must be determined, and the potential for density dependence and source-sink population dynamics must be evaluated.  相似文献   

10.
The outcome of predator-prey interactions depends on the characteristics of predators and prey as well as the structure of the environment. In a replicated field enclosure experiment, we tested the effects of quantity and quality of different prey refuges (no structure, structure forming a partial refuge, and structure forming a complete refuge) on the interaction between piscivorous perch (Perca fluviatilis) and juvenile perch and roach (Rutilus rutilus). We quantified the behaviour of the predators and the prey and predator-induced prey mortality. The piscivores stayed in or close to the prey refuge and were more dispersed in the presence than in the absence of prey refuges. Survival of juvenile perch and roach decreased in the presence of predators and was higher for juvenile roach than for juvenile perch. In addition, juvenile perch survival increased with refuge efficiency Roach formed schools which were denser in the presence of predators, had a higher swimming speed (both in the open water and in the refuge) and used a larger area than juvenile perch. Both prey species decreased their distance to the prey refuge and increased the proportion of their time spent in the refuge in the presence of predators. The number of switches between the open-water habitat and the prey refuge was higher for juvenile roach than for juvenile perch. Juvenile perch used different parts of the prey refuge in a flexible way depending both on presence of predators and refuge type whereas juvenile roach used the different parts of the prey refuge in fixed proportions over all refuge treatments. Our results suggest that juvenile roach had a overall higher capacity to avoid predation than juvenile perch. However, in the presence of qualitatively different prey refuges juvenile perch responded to predators with more flexible refuge use than juvenile roach. The differences in antipredator capacities of juvenile perch and roach when subjected to piscivorous perch predation may depend on differences in life history patterns of the two species.  相似文献   

11.
The dependency of in situ weight-specific fecundity of adult females (as egg production) and growth of juveniles (as somatic production) upon individual body weight in marine planktonic copepods was examined. A compilation was made of results where wild-caught individuals were incubated in natural seawater (often pre-screened to remove large organisms), at near in situ temperatures, over short periods of the order of 24 h. The results demonstrate that for the adult broadcast-spawning group weight-specific fecundity rates are dependent upon body weight, but independent of temperature. We postulate this may be the result of global patterns in available phytoplankton. Weight-specific growth rates are dependent upon individual temperature and body weight in juvenile broadcast-spawners, with rates declining as body weight increases. Sac-spawners have growth/fecundity rates that are independent of body weight in adults, juveniles, and both combined, but which are temperature-dependent. Globally applicable equations are derived which may be used to predict growth and production of marine copepods using easily quantifiable parameters, namely size-distributed biomass and temperature. Some of the variability in growth which remained unaccounted for is the result of variations in food quantity and quality in the natural environment. Comparisons of the rates compiled here over the temperature range 10 to 20 °C with previously compiled food-saturated rates over the same temperature interval, revealed that in situ rates are typically sub-optimal. Adults appear to be more food-limited than juveniles, adult rates in situ being 32 and 40% of those under food saturation in broadcasters and sac-spawners, respectively, while juvenile in situ rates are on average ∼70% of those at food saturation in both broadcasters and sac-spawners. Received: 18 September 1997 / Accepted: 13 May 1998  相似文献   

12.
Rudolf VH 《Ecology》2007,88(12):2991-3003
Cannibalistic and asymmetrical behavioral interactions between stages are common within stage-structured predator populations. Such direct interactions between predator stages can result in density- and trait-mediated indirect interactions between a predator and its prey. A set of structured predator-prey models is used to explore how such indirect interactions affect the dynamics and structure of communities. Analyses of the separate and combined effects of stage-structured cannibalism and behavior-mediated avoidance of cannibals under different ecological scenarios show that both cannibalism and behavioral avoidance of cannibalism can result in short- and long-term positive indirect connections between predator stages and the prey, including "apparent mutualism." These positive interactions alter the strength of trophic cascades such that the system's dynamics are determined by the interaction between bottom-up and top-down effects. Contrary to the expectation of simpler models, enrichment increases both predator and prey abundance in systems with cannibalism or behavioral avoidance of cannibalism. The effect of behavioral avoidance of cannibalism, however, depends on how strongly it affects the maturation rate of the predator. Behavioral interactions between predator stages reduce the short-term positive effect of cannibalism on the prey density, but can enhance its positive long-term effects. Both interaction types reduce the destabilizing effect of enrichment. These results suggest that inconsistencies between data and simple models can be resolved by accounting for stage-structured interactions within and among species.  相似文献   

13.
We used population models to explore the effects of the organochlorine contaminant p,p'-DDE and fluctuations in vole availability on the population dynamics of Burrowing Owls (Athene cunicularia). Previous work indicated an interaction between low biomass of voles in the diet and moderate levels of p,p'-DDE in Burrowing Owl eggs that led to reproductive impairment. We constructed periodic and stochastic matrix models that incorporated three vole population states observed in the field: average, peak, and crash years. We modeled varying frequencies of vole crash years and a range of impairment of owl demographic rates in vole crash years. Vole availability had a greater impact on owl population growth rate than did reproductive impairment if vole populations peaked and crashed frequently. However, this difference disappeared as the frequency of vole crash years declined to once per decade. Fecundity, the demographic rate most affected by p,p'-DDE, had less impact on population growth rate than adult or juvenile survival. A life table response experiment of time-invariant matrices for average, peak, and crash vole conditions showed that low population growth under vole crash conditions was due to low adult and juvenile survival rates, whereas the extremely high population growth under vole peak conditions was due to increased fecundity. Our results suggest that even simple models can provide useful insights into complex ecological interactions. This is particularly valuable when temporal or spatial scales preclude manipulative experimental work in the field or laboratory.  相似文献   

14.
Ecological theory for long-distance avian migration considers time-, energy-, and mortality-minimizing tactics, but predictions about the latter have proven elusive. Migrants must make behavioral decisions that can favor either migratory speed or safety from predators, but often not both. We compare the behavior of adult and juvenile western sandpipers Calidris mauri during the course of their temporally segregated passages at a major stopover site. Here, the passage and winter arrival of an important predator, the peregrine falcon Falco peregrinus begins near the end of the adult sandpiper passage (July) and increases rapidly through the juvenile passage (August). The mortality-minimizing hypothesis predicts that as the falcon front is distant but approaching, sandpipers should initially increase the fuel-loading rate (lowered vigilance and predator apprehension) to increase migration speed and so maintain their head start. As the falcon front gains proximity to and passes over the stopover site, sandpipers should become increasingly cautious. Our measurements show that adults decreased vigilance during the period prior to falcon arrival, and had lower vigilance overall than juveniles. Juveniles were more apprehensive, flying further and longer in response to disturbance by a falcon silhouette. This trend was reversed in response to a human approach. Both groups were more vigilant and more apprehensive in a study year with earlier falcon arrival. These results suggest that late (juvenile) and early (adult) migrants minimize mortality on migration in different ways, adults by increased migratory speed at the expense of caution on stopover sites, and juveniles by increased caution at the expense of speed.  相似文献   

15.
White JW  Warner RR 《Ecology》2007,88(12):3044-3054
In coral reef fishes, density-dependent population regulation is commonly mediated via predation on juveniles that have recently settled from the plankton. All else being equal, strong density-dependent mortality should select against the formation of high-density aggregations, yet the juveniles of many reef fishes aggregate. In light of this apparent contradiction, we hypothesized that the form and intensity of density dependence vary with the spatial scale of measurement. Individual groups might enjoy safety in numbers, but predators could still produce density-dependent mortality at larger spatial scales. We investigated this possibility using recently settled juvenile bluehead wrasse, Thalassoma bifasciatum, a small, aggregating reef fish. An initial caging experiment demonstrated that juvenile bluehead wrasse settlers suffer high predation, and spatial settlement patterns indicated that bluehead wrasse juveniles preferentially settle in groups, although they are also found singly. We then monitored the mortality of recently settled juveniles at two spatial scales: microsites, occupied by individual fish or groups of fish and separated by centimeters, and sites, consisting of approximately 2400-m2 areas of reef and separated by kilometers. At the microsite scale, we measured group size and effective population density independently and found that per capita mortality decreased with group size but was not related to density. At the larger spatial scale, however, per capita mortality increased with settler density. This shift in the form of density dependence with spatial scale could reconcile the existence of small-scale aggregative behavior typical of many reef fishes with the population-scale density dependence that is essential to population stability and persistence.  相似文献   

16.
Precopulatory sexual cannibalism (predation of a potential mate prior to copulation) offers an extreme example of intersexual conflict, a current focus in behavioral ecology. The aggressive-spillover hypothesis, posits that precopulatory sexual cannibalism may be a nonadaptive by-product of a general syndrome of voracity (aggression towards prey) that is expressed in multiple behavioral contexts. In this view, selection favoring high levels of voracity throughout ontogeny spills over to cause sexual cannibalism in adult females even when it is not necessarily beneficial. Using the North American fishing spider, Dolomedes triton, we present the first in depth test of this hypothesis. We found support for three aspects of the spillover hypothesis. First, voracity towards hetero-specific prey results in high feeding rates, large adult size, and increased fecundity. Second, juvenile and adult voracity are positively correlated (i.e., voracity is a consistent trait over ontogeny). Third, voracity towards hetero-specific prey is indeed positively correlated with precopulatory sexual cannibalism. Assays of antipredator behavior further revealed positive correlations between boldness towards predators, voracity and precopulatory sexual cannibalism. Overall, our results support the notion that precopulatory sexual cannibalism in D. triton is part of a behavioral syndrome spanning at least three major contexts: foraging, predator avoidance, and mating.  相似文献   

17.
Summary Observations of resting groups of African penguins Spheniscus demersus on land showed that adults were more aggressive towards juveniles than towards adults. Head coloration was important in triggering this aggression. Adults probably discriminate against juveniles to exclude inexperienced birds from co-operative feeding groups and thus maximize their own energetic returns. There was a disproportionately low frequency of penguin groups at sea containing both adult and juvenile birds. Almost a quarter of juvenile penguins moulted a variable amount of their heads into adult plumage at sea. This reduced the amount of aggression received in proportion to the degree of head moult. Head moult probably occurs in only the fittest juveniles. Birds which moult can join adult feeding groups where communal feeding enhances success. The costs of moulting at sea prevent the occurrence of head moulting in the entire population of juveniles.  相似文献   

18.
C. J. Hurlbut 《Marine Biology》1991,109(3):507-515
Recruitment of a group of co-occurring sessile invertebrates (a serpulid polychaete, an oyster, a bryozoan, and several colonial and one solitary ascidian) that encrust floating docks in Pearl Harbor, Hawaii, was studied in August 1985. Daily photographs were taken of acrylic settling plates over a 14 d period, and daily settlement and juvenile mortality were measured. Settlement rates were compared between species and days, while juvenile mortalities were compared between species, days, juvenile ages and densities of juveniles on the plates. Species differed in abundance of both settlers and juveniles, and in rate and pattern of juvenile mortality. Settlement intensity varied between days for some species. Significant juvenile mortality occurred during the 14 d for most species; it appeared to be caused by fish predation. For two species, mortality varied with juvenile age, with older individuals suffering higher mortality. Mortality was density-dependent for some species, increasing with numbers of juveniles on the plates. Mortality patterns varied even within the colonial species. Assessing larval settlement and juvenile mortality for a single species or type of organism in a community thus may not indicate that similar patterns exist for co-occurring species.  相似文献   

19.
Summary In a laboratory experiment it was shown that piscivorous predators reversed the outcome of competitive interactions between two fish prey species, juveniles of roach (Rutilus rutilus) and perch (Perca fluviatilis), by behaviorally affecting their use of two available habitats, an open water habitat and a structurally complex refuge. The shift in the competitive relationship was the result of predators forcing the juvenile fishes into a prey refuge with high structural complexity. While roach was competitively superior in the unstructured habitat, perch was superior in the structurally complex prey refuge. The reversal in competitive relationship was demonstrated both with respect to foraging rate and growth rate and resulted from the high structural complexity in the prey refuge interfering with the roach's swimming performance. Because survival and growth patterns through the juvenile stages have profound effects on the population/community dynamics of size-structured populations such as those of fish, behaviorally induced changes in competitive ability should have significant implications also at the population and community levels.  相似文献   

20.
Yoo HJ 《Ecology》2006,87(3):634-647
In spatially heterogeneous systems, utilizing population models to integrate the effects of multiple population rates can yield powerful insights into the relative importance of the component rates. The relative importance of demographic rates and dispersal in shaping the distribution of the western tussock moth (Orgyia vetusta) among patches of its host plant was explored using stage-structured population models. Tussock moth dispersal occurs passively in first-instar larvae and is poor or absent in all other life stages. Spatial surveys suggested, however, that moth distribution is not well explained by passive dispersal; moth populations were greater on small patches and on isolated ones. Further analysis showed that several local demographic rates varied significantly with patch characteristics. Two mortality factors in particular may explain the observed patterns. First, crawler mortality both increased with patch size and was density-dependent. A single-patch difference equation model showed mortality related to patch size is strong enough to overcome the homogenizing effect of density dependence; greater equilibrium densities were predicted for smaller patches. Second, although three rates were found to vary with local patch density, only pupal parasitism by a chalcid wasp could potentially account for higher moth abundances on isolated patches. A spatially explicit simulation model of the multiple-patch system showed that spatial variation in pupal parasitism is indeed strong enough to generate such a pattern. These results demonstrate that habitat spatial structure can affect multiple population processes simultaneously, and even relatively low attack rates imposed on a reproductively valuable life stage of the host can have a dominant effect on population distribution among habitat patches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号