首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A. M. Fowler  D. J. Booth 《Marine Biology》2012,159(12):2787-2796
The amount of artificial habitat (termed ??artificial reef??, AR) in marine systems is rapidly increasing, yet the effect of most types of AR on reef communities remains unknown. We examined the role of well-established vessel-reefs in structuring coral reef fish assemblages by comparing assemblages on 7 World War II wrecks (>65?years old) to those on interspersed coral patch reefs of comparable size in a tropical lagoon. Fish abundance, species richness, diversity and feeding guild structure on wrecks were similar to natural reefs; however, species composition differed between the two reef types (R?=?0.189?C0.341, average dissimilarity: 67.3?C68.8?%). Despite being more species-rich and diverse, fish assemblages on larger wrecks were less similar to assemblages on their adjacent natural reefs than smaller wrecks. Wrecks may also have affected fish abundance on adjacent natural reefs, with reefs adjacent to larger wrecks supporting higher abundances than reefs adjacent to smaller wrecks. Our results indicate that increases in vessel-reef habitat may not greatly affect reef fish assemblage parameters, but may affect the relative abundances of particular species.  相似文献   

2.
Bonin MC  Almany GR  Jones GP 《Ecology》2011,92(7):1503-1512
Disturbance can result in the fragmentation and/or loss of suitable habitat, both of which can have important consequences for survival, species interactions, and resulting patterns of local diversity. However, effects of habitat loss and fragmentation are typically confounded during disturbance events, and previous attempts to determine their relative significance have proved ineffective. Here we experimentally manipulated live coral habitats to examine the potential independent and interactive effects of habitat loss and fragmentation on survival, abundance, and species richness of recruitment-stage, coral-associated reef fishes. Loss of 75% of live coral from experimental reefs resulted in low survival of a coral-associated damselfish and low abundance and richness of other recruits 16 weeks after habitat manipulations. In contrast, fragmentation had positive effects on damselfish survival and resulted in greater abundance and species richness of other recruits. We hypothesize that spacing of habitat through fragmentation weakens competition within and among species. Comparison of effect sizes over the course of the study period revealed that, in the first six weeks following habitat manipulations, the positive effects of fragmentation were at least four times stronger than the effects of habitat loss. This initial positive effect of fragmentation attenuated considerably after 16 weeks, whereas the negative effects of habitat loss increased in strength over time. There was little indication that the amount of habitat influenced the magnitude of the habitat fragmentation effect. Numerous studies have reported dramatic declines in coral reef fish abundance and diversity in response to disturbances that cause the loss and fragmentation of coral habitats. Our results suggest that these declines occur as a result of habitat loss, not habitat fragmentation. Positive fragmentation effects may actually buffer against the negative effects of habitat loss and contribute to the resistance of reef fish populations to declines in coral cover.  相似文献   

3.
Cost-effective proxies of biodiversity and species abundance, applicable across a range of spatial scales, are needed for setting conservation priorities and planning action. We outline a rapid, efficient, and low-cost measure of spectral signal from digital habitat images that, being an effective proxy for habitat complexity, correlates with species diversity and requires little image processing or interpretation. We validated this method for coral reefs of the Great Barrier Reef (GBR), Australia, across a range of spatial scales (1 m to 10 km), using digital photographs of benthic communities at the transect scale and high-resolution Landsat satellite images at the reef scale. We calculated an index of image-derived spatial heterogeneity, the mean information gain (MIG), for each scale and related it to univariate (species richness and total abundance summed across species) and multivariate (species abundance matrix) measures of fish community structure, using two techniques that account for the hierarchical structure of the data: hierarchical (mixed-effect) linear models and distance-based partial redundancy analysis. Over the length and breadth of the GBR, MIG alone explained up to 29% of deviance in fish species richness, 33% in total fish abundance, and 25% in fish community structure at multiple scales, thus demonstrating the possibility of easily and rapidly exploiting spatial information contained in digital images to complement existing methods for inferring diversity and abundance patterns among fish communities. Thus, the spectral signal of unprocessed remotely sensed images provides an efficient and low-cost way to optimize the design of surveys used in conservation planning. In data-sparse situations, this simple approach also offers a viable method for rapid assessment of potential local biodiversity, particularly where there is little local capacity in terms of skills or resources for mounting in-depth biodiversity surveys.  相似文献   

4.
The architectural complexity of ecosystems can greatly influence their capacity to support biodiversity and deliver ecosystem services. Understanding the components underlying this complexity can aid the development of effective strategies for ecosystem conservation. Caribbean coral reefs support and protect millions of livelihoods, but recent anthropogenic change is shifting communities toward reefs dominated by stress-resistant coral species, which are often less architecturally complex. With the regionwide decline in reef fish abundance, it is becoming increasingly important to understand changes in coral reef community structure and function. We quantify the influence of coral composition, diversity, and morpho-functional traits on the architectural complexity of reefs across 91 sites at Cozumel, Mexico. Although reef architectural complexity increases with coral cover and species richness, it is highest on sites that are low in taxonomic evenness and dominated by morpho-functionally important, reef-building coral genera, particularly Montastraea. Sites with similar coral community composition also tend to occur on reefs with very similar architectural complexity, suggesting that reef structure tends to be determined by the same key species across sites. Our findings provide support for prioritizing and protecting particular reef types, especially those dominated by key reef-building corals, in order to enhance reef complexity.  相似文献   

5.
6.
Visual assessments of topographic habitat structure and benthos on coral reefs were appraised using quantitative data collected from 16 replicate surveys within each of 21 sites on Seychelles reefs. Results from visual assessments of reef benthos were similar to those obtained using techniques frequently used to assess benthic complexity and composition. Visual estimates of habitat topography were correlated with rugosity, reef height and holes of 10–70 cm diameter, whilst visual estimates of benthic composition were very similar to those obtained from line intercept transects. Visual estimates of topography correlated strongly with species richness of fish communities and explained 42% of the variation in these data. The relationship between visual estimates of topography and species richness is strongest with fish 10–30 cm total length (TL), abundance of fish within this size category also correlating positively with topographic visual assessments. Visual techniques are prone to observer bias, however with regular training they can be used to quickly provide a reliable and effective means of assessing habitat complexity and benthos on coral reefs.  相似文献   

7.
Mellin C  Huchery C  Caley MJ  Meekan MG  Bradshaw CJ 《Ecology》2010,91(11):3138-3145
Temporal variance in species abundance, a potential driver of extinction, is linked to mean abundance through Taylor's power law, the empirical observation of a linear log-log relationship with a slope between 1 and 2 for most species. Here we test the idea that the slope of Taylor's power law can vary both among species and spatially as a function of habitat area and isolation. We used the world's most extensive database of coral reef fish communities comprising a 15-year series of fish abundances on 43 reefs of Australia's Great Barrier Reef. Greater temporal variances were observed at small and isolated reefs, and lower variances at large and connected ones. The combination of reef area and isolation was associated with an even greater effect on temporal variances, indicating strong empirical support for the idea that populations on small and isolated reefs will succumb more frequently to local extinction via higher temporal variability, resulting in lower resilience at the community level. Based on these relationships, we constructed a regional predictive map of the dynamic fragility of coral reef fish assemblages on the Great Barrier Reef.  相似文献   

8.
The aim of the study was to provide comparable estimates of abundance of herbivorous reef fishes at temperate and tropical localities using a standardized methodology. Faunas of herbivorous fish were sampled on the rocky reefs of temperate northern New Zealand and on the coral reefs of the northern Great Barrier Reef (GBR), Australia, and the San Blas Archipelago in the Caribbean. A pilot study established the most appropriate habitat setting and the scale and magnitude of replication for the sampling program in temperate waters. Herbivorous fishes, including members of families endemic to the southern hemisphere (Odacidae and Aplodactylidae), were most abundant in turbulent, shallow water (0 to 6 m) and had patchy distributions within this habitat. A hierarchical sampling program using 10-min transect counts within the 0 to 6 m depth stratum examined abundance patterns at a range of spatial scales including mainland and island coasts, localities separated by up to 100 km and sites separated by up to 10 km. This program identified a characteristic fauna of seven species of herbivorous fishes with mean total abundances ranging from 23 to 30 individuals per 10-min transect. Species composition of the fauna varied between islands and coasts. A similar methodology was used to sample the major families of herbivorous fish in a number of sites in each of the tropical regions. These sampling programs revealed a fauna dominated by acanthurids and scarids in both the GBR and Caribbean localities. Estimates of abundance from these regions were similar, with a mean of 108 individuals recorded on the GBR and 129 per 10-min transect in the Caribbean. Species richness varied between each region, with 44 taxa recorded from the GBR and 11 from the Caribbean. Abundances of temperate water herbivores in New Zealand were found to be 75 to 80% lower than those recorded from shallow water habitats sampled on coral reefs. This was not related to species richness, since both New Zealand and the Caribbean locality had patterns of low richness. We suggest that the differences in abundance found by our study between temperate and tropical regions are not restricted to herbivorous fishes, but are representative of general latitudinal trends in reef fish faunas. Received: 4 November 1996 / Accepted: 15 December 1996  相似文献   

9.
Despite the rapid rate of human-induced species losses, the relative influence of natural and anthropogenic factors on the functional diversity of species assemblages remains unknown for most ecosystems. A model was previously developed to predict the diversity structure of coral reef fish assemblages in 10 atolls of low human pressure and contrasting morphology of the Tuamotu Archipelago (French Polynesia). This existing model predicted smoothed histograms (spectra) of species richness according to size classes, diet classes and life-history classes of fish assemblages using a combination of environmental characteristics at different spatial scales. The present study applied the model to Tikehau, another atoll of the same archipelago where commercial fishing is practiced and where the same sampling strategy was reproduced. Significant differences appeared between predicted and observed species richness in several size, diet and life-history classes of fish assemblages in Tikehau. Two parameters which were not accounted for in the initial model, i.e. fishing pressure and atoll position within the archipelago, explained together 63% of variance in model residuals, >60% being explained by fishing pressure only. The respective effects of fishing and atoll position on the diversity of coral reef fish assemblages are discussed, with the potential of such modelling approach to assess the relative importance of factors affecting functional diversity within communities.  相似文献   

10.
A simple field technique to obtain a gross estimate of the surface area of a quadrat on a coral reef is described. This measure, termed the substrate rugosity index, was determined, in conjunction with two other substrate variables (vertical relief and coral species richness), in a series of 4 quadrats (10 to 40 m depth) along 4 transects. The mean substrate rugosity and vertical relief of a quadrat were highly correlated. A correlation analysis was made of the substrate variables and several reef fish community parameters (species richness, number of fishes and diversity). Species richness was highly correlated with substrate rugosity. This relationship was tested in two experimental quadrats and the results were generally in accord with those predicted. Stratification of the fish communities by body size revealed that the correlation with substrate rugosity was scale-dependent. The fish community parameters were poorly correlated with percentage substrate cover by corals (ramose and glomerate) and by sand. A significant area effect was determined for two species of sand-dwelling goby.  相似文献   

11.
Cornell HV  Karlson RH  Hughes TP 《Ecology》2007,88(7):1707-1715
Community similarity is the proportion of species richness in a region that is shared on average among communities within that region. The slope of local richness (alpha diversity) regressed on regional richness (gamma diversity) can serve as an index of community similarity across regions with different regional richness. We examined community similarity in corals at three spatial scales (among transects at a site, sites on an island, and islands within an island group) across a 10 000-km longitudinal diversity gradient in the west-central Pacific Ocean. When alpha diversity was regressed on gamma diversity, the slopes, and thus community similarity, increased with scale (0.085, 0.261, and 0.407, respectively) because a greater proportion of gamma diversity was subsumed within alpha diversity as scale increased. Using standard randomization methods, we also examined how community similarity differed between observed and randomized assemblages and how this difference was affected by spatial separation of species within habitat types and specialization of species to three habitat types (reef flats, crests, and slopes). If spatial separation within habitat types and/or habitat specialization (i.e., underdispersion) occurs, fewer species are shared among assemblages than the random expectation. When the locations of individual coral colonies were randomized within and among habitat types, community similarity was 46-47% higher than that for observed assemblages at all three scales. We predicted that spatial separation of coral species within habitat types should increase with scale due to dispersal/extinction dynamics in this insular system, but that specialization of species to different habitat types should not change because habitat differences do not change with scale. However, neither habitat specialization nor spatial separation within habitat types differed among scales. At the two larger scales, each accounted for 22-24% of the difference in community similarity between observed and randomized assemblages. At the smallest scale (transect-site), neither spatial separation within habitat types nor habitat specialization had significant effects on community similarity, probably due to the small size of transect samples. The results suggest that coral species can disperse among islands in an island group as easily as they can among sites on an island over time scales that are relevant to their establishment and persistence on reefs.  相似文献   

12.
Understanding whether assemblages of species respond more strongly to bottom-up (availability of trophic resources or habitats) or top-down (predation pressure) processes is important for effective management of resources and ecosystems. We determined the relative influence of environmental factors and predation by humans in shaping the density, biomass, and species richness of 4 medium-bodied (10–40 cm total length [TL]) coral reef fish groups targeted by fishers (mesopredators, planktivores, grazer and detritivores, and scrapers) and the density of 2 groups not targeted by fishers (invertivores, small fish ≤10 cm TL) in the central Philippines. Boosted regression trees were used to model the response of each fish group to 21 predictor variables: 13 habitat variables, 5 island variables, and 3 fishing variables (no-take marine reserve [NTMR] presence or absence, NTMR size, and NTMR age). Targeted and nontargeted fish groups responded most strongly to habitat variables, then island variables. Fishing (NTMR) variables generally had less influence on fish groups. Of the habitat variables, live hard coral cover, structural complexity or habitat complexity index, and depth had the greatest effects on density, biomass, and species richness of targeted fish groups and on the density of nontargeted fishes. Of the island variables, proximity to the nearest river and island elevation had the most influence on fish groups. The NTMRs affected only fishes targeted by fishers; NTMR size positively correlated with density, biomass, and species richness of targeted fishes, particularly mesopredatory, and grazing and detritivorous fishes. Importantly, NTMRs as small as 15 ha positively affected medium-bodied fishes. This finding provides reassurance for regions that have invested in small-scale community-managed NTMRs. However, management strategies that integrate sound coastal land-use practices to conserve adjacent reef fish habitat, strategic NTMR placement, and establishment of larger NTMRs will be crucial for maintaining biodiversity and fisheries.  相似文献   

13.
Benthic habitats are known to influence the abundance and richness of demersal fish assemblages; however, little is known about how habitat structure and composition influences these distributions at very fine scales. We examined how the benthic environment structures marine fish assemblages using high-resolution bathymetry and accurate predicted benthic habitat maps. Areas characterised by a mosaic of habitat patches supported the highest richness of demersal fishes. A total of 37.4% of the variation in the distribution of the fish assemblage was attributed to 6 significant variables. Depth explained 23.0% of the variation, with the boulders explaining 12.6% and relief 1.4%. The remaining measures (seawhips, light/exposure and solid reef) provided a small (<1.0%) but significant contribution. Identifying components of the benthic environment important in structuring fish assemblages and understanding how they influence the spatial distribution of marine fishes is imperative for better management of demersal fish populations.  相似文献   

14.
Ecological theory predicts that habitat generalists are less prone to decline or extinction in response to habitat disturbance than habitat specialists. One mechanism that may afford habitat generalists greater persistence is their ability to successfully emigrate from degrading environments. This study compared the response of habitat specialist and generalist reef fish species to live coral disturbance. In replicate coral colonies, live coral was experimentally degraded (low, medium and high coral loss). Species continued residence within the colonies was then surveyed over time. In addition, the ability of habitat generalist and specialist species to migrate between degraded (100% loss) and live coral colonies was compared. Habitat specialists exhibited a higher propensity to remain in colonies with low levels of coral loss. However, there was no significant difference between specialist and generalist species in continued residence in habitats with either medium or high levels of coral loss; both functional groups showed low levels of residence. In terms of migration success, generalists moved further than specialists and showed higher levels of successful migration over the majority of distances examined. The influence of habitat specialization on the behavioral response to coral loss may be a useful predictor of changes to coral reef fish communities in response to coral disturbance.  相似文献   

15.
Abstract:  Recent episodes of coral bleaching have led to wide-scale loss of reef corals and raised concerns over the effectiveness of existing conservation and management efforts. The 1998 bleaching event was most severe in the western Indian Ocean, where coral declined by up to 90% in some locations. Using fisheries-independent data, we assessed the long-term impacts of this event on fishery target species in the Seychelles, the overall size structure of the fish assemblage, and the effectiveness of two marine protected areas (MPAs) in protecting fish communities. The biomass of fished species above the size retained in fish traps changed little between 1994 and 2005, indicating no current effect on fishery yields. Biomass remained higher in MPAs, indicating they were effective in protecting fish stocks. Nevertheless, the size structure of the fish communities, as described with size-spectra analysis, changed in both fished areas and MPAs, with a decline in smaller fish (<30 cm) and an increase in larger fish (>45 cm). We believe this represents a time-lag response to a reduction in reef structural complexity brought about because fishes are being lost through natural mortality and fishing, and are not being replaced by juveniles. This effect is expected to be greater in terms of fisheries productivity and, because congruent patterns are observed for herbivores, suggests that MPAs do not offer coral reefs long-term resilience to bleaching events. Corallivores and planktivores declined strikingly in abundance, particularly in MPAs, and this decline was associated with a similar pattern of decline in their preferred corals. We suggest that climate-mediated disturbances, such as coral bleaching, be at the fore of conservation planning for coral reefs.  相似文献   

16.
Quantifying the distribution and habitat use of sharks is critical for understanding their ecological role and for establishing appropriate conservation and management regimes. On coral reefs, particularly the Great Barrier Reef (GBR), little is known regarding the distribution of sharks across major reef habitat types. In this study, we surveyed shark populations across outer-shelf reefs of the GBR in order to determine the diversity, abundance, and distribution of reef sharks across three major coral reef habitats: (1) the reef slope, (2) the back reef and (3) the reef flat. Model selection revealed that habitat was the principal factor influencing shark distribution and abundance. Specifically, overall shark abundance and diversity were significantly higher on the reef slope (and to a lesser degree, the back reef) than the reef flat. This confirms that shark populations are not homogeneously distributed across coral reefs. Thus, the results presented herein have important implications for shark population assessments. In addition, our results highlight the potential importance of the reef slope, with high levels of live coral cover and structural complexity, for sustaining reef shark populations. As this habitat is highly susceptible to disturbance events, this study provides a useful context for predicting and understanding how environmental degradation may influence reef shark populations in the future.  相似文献   

17.
Belmaker J  Ziv Y  Shashar N  Connolly SR 《Ecology》2008,89(10):2829-2840
The size of the regional species pool may influence local patterns of diversity. However, it is unclear whether certain spatial scales are less sensitive to regional influences than others. Additive partitioning was used to separate coral-dwelling fish diversity to its alpha and beta components, at multiple scales, in several regions across the Indo-Pacific. We then examined how the relative contribution of these components changes with increased regional diversity. By employing specific random-placement null models, we overcome methodological problems with local-regional regressions. We show that, although alpha and beta diversities within each region are consistently different from random-placement null models, the increase in beta diversities among regions was similar to that predicted once heterogeneity in coral habitat was accounted for. In contrast, alpha diversity within single coral heads was limited and increased less than predicted by the null models. This was correlated with increased intraspecific aggregation in more diverse regions and is consistent with ecological limitations on the number of coexisting species at the local scale. These results suggest that, apart from very small spatial scales, variation in the partitioning of fish diversity along regional species richness gradients is driven overwhelmingly by the corresponding gradients in coral assemblage structure.  相似文献   

18.
Coral reef fisheries are crucial to the livelihoods of tens of millions of people; yet, widespread habitat degradation and unsustainable fishing are causing severe depletion of stocks of reef fish. Understanding how social and economic factors, such as human population density, access to external markets, and modernization interact with fishing and habitat degradation to affect fish stocks is vital to sustainable management of coral reef fisheries. We used fish survey data, national social and economic data, and path analyses to assess whether these factors explain variation in biomass of coral reef fishes among 25 sites in Solomon Islands. We categorized fishes into 3 groups on the basis of life‐history characteristics associated with vulnerability to extinction by fishing (high, medium, and low vulnerability). The biomass of fish with low vulnerability was positively related to habitat condition. The biomass of fishes with high vulnerability was negatively related to fishing conducted with efficient gear. Use of efficient gear, in turn, was strongly and positively related to both population density and market proximity. This result suggests local population pressure and external markets have additive negative effects on vulnerable reef fish. Biomass of the fish of medium vulnerability was not explained by fishing intensity or habitat condition, which suggests these species may be relatively resilient to both habitat degradation and fishing. Efectos de la Densidad de Poblaciones Humanas y la Proximidad del Mercado sobre Peces de Arrecifes de Coral Vulnerables a la Extinción  相似文献   

19.
Abstract: Marine protected areas (MPAs) have been highlighted as a means toward effective conservation of coral reefs. New strategies are required to more effectively select MPA locations and increase the pace of their implementation. Many criteria exist to design MPA networks, but generally, it is recommended that networks conserve a diversity of species selected for, among other attributes, their representativeness, rarity, or endemicity. Because knowledge of species’ spatial distribution remains scarce, efficient surrogates are urgently needed. We used five different levels of habitat maps and six spatial scales of analysis to identify under which circumstances habitat data used to design MPA networks for Wallis Island provided better representation of species than random choice alone. Protected‐area site selections were derived from a rarity–complementarity algorithm. Habitat surrogacy was tested for commercial fish species, all fish species, commercially harvested invertebrates, corals, and algae species. Efficiency of habitat surrogacy varied by species group, type of habitat map, and spatial scale of analysis. Maps with the highest habitat thematic complexity provided better surrogates than simpler maps and were more robust to changes in spatial scales. Surrogates were most efficient for commercial fishes, corals, and algae but not for commercial invertebrates. Conversely, other measurements of species‐habitat associations, such as richness congruence and composition similarities provided weak results. We provide, in part, a habitat‐mapping methodology for designation of MPAs for Pacific Ocean islands that are characterized by habitat zonations similar to Wallis. Given the increasing availability and affordability of space‐borne imagery to map habitats, our approach could appreciably facilitate and improve current approaches to coral reef conservation and enhance MPA implementation.  相似文献   

20.
Kimbro DL  Grosholz ED 《Ecology》2006,87(9):2378-2388
Foundation species in space-limited systems can increase diversity by creating habitat, but they may also reduce diversity by excluding primary space competitors. These contrasting forces of increasing associate diversity and suppressing competitor diversity have rarely been examined experimentally with respect to disturbance. In a benthic marine community in central California, where native oysters are a foundation species, we tested how disturbance influenced overall species richness, evenness, and diversity. Surprisingly, overall diversity did not peak across a disturbance gradient because, as disturbance decreased, decreases in overall species evenness opposed increases in overall species richness. Decreasing disturbance intensity (high oyster abundance) led to increasing species richness of sessile and mobile species combined. This increase was due to the facilitation of secondary sessile and mobile species in the presence of oysters. In contrast, decreasing disturbance intensity and high oyster abundance decreased the evenness of sessile and mobile species. Three factors likely contributed to this decreased evenness: oysters reduced abundances of primary sessile species due to space competition; oysters supported more rare mobile species; and oysters disproportionately increased the relative abundance of a few common mobile species. Our results highlight the need for further studies on how disturbance can differentially affect the evenness and richness of different functional groups, and ultimately how these differences affect the relationship between overall diversity and ecosystem function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号