首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
In this study, an interval-parameter fuzzy-stochastic two-stage programming (IFSTP) approach is developed for irrigation planning within an agriculture system under multiple uncertainties. A concept of the distribution with fuzzy-interval probability (DFIP) is defined to address multiple uncertainties expressed as integration of intervals, fuzzy sets, and probability distributions. IFSTP integrates the interval programming, two-stage stochastic programming, and fuzzy-stochastic programming within a general optimization framework. IFSTP incorporates the pre-regulated water resources management policies directly into its optimization process to analyze various policy scenarios; each scenario has different economic penalty when the promised amounts are not delivered. IFSTP is applied to an irrigation planning in a water resources management system. Solutions from IFSTP provide desired water allocation patterns, which maximize both the system’s benefits and feasibility. The results indicate that reasonable solutions are generated for objective function values and decision variables; thus, a number of decision alternatives can be generated under different levels of stream flows.  相似文献   

2.
In this study, an interval-fuzzy two-stage chance-constrained integer programming (IFTCIP) method is developed for supporting environmental management under uncertainty. The IFTCIP improves upon the existing interval, fuzzy, and two-stage programming approaches by allowing uncertainties expressed as probability distributions, fuzzy sets, and discrete intervals to be directly incorporated within a general mixed integer linear programming framework. It has advantages in uncertainty reflection, policy investigation, risk assessment, and capacity-expansion analysis in comparison to the other optimization methods. Moreover, it can help examine the risk of violating system constraints and the associated consequences. The developed method is applied to the planning for facility expansion and waste-flow allocation within a municipal solid waste management system. Violations of capacity constraints are allowed under a range of significance levels, which reflects tradeoffs between the system cost and the constraint-violation risk. The results indicate that reasonable solutions for both binary and continuous variables have been generated under different risk levels. They are useful for generating desired decision alternatives with minimized system cost and constraint-violation risk under various environmental, economic, and system-reliability conditions. Generally, willingness to take a higher risk of constraint violation will guarantee a lower system cost; a strong desire to acquire a lower risk will run into a higher system cost.  相似文献   

3.
An interval-parameter fuzzy-stochastic semi-infinite mixed-integer linear programming (IFSSIP) method is developed for waste management under uncertainties. The IFSSIP method integrates the fuzzy programming, chance-constrained programming, integer programming and interval semi-infinite programming within a general optimization framework. The model is applied to a waste management system with three disposal facilities, three municipalities, and three periods. Compared with the previous methods, IFSSIP have two major advantages. One is that it can help generate solutions for the stable ranges of the decision variables and objective function value under fuzzy satisfaction degree and different levels of probability of violating constraints, which are informative and flexible for solution users to interpret/justify. The other is that IFSSIP can not only handle uncertainties through constructing fuzzy and random parameter, but also reflect dynamic features of the system conditions through interval function of time over the planning horizon. By comparing IFSSIP with interval-parameter mixed-integer linear semi-infinite programming and parametric programming, the IFSSIP method is more reasonable than others.  相似文献   

4.
In this study, an inexact fuzzy-robust two-stage programming (IFRTSP) method is developed for tackling multiple forms of uncertainties that can be expressed as discrete intervals, probabilistic distributions and/or fuzzy membership functions. The model can reflect economic penalties of corrective measures against any infeasibilities arising due to a particular realization of system uncertainties. Moreover, the fuzzy decision space can be delimited into a more robust one with the uncertainties being specified through dimensional enlargement of the original fuzzy constraints. A management problem in terms of regional air pollution control has been studied to illustrate the applicability of the proposed approach. Results indicate that useful solutions for planning the air quality management practices have been generated. They can help decision makers identify desired pollution-abatement strategy with minimized system cost and maximized environmental efficiency.  相似文献   

5.
Energy-related activities contribute a major portion of anthropogenic greenhouse gas (GHG) emissions into the atmosphere. In this study, a dual-interval multi-stage stochastic programming model for the planning of integrated energy-environment systems (DMSP-IEES) model is developed for integrated energy-environment systems management, in which issues of GHG-emission mitigation can be reflected throughout the process of energy systems planning. By integrating methodologies of interval linear programming (when numbers are described as interval values without distribution information), dual-interval programming (when lower and upper bounds of interval values are not available as deterministic values but as discrete intervals), and multi-stage stochastic programming, the DMSP-IEES model is capable of dealing with uncertainties expressed as discrete intervals, dual intervals, and probability distributions within a multi-stage context. Decision alternatives can also be generated through analysis of the single- and dual-interval solutions according to projected applicable conditions. A case study is provided for demonstrating the applicability of the developed methodology. The results indicate that the developed model can tackle the dual uncertainties and the dynamic complexities in the energy-environment management systems through a multi-layer scenario tree. In addition, it can reflect the interactions among multiple system components and the associated trade-offs.  相似文献   

6.
A superiority–inferiority-based inexact fuzzy stochastic programming (SI-IFSP) model was developed for planning municipal solid waste management systems under uncertainty. The SI-IFSP approach represents a new attempt to tackle multiple uncertainties in objective function coefficients which are beyond the capabilities of existing inexact programming methods. Through introducing the concept of fuzzy random boundary interval, SI-IFSP is capable of reflecting multiple uncertainties (i.e., interval values, fuzzy sets, probability distributions, and their combinations) in both the objective function and constraints, leading to enhanced system robustness. The developed SI-IFSP method was applied to a case study of long-term municipal solid waste management. Useful solutions were generated. A number of decision alternatives could be generated based on projected applicable conditions, reflecting the compromise between system optimality and reliability as well as the tradeoffs between economic and environmental objectives. Moreover, the consequences of system violations could be quantified through introducing a set of economic penalties, reflecting the relationships between system costs and constraint violation risks. The results suggest that the proposed SI-IFSP method can explicitly address complexities in municipal solid waste management systems and is applicable to practical waste management problems.  相似文献   

7.
Uncertainty is virtually unavoidable in environmental impact assessments (EIAs). From the literature related to treating and managing uncertainty, we have identified specific techniques for coping with uncertainty in EIAs. Here, we have focused on basic steps in the decision-making process that take place within an EIA setting. More specifically, we have identified uncertainties involved in each decision-making step and discussed the extent to which these can be treated and managed in the context of an activity or project that may have environmental impacts. To further demonstrate the relevance of the techniques identified, we have examined the extent to which the EIA guidelines currently used in Colombia consider and provide guidance on managing the uncertainty involved in these assessments. Some points that should be considered in order to provide greater robustness in impact assessments in Colombia have been identified. These include the management of stakeholder values, the systematic generation of project options, and their associated impacts as well as the associated management actions, and the evaluation of uncertainties and assumptions. We believe that the relevant and specific techniques reported here can be a reference for future evaluations of other EIA guidelines in different countries.  相似文献   

8.
The aim of this study is to investigate the air pollution situation in an urban area in southwestern Luxembourg and to simulate annual NO2 and PM10 concentrations in response to changes in meteorological conditions and emissions using a Gaussian dispersion model. Simulations are carried out for the years 1998–2006. Emission scenarios related to road transport and nonindustrial combustion are performed in order to predict changes of air pollution levels. Road transport is by far the most important local emission source in the study area. Scenarios with more stringent emission standards for vehicles, less traffic, and fewer heavy-duty vehicles lead to reductions of NOx and primary PM10 emissions. As a result, the annual NO2 concentrations are decreasing in most parts of the study area and are below the European annual limit value of 40 μg?m?3. In contrast, a scenario with increased use of wood pellets for domestic heating shows an increase in urban PM10 concentration. The year-to-year variability of meteorological conditions accounts for the same magnitude of absolute NO2 and PM10 concentration changes as the emission scenarios. The comparison with measurements located in the study area shows that the model is able to predict urban-scale annual average air pollution. The proposed application results show that the model can be appropriate for policy-driven air quality management and planning queries.  相似文献   

9.
During the last 10–15 years heuristic methods have been developed for problems in optimal reserve selection. Unfortunately, there is no guarantee that heuristics will find optimal solutions. In recognizing this limitation, analysts have formulated reserve selection problems as set covering problems, for which matrix reduction and integer (0/1) programming can be used to find optimal solutions. In this paper we restate the set covering formulation and review solution techniques. A new 0/1 programming model, which is a generalization of the set covering model, is then presented and applied to a hypothetical reserve selection problem. Objectives of minimizing the number of sites selected and maximizing the number of species represented are addressed. Solutions which characterize the tradeoffs between these objectives provide a rich set of information for planners and decision makers. Applications of mathematical programming to related problems in land use planning and forestry are also discussed.  相似文献   

10.
As a result of the continuously increasing numbers of motor vehicles in metropolitan areas worldwide, road traffic emission levels have been recognized as a challenge during the planning and management of transportation. Experiments were conducted to collect on-road emission data using portable emission measurement systems in two Chinese cities in order to estimate real traffic emissions and energy consumption levels and to build computational models for operational transport environment projects. In total, dynamic pollutant emissions and fuel consumption levels from dozens of light duty vehicles, primarily from four different vehicle classes, were measured at a second-by-second level. Using the collected data, several microscopic emission models including CMEM, VT-Micro, EMIT, and POLY were evaluated and compared through calibration and validation procedures. Non-linear optimization methods are applied for the calibration of the CMEM and EMIT models. Numerical results show that the models can realize performance levels close to the CMEM model in most cases. The VT-Micro model shows advantages in its unanimous performance and ability to describe low emission profiles while the EMIT model has a clear physics basis and a simple model structure. Both of them can be applied when extensive emission computation is required in estimating environmental impacts resulting from dynamic road traffic.  相似文献   

11.
This article is concerned with how Strategic Environmental Assessment (SEA) practice handles climate change uncertainties within the Danish planning system. First, a hypothetical model is set up for how uncertainty is handled and not handled in decision-making. The model incorporates the strategies ‘reduction’ and ‘resilience’, ‘denying’, ‘ignoring’ and ‘postponing’. Second, 151 Danish SEAs are analysed with a focus on the extent to which climate change uncertainties are acknowledged and presented, and the empirical findings are discussed in relation to the model. The findings indicate that despite incentives to do so, climate change uncertainties were systematically avoided or downplayed in all but 5 of the 151 SEAs that were reviewed. Finally, two possible explanatory mechanisms are proposed to explain this: conflict avoidance and a need to quantify uncertainty.  相似文献   

12.
A Health Index/Risk Evaluation Tool (HIRET) has been developed for the integration of risk assessment and spatial planning using GIS capabilities. The method is meant to assist decision makers and site owners in the evaluation of potential human health risk with respect to land use. Human health risk defined as the potential adverse effects on human life or health is generally accepted as the most important aspect for site assessment and planning of remediation strategies. It concerns polluted sites that endanger human health on one hand and derelict land that does not cause the immediate risk on the other hand. In current state-of-the-art risk-assessment, long-term spatial and temporal changes of risks, in relation to changes in contamination patterns and land use functions, are not taken into account. The aim of this paper is to demonstrate the methodology developed for human health risk assessment in aspect of spatial and temporal domain. HIRET was developed as an extension for ESRI software ArcView 3.2 and allows performing dynamic human health risk assessment in long-term period, which is relevant for land use planning. The paper illustrates how such methodology can assist in environmental decision-making to enhance the efficiency of contaminated land management. A case study of contaminated site is given showing how data can be used within a GIS framework to produce maps indicating areas of potential human health risk.  相似文献   

13.
Because of fast urban sprawl, land use competition, and the gap in available funds and needed funds, municipal decision makers and planners are looking for more cost-effective and sustainable ways to improve their sewer infrastructure systems. The dominant approaches have turned to planning the sanitary sewer systems within a regional context, while the decentralized and on-site/cluster wastewater systems have not overcome the application barriers. But regionalization policy confers uncertainties and risks upon cities while planning for future events. Following the philosophy of smart growth, this paper presents several optimal expansion schemes for a fast-growing city in the US/Mexico borderlands—the city of Pharr in Texas under uncertainty. The waste stream generated in Pharr is divided into three distinct sewer sheds within the city limit, including south region, central region, and north region. The options available include routing the wastewater to a neighboring municipality (i.e., McAllen) for treatment and reuse, expanding the existing wastewater treatment plant (WWTP) in the south sewer shed, and constructing a new WWTP in the north sewer shed. Traditional deterministic least-cost optimization applied in the first stage can provide a cost-effective and technology-based decision without respect to associated uncertainties system wide. As the model is primarily driven by the fees charged for wastewater transfer, sensitivity analysis was emphasized by the inclusion of varying flat-rate fees for adjustable transfer schemes before contracting process that may support the assessment of fiscal benefits to all parties involved. Yet uncertainties might arise from wastewater generation, wastewater reuse, and cost increase in constructing and operating the new wastewater treatment plant simultaneously. When dealing with multiple sources of uncertainty, the grey mixed integer programming (GIP) model, formulated in the second stage, can further allow all sources of uncertainties to propagate throughout the optimization context, simultaneously leading to determine a wealth of optimal decisions within a reasonable range. Both models ran for three 5-year periods beginning in 2005 and ending in 2020. The dynamic outputs of this analysis reflect the systematic concerns about integrative uncertainties within this decision analysis, which enable decision makers and stakeholders to make all-inclusive decisions for sanitary sewer system expansion in an economically growing region.  相似文献   

14.
Uncertainty is definitely one of the key topics in environmental assessment and management. Typically, attempts to reduce uncertainty are subject to expenses. But how to compare and trade-off expenses and the reduced uncertainty? They only seldom allow the use of a single unit. Instead, the whole analysis and decision procedure is very subjective. This paper presents one approach to handle such problems, namely the combined use of Bayesian influence diagrams, and probabilistic risk attitude analysis. The approach was used in the evaluation of three alternatives for a real time river water quality forecasting system. A trade-off analysis of risk attitudes, costs and uncertainty indicated the levels of socioeconomic utility required for investments in the respective systems, and accordingly illuminated the impact of the uncertainties involved on inference and decision-making with various risk attitudes and discount rates.  相似文献   

15.
Concepts, planning and design procedures are examined that are needed in the development of long-term stream monitoring programs in forested regions. A long-term stream monitoring program is viewed as the key component for bringing together management organizations, researchers and decision-makers to improve the management of natural resources. The keystones of such ecosystem monitoring are long-term data records that provide the basis for analysis of environmental assessment objectives, predictions and analysis of outcomes which in-turn can be used to modify and improve future projects. Management organizations that initiate long-term monitoring programs are urged to use monitoring actions and information to facilitate decision-making processes that pertain to conserving and allocating resources for future beneficial uses. Recommendations are provided for careful planning and definition of interactive activities of monitoring programs and that should provide information feedbacks that can be used to evaluate issues pertaining to beneficial uses of resources. Procedural requirements and literature sources are suggested for developing long-term stream monitoring programs. They include reviews of background and historical information to provide precise definitions of long-term objectives, planning considerations and monitoring methods. Examples are given of specific procedures that need to be identified during the planning process. They include the application of management standards to variable conditions encountered within natural ecosystems and the detection of the timing of recovery phases of stream ecosystem development following a disturbance. These procedures are viewed as being essential for improving applications of management standards and perceived thresholds to stream and watershed ecosystems monitoring programs.  相似文献   

16.
A collaborative problem-solving approach was applied to environmental impact assessment of regional waste management strategy in Pirkanmaa, Finland. Various actors—interest groups, authorities, and experts—were invited to engage in joint fact finding and to exchange their views on the goals of alternative waste management strategies. The experiences of these encounters suggest that collaborative EIA can serve as a learning and civic discovery process where people can act together and find new solutions. During the process, the participants were able to reflect on their preferences and factual beliefs and to create a previously unconsidered waste management strategy that most parties found acceptable. The potential for learning and finding mutually acceptable solutions depended, however, on the legitimacy and institutional settings of the process: to what extent different perspectives were considered in the process, not only included, and how EIA was connected to a political decision-making process.  相似文献   

17.
Complex relationships between landscape and aquatic habitat conditions and salmon (Oncorhynchus spp.) populations make science-based management decisions both difficult and essential. Due to a paucity of empirical data, models characterizing these relationships are often used to forecast future conditions. We evaluated uncertainties in a suite of models that predict possible future habitat conditions and fish responses in the Lewis River Basin, Washington, USA. We evaluated sensitivities of predictions to uncertainty in model parameters. Results were sensitive to 60% of model parameters but substantially so (|partial regression coefficients| >0.5) to <10%. We also estimated accuracy of several predictions using field surveys. Observations mostly fell within predicted ranges for riparian shade and fine-sediment deposition, but large woody debris estimates matched only half the time. We provide suggestions to modelers for improving model accountability, and describe how managers can incorporate prediction uncertainty into decision-making, thereby improving the odds of successful salmon habitat recovery.  相似文献   

18.
Ecological mapping attempts to objectively and spatially delimit and represent the natural organization and structure of the landscape. It offers nested levels of resolution, based upon a regionalization process, and provides an ecological basis for planning activities that may impact upon the environment.The essential principles of ecological mapping, as applied by the Quebec Ministry of Environment and Wildlife, are summarized. A methodological mapping approach is proposed for the determination of significant land portions for forest management using an ecological map at a scale of 1:50 000. At this scale, two nested levels of perception are expressed: 1) the topographic complex, and 2) the topographic entity. The topographic entity can be further subdivided into working units based upon operational criteria oriented to forest management. Within each nested level from topographic complex to working unit, there is a corresponding increase in the amount of detailed information available. Ecological mapping undertaken at 1:50 000 scale can provide a reliable and robust tool for planning forest management activities. In most cases, major ecological variations can be expressed and mapped at this scale; however, a greater degree of generalization must be accepted in the planning process when working at this scale rather than at larger scales.  相似文献   

19.
In environmental decisions, analysts commonly face substantial uncertainties around stakeholders’ values judgments. Multi-Attribute Value Theory (MAVT), a family of multi-criteria decision analysis techniques, is applied in participative settings to articulate stakeholders’ values in decision-making. In MAVT, value judgments represent the intensity of individuals’ preferences in a set of objectives, which are operationalized as scaling factors or weights. Different sets of weights may express variation in people’s preferences or value judgments. Unfortunately, there are still important methodological gaps regarding how to incorporate uncertainty and the substantial variation commonly encountered in stakeholders’ preferences. This article presents a model of uncertainty that encompasses the dispersion of value judgments in MAVT. To achieve this goal, we draw on info-gap theory, which provides a mathematically grounded method for exploring sensitivity to preference weights when there are relatively high levels of uncertainties. We experimentally tested the uncertainty model in an environmental decision problem. We found that MAVT can use info-gap analysis to deal with multiple value judgments, avoiding exclusive reliance on nominal expected values to inform decisions. We explored a mechanism to explicitly consider the trade-offs between the performance of alternatives and the level of uncertainty that in any specified context a decision maker is willing to accept. Findings emphasize the potential of MAVT to support environmental management decisions, particularly in situations where multiple stakeholders and their contested value judgments have to be considered simultaneously to explore uncertainties around value trade-offs.  相似文献   

20.
Continuing industrial development has created large quantities of construction and demolition (C&D) waste, which has led to severe environmental and social problems. The aim of this study was to investigate the decision-making behaviours of stakeholders involved in C&D waste management. Based on evolutionary game theory, stakeholder decision-making behaviours in C&D waste management were analysed, and their influencing factors were identified, including government supervision costs, public participation costs, government penalties, government incentives, government supervisory intensity, probability of contractors conducting illegal dumping, probability of public participation, and probability of illegal dumping being detected. The results also revealed how government penalties and incentives impacted the decision-making behaviours of the contractors and public. Penalties and incentives can effectively reduce illegal C&D waste dumping behaviours, while excessive penalties and incentives have limitations in controlling illegal dumping. The model proposed in this research provides an experimental simulation platform to determine the appropriate values for government penalties and incentives for C&D waste management based on stakeholder decision-making behaviours. In addition, the research results for the stable strategy point of a three-party evolutionary game model demonstrated the importance of public participation in C&D waste management. These results may inform research hypotheses for future empirical studies and provide a simple model for developing appropriate government penalties and incentives in practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号