首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many arthropods engage in mutualisms in which they consume plant-based foods including nectar, extrafloral nectar, and honeydew. However, relatively little is known about the manner in which the specific macronutrients in these plant-based resources affect growth, especially for carnivorous arthropods. Using a combination of laboratory and field experiments, we tested (1) how plant-based foods, together with ad libitum insect prey, affect the growth of a carnivorous ant, Solenopsis invicta, and (2) which macronutrients in these resources (i.e., carbohydrates, amino acids, or both) contribute to higher colony growth. Access to honeydew increased the production of workers and brood in experimental colonies. This growth effect appeared to be due to carbohydrates alone as colonies provided with the carbohydrate component of artificial extrafloral nectar had greater worker and brood production compared to colonies deprived of carbohydrates. Surprisingly, amino acids only had a slight interactive effect on the proportion of a colony composed of brood and negatively affected worker survival. Diet choice in the laboratory and field matched performance in the laboratory with high recruitment to carbohydrate baits and only slight recruitment to amino acids. The strong, positive effects of carbohydrates on colony growth and the low cost of producing this macronutrient for plants and hemipterans may have aided the evolution of food-for-protection mutualisms and help explain why these interactions are so common in ants. In addition, greater access to plant-based resources in the introduced range of S. invicta may help to explain the high densities achieved by this species throughout the southeastern United States.  相似文献   

2.
As a self-organizing entity, an ant colony must divide a limited number of workers among numerous competing functions. Adaptive patterns of labor allocation should vary with colony need across each annual cycle, but remain almost entirely undescribed in ants. Allocation to foraging in 55 field colonies of the Florida harvester ant (Pogonomyrmex badius) followed a consistent annual pattern over 4 years. Foragers preceded larvae in spring and peaked during maximal larval production in summer (0.37). In spring, proportion foraging increased due to an increase in forager number and reduction in colony size, and in late summer, it decreased as colony size increased through new worker birth and a loss of ~3 % of foragers per day. The removal of 50 % of the forager population revealed that, at the expense of larval survival, colonies did not draw workers from other castes to fill labor gaps. To determine if labor allocation was age specific, whole colonies were marked with cuticle color-specific wire belts and released, and each cohort's time to first foraging was noted. Workers that eclosed in summer alongside sexual alates darkened quickly and became foragers at ~43 days of age, whereas autumn-born workers required 200 or more days to do so. Following colony reproduction, these long-lived individuals foraged alongside short-lived, summer-born sisters during the next calendar year. Therefore, the large-scale, predictable patterns of labor allocation in P. badius appear to be driven by bimodal worker development rate and age structure, rather than worker responsiveness to changes in colony demand.  相似文献   

3.
Summary A model of colony growth and foraging in the honey bee (Apis mellifera L.) is presented. It is assumed that summer workers choose a foraging strategy that maximizes colony population by the end of the season subject to the constraint that enough nectar has been stored to sustain the adult population overwinter. The optimal foraging strategy is derived with respect to the number of flowers visited during one foraging trip. A forager that visits many flowers collects a substantial amount of nectar but the probability that the worker returns alive from the excursion decreases accordingly. Using dynamic modelling, I explore the effects on colony growth of colony population, colony energy requirements and mortality rate while foraging. The model shows that when the expected rate of increase in nectar reserves is low, for instance in small colonies or when mortality rate rises rapidly with foraging intensity, workers collect more nectar during each foraging trip. The increase in foraging activity is realized at the expense of colony growth. The main finding is that depending on colony status the foraging strategy that maximizes worker population implies visits to almost any number of flowers. This is in sharp contrast to predictions from traditional foraging models where foraging intensity is assumed to cluster around values that maximize net rate or efficiency. The model suggests that strategies that cluster around rate and efficiency maximization should be viewed as particular solutions to a more general problem.  相似文献   

4.
Social insect colonies can be expected to forage at rates that maximize colony fitness. Foraging at higher rates would increase the rate of worker production, but decrease adult survival. This trade-off has particular significance during the founding stage, when adults lost are not replaced. Prior work has shown that independent-founding wasps rear the first workers rapidly by foraging at high rates. Foraging rates decrease after those individuals pupate, presumably reducing the risk of foundress death. In the swarm-founding wasps, colony-founding units have many workers, making colony death by forager attrition less likely. Do swarm-founding wasps show similar shifts in foraging rates during the founding stage? We measured foraging rates of the swarm-founding wasp, Polybia occidentalis at four stages of colony development. At each stage, foraging rates correlated with the number of larvae present, which, in the founding stages, correlated with the number of cells in the new nest. Thus, foraging rates appear to be demand-driven, with the level of demand in the founding stage set by the size of nest that is constructed. During the founding stage, foraging rates per larva were high initially, suggesting that colonies minimize the development times of larvae early in the founding stage. Later in the stage, foraging rates decreased, which would reduce worker mortality until new workers eclose. This pattern is similar to that shown for independent-founding wasps and likely results from conflicting pressures to maximize colony growth and minimize the risk of colony death by forager attrition.  相似文献   

5.
Monogyne fire ant, Solenopsis invicta, colony workers are territorial and are aggressive toward members of other fire ant colonies. In contrast, polygyne colony workers are not aggressive toward non-nestmates, presumably due to broader exposure to heritable and environmentally derived nestmate recognition cues (broad template). Workers from both monogyne and polygyne fire ant colonies execute newly mated queens after mating flights. We discovered that monogyne and polygyne queens have a remarkable effect on conspecific recognition. After removal of their colony queen, monogyne worker aggression toward non-nestmate conspecifics quickly drops to merely investigative levels; however, heterospecific recognition/aggression remains high. Queenless monogyne or polygyne worker groups were also not aggressive toward newly mated queens. Queenless worker groups of both forms that adopted a monogyne-derived newly mated queen became aggressive toward non-nestmate workers and newly mated queens. We propose that the powerful effect of fire ant queens on conspecific nestmate recognition is caused by a queen-produced recognition primer pheromone that increases the sensitivity of workers to subtle quantitative differences in nestmate recognition cues. This primer pheromone prevents the adoption of newly mated queens (regulation of reproductive competition) in S. invicta and when absent allows queenless workers to adopt a new queen readily. This extraordinary discovery has broad implications regarding monogyne and polygyne colony and population dynamics.  相似文献   

6.
In honeybees, as in other highly eusocial species, tasks are performed by individual workers, but selection for worker task phenotypes occurs at the colony level. We investigated the effect of colony-level selection for pollen storage levels on the foraging behavior of individual honeybee foragers to determine (1) the relationship between genotype and phenotypic expression of foraging traits at the individual level and (2) how genetically based variation in worker task phenotype is integrated into colony task organization. We placed workers from lines selected at the colony level for high or low pollen stores together with hybrid workers into a common hive environment with controlled access to resources. Workers from the selected lines showed reciprocal variation in pollen and nectar collection. High-pollen-line foragers collected pollen preferentially, and low- pollen-line workers collected nectar, indicating that the two tasks covary genetically. Hybrid workers were not intermediate in phenotype, but instead showed directional dominance for nectar collection. We monitored the responses of workers from the selected strains to changes in internal (colony) and external (resource) stimulus levels for pollen foraging to measure the interaction between genotypic variation in foraging behavior and stimulus environment. Under low-stimulus conditions, the foraging group was over-represented by high-pollen-line workers. However, the evenness in distribution of the focal genetic groups increased as foraging stimuli increased. These data are consistent with a model where task choice is a consequence of genetically based response thresholds, and where genotypic diversity allows colony flexibility by providing a range of stimulus thresholds. Received: 3 May 1999 / Received in revised form: 22 December 1999 / Accepted: 23 January 2000  相似文献   

7.
Social insects often serve as model systems for communication and recruitment studies, and yet, it remains controversial whether social vespid wasps can reliably communicate resource information to nestmates. In this study, I present empirical evidence that foraging strategies depend on the initial assessment of resource size and potential competition by foraging yellowjackets. The context dependent foraging behavior of Vespula pensylvanica provides a potential explanation for the inconsistent reports of the existence of recruitment communication in vespid wasps. Furthermore, life history traits may influence yellowjacket foraging behavior; annual V. pensylvanica colonies, whose foragers routinely patrol near the nest, exhibited increased bait visitation in response to the return of successful foragers, whereas perennial colonies did not. These behavioral disparities provide insight into how foraging strategies and search patterns may shift with colony size and longevity. In experiments that investigate the effects of visual cues of conspecifics and bait dispersion, foraging decisions corresponded with expectations of yellowjackets integrating resource quantity and access into a perception of demand. When resource competition could be assessed as high, V. pensylvanica foragers quickly exploited the bait closest to their colony regardless of occupation by other wasps; however, foragers preferred visiting unoccupied baits in situations where competition could be perceived as low. Moreover, a meta-analysis revealed that context-dependent, cue-mediated recruitment was widespread in Vespidae, where such foraging behaviors changed with habitat and the potential for resource competition. Such plastic foraging strategies may contribute to the invasion success of some vespid wasps.  相似文献   

8.
One of the mechanisms by which honeybees regulate division of labour among their colony members is age polyethism. Here the younger bees perform in-hive tasks such as heating and the older ones carry out tasks outside the hive such as foraging. Recently it has been shown that the higher developmental temperatures of the brood, which occur in the centre of the brood nest, reduce the age at which individuals start to forage once they are adult. It is unknown whether this effect has an impact on the survival of the colony. The aim of this paper is to study the consequences of the temperature gradient on the colony survival in a model on the basis of empirical data.We created a deterministic simulation of a honeybee colony (Apis mellifera) which we tuned to our empirical data. In the model in-hive bees regulate the temperature of the brood nest by their heating activities. These temperatures determine the age of first foraging in the newly emerging bees and thus the number of in-hive bees present in the colony. The results of the model show that variation in the onset of foraging due to the different developmental temperatures has little impact on the population dynamics and on the absolute number of bees heating the nest unless we increase this effect by several times to unrealistic values, where individuals start foraging up to 10 days earlier or later. Rather than on variation in the onset of foraging due to the temperature gradient it appears that the survival of the colony depends on a minimal number of bees available for heating at the beginning of the simulation.  相似文献   

9.
Division of labor in honeybees: form, function, and proximate mechanisms   总被引:1,自引:1,他引:0  
Honeybees exhibit two patterns of organization of work. In the spring and summer, division of labor is used to maximize growth rate and resource accumulation, while during the winter, worker survivorship through the poor season is paramount, and bees become generalists. This work proposes new organismal and proximate level conceptual models for these phenomena. The first half of the paper presents a push–pull model for temporal polyethism. Members of the nursing caste are proposed to be pushed from their caste by the development of workers behind them in the temporal caste sequence, while middle-aged bees are pulled from their caste via interactions with the caste ahead of them. The model is, hence, an amalgamation of previous models, in particular, the social inhibition and foraging for work models. The second half of the paper presents a model for the proximate basis of temporal polyethism. Temporal castes exhibit specialized physiology and switch caste when it is adaptive at the colony level. The model proposes that caste-specific physiology is dependent on mutually reinforcing positive feedback mechanisms that lock a bee into a particular behavioral phase. Releasing mechanisms that relate colony level information are then hypothesized to disrupt particular components of the priming mechanisms to trigger endocrinological cascades that lead to the next temporal caste. Priming and releasing mechanisms for the nursing caste are mapped out that are consistent with current experimental results. Less information-rich, but plausible, mechanisms for the middle-aged and foraging castes are also presented.  相似文献   

10.
Abstract: Factors that contribute to the successful establishment of invasive species are often poorly understood. Propagule size is considered a key determinant of establishment success, but experimental tests of its importance are rare. We used experimental colonies of the invasive Argentine ant (   Linepithema humile ) that differed both in worker and queen number to test how these attributes influence the survivorship and growth of incipient colonies. All propagules without workers experienced queen mortality, in contrast to only 6% of propagules with workers. In small propagules (10–1,000 workers), brood production increased with worker number but not queen number. In contrast, per capita measures of colony growth decreased with worker number over these colony sizes. In larger propagules ( 1,000–11,000 workers), brood production also increased with increasing worker number, but per capita brood production appeared independent of colony size. Our results suggest that queens need workers to establish successfully but that propagules with as few as 10 workers can grow quickly. Given the requirements for propagule success in Argentine ants, it is not surprising how easily they spread via human commerce.  相似文献   

11.
Summary Observations and field experiments on the foraging behaviour of individual workers of Cataglyphis bicolor in a Southern Tunisian shrub desert are reported. The workers search singly for their food (mostly animal carcasses) and are singleprey loaders. The individuals differ to a great extent in their persistence to re-search the place of a find on a previous foraging excursion. The differences range continuously from thoroughly researching a place to just walking by. If, in an experiment, the same reward is offered farther from the nest, each ant persists more in re-searching the place than if food is offered close to the nest. In a further experiment, some individuals persisted less in searching near the former finding site if they had collected a fly than after collecting a piece of cheese. There is, however, evidence that individuals do not differ in their food preference. Persistent individuals, which re-search the place of a former find, are faster than non-persistent ones in retrieving food that is experimentally arranged in an aggregated manner. The experiment failed to demonstrate the (reverse) superiority of non-persistent individuals foraging on homogeneously distributed food. The observations of unmanipulated foraging excursions in the field suggest such an advantage for non-persistent foragers under natural conditions where food in general occurs widely dispersed. The colony as a whole retrieves more food within the same time from an experimental lay-out that is homogeneous than from an aggregated one. The behavioural differences between individuals could be caused by a training bias of the short-lived foragers, leading to a different assessment of the profitability of a searching method which implies returning to a formerly rewarding place. Thus, each worker uses the most promising behaviour according to its individual experience. Alternatively, the individually different searching methods could mainly contribute to the welfare of the colony as a whole rather than leading to a maximal short-term efficiency of each individual. In particular, the colony, disposing of only a few highly persistent foragers, could quickly exploit occasional short-lived, but unpredictible, clumps of food within its foraging range.  相似文献   

12.
Limitation of a necessary resource can affect an organism’s investment into growth and reproduction. Pogonomyrmex harvester ants store vast quantities of seeds in their nests that are thought to buffer the ants when external resources are not available. This research uses externally controlled food availability to examine how resource shortage affects colony investment, resource use, and resource distribution within the nest. Colonies were either starved or supplemented with resources for 2 months, beginning at the onset of reproductive investment and ending immediately before nuptial flights. Fed colonies invested more in overall production, proportionally more in reproduction relative to growth and in female reproductives relative to males. Stored seeds in starved colonies did not buffer production in this study. However, worker fat reserves were depleted in starved colonies, indicating that fat reserves fuel the spring bout of production. In starved colonies, worker fat reserves were depleted evenly throughout the nest, distributing the burden of starvation on all workers regardless of caste and age. A reallocation of diploid eggs into female workers rather than reproductives best explains the observed change in sex ratio investment between treatments. The redistribution of resources into growth relative to reproduction in starved colonies is consistent with life history theory for long-lived organisms, switching from current to future reproduction when resources are scarce.  相似文献   

13.
Seabird tracking has become an ever more popular tool to aid environmental procedures such as the designation of marine protected areas and environmental impact assessments. However, samples used are usually small and little consideration is given to experimental design and sampling protocol. European shags Phalacrocorax aristotelis were tracked using GPS technology over three breeding seasons and the following foraging trip characteristics: trip duration, trip distance, maximum distance travelled from the colony, size of area used and direction travelled from colony were determined for each foraging trip. The effect of sex, year of study, breeding site, number and age of chicks and the timing of tracking on foraging behaviour were investigated using a General Estimation Equation model. A range of sampling scenarios reflecting likely field sampling were also tested to compare how foraging behaviour differed depending on composition of the sample of birds tracked. Trip distance, trip duration, maximum distance travelled and size of area used were all significantly affected by the breeding site, and the number of chicks a tracked adult was raising. The effect of sex was also seen when examining trip distance, trip duration and the maximum distance travelled. The direction travelled on a foraging trip was also significantly affected by breeding site. This study highlights the importance of sampling regime and the influence that year, sex, age, number of chicks and breeding site can have on the foraging trip characteristics for this coastal feeding seabird. Given the logistical and financial constraints in tracking large numbers of individuals, this study identifies the need for researchers to consider the composition of their study sample to ensure any identified foraging areas are as representative as possible of the whole colony’s foraging area.  相似文献   

14.
Colony energy requirements affect the foraging currency of bumble bees   总被引:1,自引:0,他引:1  
Summary This study examines whether the foraging behavior of worker bumble bees (Bombus: Apidae) collecting nectar on inflorescences of seablush (Plectritis congesta: Valerianaceae) is affected by colony energetic requirements, which were experimentally manipulated either by adding sucrose solution to honey pots or by removing virtually all available nectar from the pots. The competing hypotheses tested were: (1) no change; energetic requirements do not affect behavior, since there is a single best way to collect food in a given environment; (2) energetic currency; the energetic currency maximized by foragers changes according to colony energetic condition, with nectar-depletion causing a shift from maximizing long-term productivity to maximizing immediate energetic gain, thereby de-emphasizing energetic costs; and (3) predation; foragers devalue risk of predation as risk of starvation increaes, with colony nectar-depletion causing foragers to be less predation riskaverse in order to increase immediate energetic gain. Relative to when their colony energy reserves were enhanced, foragers from nectar-depleted colonies selected smaller inflorescences, visited fewer flowers per inflorescence, probed flowers at a higher rate while on each inflorescence, and walked between inflorescences less often, thereby spending a greater proportion of their foraging trip in flight. These behaviors increased a bee's energetic costs while foraging, and should also have increased its immediate energetic gains, allowing rejection of the no change hypothesis. Predictions of the predation hypothesis were generally not supported, and our results best support the energetic currency hypothesis. Foraging currency of bumble bees therefore appears to be a function of colony energetic state. Offprint requests to: R.V. Cartar  相似文献   

15.
Beaver–willow (Castor-Salix) communities are a unique and vital component of healthy wetlands throughout the Holarctic region. Beaver selectively forage willow to provide fresh food, stored winter food, and construction material. The effects of this complex foraging behavior on the structure and function of willow communities is poorly understood. Simulation modeling may help ecologists understand these complex interactions. In this study, a modified version of the SAVANNA ecosystem model was developed to better understand how beaver foraging affects the structure and function of a willow community in a simulated riparian ecosystem in Rocky Mountain National Park, Colorado (RMNP). The model represents willow in terms of plant and stem dynamics and beaver foraging in terms of the quantity and quality of stems cut to meet the energetic and life history requirements of beaver. Given a site where all stems were equally available, the model suggested a simulated beaver family of 2 adults, 2 yearlings, and 2 kits required a minimum of 4 ha of willow (containing about10 stems m−2) to persist in a steady-state condition. Beaver created a willow community where the annual net primary productivity (ANPP) was 2 times higher and plant architecture was more diverse than the willow community without beaver. Beaver foraging created a plant architecture dominated by medium size willow plants, which likely explains how beaver can increase ANPP. Long-term simulations suggested that woody biomass stabilized at similar values even though availability differed greatly at initial condition. Simulations also suggested that willow ANPP increased across a range of beaver densities until beaver became food limited. Thus, selective foraging by beaver increased productivity, decreased biomass, and increased structural heterogeneity in a simulated willow community.  相似文献   

16.
Summary Food-sharing experiments were performed with laboratory colonies of Solenopsis invicta containing 1000, 10,000, or 20,000 workers and starved for 0, 3, 7, or 14 days. The effect of these variables was measured on the uptake of radioactive sugar water (1 M) by 1% of the colony's workers and on the trophallactic flow of food from these foragers to the remainder of the colony.Patterns of food distribution in small colonies differed significantly from those in larger nests. In 1000-ant nests, small workers more frequently received food than large workers, but in bigger colonies the opposite occurred.Fire ants were adept at distributing sugar water, with food from a few workers rapidly reaching the majority of the colony as foragers donate their crop contents to groups of recipients and these recipients may themselves act as donors.Foragers respond to colony starvation by individually taking up more food and sharing this fluid with a greater proportion of nestmates. Even foragers from satiated colonies can retrieve at least small amounts of liquid.The forager's state of hunger plays an important role in regulating food distribution. In sugar-satiated nests, previously starved foragers are highly successful at passing on labelled sugar whereas prviously fed foragers are not.  相似文献   

17.
Because environments can vary over space and time in non-predictable ways, foragers must rely on estimates of resource availability and distribution to make decisions. Optimal foraging theory assumes that foraging behavior has evolved to maximize fitness and provides a conceptual framework in which environmental quality is often assumed to be fixed. Another more mechanistic conceptual framework comes from the successive contrast effects (SCE) approach in which the conditions that an individual has experienced in the recent past alter its response to current conditions. By regarding foragers’ estimation of resource patches as subjective future value assessments, SCE may be integrated into an optimal foraging framework to generate novel predictions. We released Allenby’s gerbils (Gerbillus andersoni allenbyi) into an enclosure containing rich patches with equal amounts of food and manipulated the quality of the environment over time by reducing the amount of food in most (but not all) food patches and then increasing it again. We found that, as predicted by optimal foraging models, gerbils increased their foraging activity in the rich patch when the environment became poor. However, when the environment became rich again, the gerbils significantly altered their behavior compared to the first identical rich period. Specifically, in the second rich period, the gerbils spent more time foraging and harvested more food from the patches. Thus, seemingly identical environments can be treated as strikingly different by foragers as a function of their past experiences and future expectations.  相似文献   

18.
Fire ant polymorphism: the ergonomics of brood production   总被引:3,自引:0,他引:3  
Summary Social organization is generally assumed to increase colony efficiency and survival; however, little quantitative information is available to support this assumption. Polymorphism is an important aspect of labor division in colonies of the fire ant, Solenopsis invicta. Our objective was to investigate the effect of fire ant polymorphism on brood production efficiency. We set up standardized polymorphic colonies with a full range of worker sizes and artificial monomorphic colonies that contained only small, medium or large workers respectively. Polymorphic colonies produced brood at about the same rate as colonies composed of only small workers (Fig. 2A). Colonies composed of only medium workers produced about 30% less brood, and colonies composed of only large workers produced little or no brood at all. This pattern was independent of colony size; however, smaller colonies (0.75 g, live weight) produced almost twice as much brood per gram of workers as larger colonies (3.0g). Additional experiments revealed that the size of workers in the artificial monomorphic colonies affected all stages of brood rearing. Large workers not only inhibited the development of early and late instar larvae (Fig 4), but also reduced the queen's oviposition rate (Fig. 3). Brood production efficiency on an energetic basis was determined by dividing the grams of brood produced per unit time by the energetic costs expended for the maintenance and production of each worker size class. Worker maintenance costs were estimated from respiration while production costs were determined from the caloric content of worker tissue divided by their average longevity. Worker respiration per milligram body weight decreased about 40% as body size increased (Fig. 5). Large workers lived about 50% longer than small workers (Fig. 6) and contained 9% more energy per milligram of tissue (Fig. 7). Energetic efficiency in polymorphic colonies was approximately 10% higher than in colonies composed of only small workers (Fig. 9). In other words, when food supplies are limiting, polymorphism may offer a slight advantage in brood production.  相似文献   

19.
The evolution of colony size in social insects is influenced by both extrinsic and colony-intrinsic factors. An important intrinsic trait, per-capita productivity, often declines in larger colonies. This pattern, known as Michener’s paradox, can limit the growth of insect societies. In this study, we first describe this problem, survey its occurrence across different ant species, and present a case study of eight cavity-dwelling ants with very small colony sizes. In these species, colonies might never reach sizes at which per-capita productivity decreases. However, in six out of the eight focal species, per-capita productivity did decline with increasing size, in accordance with other studies on per-capita productivity in ants. Several mechanisms, such as resource availability or nest-site limitation, may explain the decrease in per-capita productivity with increases in colony size in our focal species. In these central-place foragers, the individual foraging mode is expected to lead to an increase in travel time as colonies grow. We suggest that polydomy, the concomitant occupation of several nest sites, could serve as a potential strategy to overcome this limitation. Indeed, for one species, we show that polydomy can help to circumvent the reduction in productivity with increasing colony size, suggesting that limited resource availability causes the observed decrease in per-capita productivity. Finally, we discuss the influence of other factors, such as the nesting ecology and colony homeostasis, on the evolution of colony size in these cavity-dwelling ants.  相似文献   

20.
In social insects, the decision to exploit a food source is made both at the individual (e.g., a worker collecting a food item) and colony level (e.g., several workers communicating the existence of a food patch). In group recruitment, the recruiter lays a temporary chemical trail while returning from the food source to the nest and returns to the food guiding a small group of nestmates. We studied how food characteristics influence the decision-making process of workers changing from individual retrieving to group recruitment in the gypsy ant Aphaenogaster senilis. We offered field colonies three types of prey: crickets (cooperatively transportable), shrimps (non-transportable), and different quantities of sesame seeds (individually transportable). Colonies used group recruitment to collect crickets and shrimps, as well as seeds when they were available in large piles, while small seed piles rarely led to recruitment. Foragers were able to “measure” food characteristics (quality, quantity, transportability), deciding whether or not to recruit, accordingly. Social integration of individual information about food emerged as a colony decision to initiate or to continue recruitment when the food patch was rich. In addition, group recruitment allowed a fast colony response over a wide thermal range (up to 45°C ground temperature). Therefore, by combining both advantages of social foraging (group recruitment) and thermal tolerance, A. senilis accurately exploited different types of food sources which procured an advantage against mass-recruiting and behaviorally dominant species such as Tapinoma nigerrimum and Lasius niger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号