首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photodegradation of Acid blue 74 in aqueous solution employing a H2O2/ultraviolet system in a photochemical reactor was investigated. The kinetics of decolorization were studied by application of a kinetic model. The results show that the reaction of decolorization followed pseudo-first order kinetics. We demonstrate that there is an optimum H2O2 concentration, at which the rate of the decolorization reaction is maximum. Irradiation at 253.7 nm of the dye solution in the presence of H2O2 results in complete discoloration after ten minutes of treatment.  相似文献   

2.
The photodecomposition of diluted aqueous solutions of acridine and aminacrine in the presence of hydrogen peroxide was studied. Irradiation was carried out with a low pressure mercury vapour lamp. The kinetic model describes the photodegradation rate of the organic compound with respect to the technological parameters of the reactor and provides the reaction rate constants of hydroxyl radicals towards these two molecules. This model was extented to high hydrogen peroxide concentrations ([H2O2] > 200 μmol/l) by considering the reactivity of hydroxyl radicals towards hydrogen peroxide. This assumption allows us to define an optimal hydrogen peroxide concentration.  相似文献   

3.
The photocatalytic formation of hydrogen peroxide over ZnO and TiO2thin films has been investigated in aqueous phase in the presence of molecular oxygen as an electron acceptor. These films are highly porous and showed enhanced catalytic activity in the photochemical formation of hydrogen peroxide. The amount of H2O2formed during 2 hour light illumination is 4–6 μM and the rates of formation of hydrogen peroxide of both the films are almost comparable. The yield of hydrogen peroxide increases with the increase in irradiation time and a trend of steady state concentration of H2O2is observed in the case of TiO2thin film. Photodissolution of ZnO particles is observed in some extent during the process of prolonged UV light illumination.  相似文献   

4.
五氧化二钒类Fenton降解邻苯二甲酸二乙酯的机制研究   总被引:1,自引:0,他引:1  
发展了基于五氧化二钒(V_2O_5)和过氧化氢(H_2O_2)的新型类Fenton体系,探索了此体系产生羟基(·OH)的机制及降解邻苯二甲酸二乙酯(DEP)的效率;并考察了V_2O_5投加量、H_2O_2浓度,以及草酸对DEP降解的影响。结果表明,当V_2O_5投加量为0.1 g·L-1,H_2O_2浓度为2.0 mmol·L-1,反应24 h后,对DEP(25 mg·L-1)的降解率可达61.1%,增加或降低V_2O_5投加量和H_2O_2浓度均不利于DEP的降解。利用电子顺磁共振技术(Electron Paramagnetic Resonance,EPR)耦合5,5-二甲基-1-吡咯啉氮氧化物(DMPO)为捕获剂对反应体系中的主导自由基进行鉴定,发现·OH是体系降解DEP的主要活性物种,利用苯甲酸作为探针分子实现了·OH的间接定量,并初步推测了V_2O_5活化H_2O_2的过程。  相似文献   

5.
Spatial variations in the N2O emissions and denitrification potential of riparian buffer strips (RBS) in a polluted river were examined. The river received large pollutant inputs from urban runoff and wastewater discharge, resulting in impaired water quality in the river and downstream reservoir. The potential for nitrogen removal by RBS was evaluated by measuring in situ N2O emission fluxes in static closed chambers and sediment denitrification potentials with acetylene inhibition techniques. The results showed that N2O emission fluxes decreased from the upstream (16.39 μg/(m2·h)) to downstream (0.30 μg/(m2·h)) sites and from the water body to upland sites. The trend in decreasing N2O emission fluxes in the downstream direction was mainly associated with sediment/soil textures (clay loam→sandy soil) and sediment/soil water contents and was also related to the vegetation along the RBS and nutrients in the sediments/soils. The correlation coefficient was highest (r=0.769) between the N2O emission flux and sediment/soil water content. Sediment/soil denitrification potentials under N-amended and ambient conditions were higher (highest 32.86 mg/(kg·h)) for the upstream sites, which were consistent with in situ N2O flux rates.  相似文献   

6.
The oxidation of soil organic matter (SOM) and total petroleum hydrocarbon were investigated in two soils at eight different hydrogen peroxide (H2O2) concentrations to determine the optimal H2O2 dosage for the efficient remediation of soils contaminated by crude oil with minimal SOM removal. In our study, H2O2 concentrations up to 1100 mM increased the SOM destruction up to 10%–15% in the two soils while no improvement of the crude oil removal efficiencies was observed. The results indicate that the destruction of SOM significantly limits the oxidation of crude oil because SOM might consume H2O2 more effectively than crude oil at H2O2 concentrations above 1100 mM. In addition, H2O2 concentrations higher than 1100 mM were not expected for both soils because of the extremely rapid H2O2 decomposition, and low H2O2 utilization, of both soils.  相似文献   

7.
The aim of the plesent investigation was to study the effect of SiO2 addition on the thermal deactivation of V2O5/WO3/TiO2 catalysts used for NOx pollution abatement. The results suggest that the degradation of the catalytic properties is strongly correlated to the structural ageing which is, in turn, mainly related to the anatase–rutile phase transformation and to the WO3 phase segregation. The addition of SiO2 strongly influences the temperature at which these phenomena occur. In fact, it was found that the introduction of this oxide stabilizes the material, retarding the collapse of surface area, and increases the temperature of the anatase to rutile phase transition.  相似文献   

8.
Tetracycline (TC), one of the most common antibiotics, is often poorly bio-degraded in conventional wastewater treatment plants. In this study, the sonocatalytic degradation of TC was investigated using TiO2 nano-particles as catalyst. The effect of pH, initial TC concentrations, reaction times, and H2O2 concentrations were evaluated. The efficacy of ultrasonic irradiation alone in the removal of this pollutant was negligible but removal efficiency increased upon addition of TiO2 up to 250 mg L?1; increase of pH and initial TC concentration attenuated TC degradation. Addition of H2O2 raised the removal efficiency so that complete removal of TC was achieved within 75 min.  相似文献   

9.
In this paper we describe and test a sub-model that integrates the cycling of carbon (C), nitrogen (N) and phosphorus (P) in the Soil Water Assessment Tool (SWAT) watershed model. The core of the sub-model is a multi-layer, one-pool soil organic carbon (SC) algorithm, in which the decomposition rate of SC and input rate to SC (through decomposition and humification of residues) depend on the current size of SC. The organic N and P fluxes are coupled to that of C and depend on the available mineral N and P, and the C:N and N:P ratios of the decomposing pools. Tillage explicitly affects the soil organic matter turnover rate through tool-specific coefficients. Unlike most models, the turnover of soil organic matter does not follow first order kinetics. Each soil layer has a specific maximum capacity to accumulate C or C saturation (Sx) that depends on texture and controls the turnover rate. It is shown in an analytical solution that Sx is a parameter with major influence in the model C dynamics. Testing with a 65-yr data set from the dryland wheat growing region in Oregon shows that the model adequately simulates the SC dynamics in the topsoil (top 0.3 m) for three different treatments. Three key model parameters, the optimal decomposition and humification rates and a factor controlling the effect of soil moisture and temperature on the decomposition rate, showed low uncertainty as determined by generalized likelihood uncertainty estimation. Nonetheless, the parameter set that provided accurate simulations in the topsoil tended to overestimate SC in the subsoil, suggesting that a mechanism that expresses at depth might not be represented in the current sub-model structure. The explicit integration of C, N, and P fluxes allows for a more cohesive simulation of nutrient cycling in the SWAT model. The sub-model has to be tested in forestland and rangeland in addition to agricultural land, and in diverse soils with extreme properties such high or low pH, an organic horizon, or volcanic soils.  相似文献   

10.
Photosynthetically active radiation (PAR) energy reaching on the vegetated surface is a key determinant of plant physiological processes. Most of biosphere or crop models use the ratio of PAR to incoming solar radiation (Rs), PAR/Rs, to convert Rs into PAR in order to reduce weather data-input requirements. Several existing models simply specify a constant ratio, PAR/Rs = 0.5. However, some field experiments have reported that the ratio PAR/Rs may not be constant. Previous empirical equations of PAR/Rs were derived based on the data of monthly or daily timescales collected from only a few measurement sites, hence they may not be appropriate to be used in current global biosphere models usually with hourly simulation time steps. Here, we represent the exponential correlation between PAR/Rs and sky clearness index (0-1) using hourly data from 54 Ameriflux measurement sites. It is found that PAR/Rs increases up to 0.6 in cloudy conditions when the clearness index (CI) is below ∼0.2, whereas it is nearly constant at ∼0.42 when CI is above 0.2. When the identified empirical equation is used in the model simulation, it results in −4 to 2% difference in the stomatal conductance compared to that using the constant ratio PAR/Rs = 0.5.  相似文献   

11.
In this study, kinetics of photocatalytic degradation of phenolic wastewater in immobilized photocatalytic reactor was investigated. Immobilization of titanium dioxide (TiO2) nano powders on concrete surfaces were accomplished with epoxy concrete sealer. Kinetics of photocatalytic reactions has been proposed to follow the Langmuir–Hinshelwood model in different initial phenol concentration, pH, and UV lamp intensity. First-order reaction kinetics with respect to the pollutant concentration was obtained for the reaction. Effect of UV lamp intensity showed that kinetic constants were proportional to the power of 0.73–1 of the photonic flow. In all cases kinetic constant increases as pH of the system reached up to 12 units. Several reaction intermediates were identified using the GC/Mass analysis. Products at the initial stage of the reaction were aromatic compounds, contained hydroquinone, benzoquinone, and catechol. These intermediates underwent further photocatalytic oxidation to aliphatic compounds and finally into CO2 and H2O after 4?h. Kinetic constants of intermediate compounds were determined using mathematical–chemical equations and nonlinear regression. Data showed that the differences between the mathematical model and Langmuir–Hinshelwood model for the kinetic constant was less than 5%.  相似文献   

12.
Forest productivity is strongly affected by seasonal weather patterns and by natural or anthropogenic disturbances. However weather effects on forest productivity are not currently represented in inventory-based models such as CBM-CFS3 used in national forest C accounting programs. To evaluate different approaches to modelling these effects, a model intercomparison was conducted among CBM-CFS3 and four process models (ecosys, CN-CLASS, Can-IBIS and 3PG) over a 2500 ha landscape in the Oyster River (OR) area of British Columbia, Canada. The process models used local weather data to simulate net primary productivity (NPP), net ecosystem productivity (NEP) and net biome productivity (NBP) from 1920 to 2005. Other inputs used by the process and inventory models were generated from soil, land cover and disturbance records. During a period of intense disturbance from 1928 to 1943, simulated NBP diverged considerably among the models. This divergence was attributed to differences among models in the sizes of detrital and humus C stocks in different soil layers to which a uniform set of soil C transformation coefficients was applied during disturbances. After the disturbance period, divergence in modelled NBP among models was much smaller, and attributed mainly to differences in simulated NPP caused by different approaches to modelling weather effects on productivity. In spite of these differences, age-detrended variation in annual NPP and NEP of closed canopy forest stands was negatively correlated with mean daily maximum air temperature during July-September (Tamax) in all process models (R2 = 0.4-0.6), indicating that these correlations were robust. The negative correlation between Tamax and NEP was attributed to different processes in different models, which were tested by comparing CO2 fluxes from these models with those measured by eddy covariance (EC) under contrasting air temperatures (Ta). The general agreement in sensitivity of annual NPP to Tamax among the process models led to the development of a generalized algorithm for weather effects on NPP of coastal temperate coniferous forests for use in inventory-based models such as CBM-CFS3: NPP′ = NPP − 57.1 (Tamax − 18.6), where NPP and NPP′ are the current and temperature-adjusted annual NPP estimates from the inventory-based model, 18.6 is the long-term mean daily maximum air temperature during July-September, and Tamax is the mean value for the current year. Our analysis indicated that the sensitivity of NPP to Tamax was nonlinear, so that this algorithm should not be extrapolated beyond the conditions of this study. However the process-based methodology to estimate weather effects on NPP and NEP developed in this study is widely applicable to other forest types and may be adopted for other inventory based forest carbon cycle models.  相似文献   

13.
Suspension-feeding bivalves increase the quantity and quality of sedimenting organic matter through the production of faeces and pseudofaeces that are remineralised in coastal sediments and thus increase sediment oxygen demand and nutrient regeneration. Bivalves are intensively cultivated worldwide; however, no bivalve biodeposit decay rates are available to parameterise models describing the environmental effects of bivalve culture. We examined sediment biogeochemical changes as bivalve biodeposits age by incubating coastal sediments to which we added fresh mussel (Perna canaliculus) biodeposits and measured O2 and nutrient fluxes as well as sediment characteristics over an 11-day period. Biodeposits elevated organic matter, chlorophyll a, phaeophytin a, organic carbon and nitrogen concentrations in the surface sediments. Sediment oxygen consumption (SOC) increased significantly (P=0.016) by ∼1.5 times to 1,010 μmol m−2 h−1 immediately after biodeposit addition and remained elevated compared to control cores without additions for the incubation period. This increase is in the range of observed in situ oxygen demand enhancements under mussel farms. To calculate a decay rate for biodeposits in sediments we fitted a first-order G model to the observed increase in SOC. The significant model fit (P=0.001, r 2=0.72) generated a decay rate of 0.16 day−1 (P=0.033, SE=0.05) that corresponds to a half-life time of 4.3 day. This decay rate is 1–2 orders of magnitude higher than published decay rates of coastal sediments without organic enrichment but similar to rates of decaying zooplankton faecal pellets. NH4+ release increased rapidly on the day of biodeposit addition (P=0.013) and reached a maximum of 144 μmol m−2 h−1 after 5 days which was 3.6 times higher compared to control cores. During this period NH4+ release was significantly (P<0.001 to P=0.043) higher in the cores with biodeposit additions than in control cores.  相似文献   

14.
15.
A crucial challenge for including biophysical photosynthesis–transpiration models into complex crop growth models is to integrate the plasticity of photosynthetic processes that is related to factors like nitrogen (N) content, age, and rank of leaves, or to the adaptation of plants to growth temperature (Tg). Here we present a new version of the combined photosynthesis-stomatal conductance model LEAFC3-N [Müller, J., Wernecke, P., Diepenbrock, W., 2005. LEAFC3-N: a nitrogen sensitive extension of the CO2 and H2O gas exchange model LEAFC3 parameterised and tested for winter wheat (Triticum aestivum L.). Ecological Modelling 183, 183–210.] that was revised, extended and completely re-parameterised for barley (Hordeum vulgare L.) with special regard for these factors to facilitate the use of the model in ecophysiological studies and in crop modelling. The analysis is based on novel comprehensive data on photosynthetic CO2 and light response curves measured at two oxygen concentrations and different temperatures on leaves of barley (H. vulgare L.) differing in leaf N and chlorophyll content. Plants were grown in climatic chambers or in the field at different N and Tg.We thoroughly revised the existing and introduced new nitrogen relations for key model parameters that account for a linear increase with leaf N of Vmax, Jmax, Tp, and Rdmax (maximum rates of carboxylation, electron transport, triose phosphate export, and mitochondrial respiration), a saturation-type increase of φ (quantum yield of electron transport), and a non-linear decrease of θ and m (curvature of the light dependence of electron transport rate, scaling factor of the stomata model). The adaptation of photosynthetic characteristics to Tg was included into the model by linear relations that were observed between Tg and the activation energy ΔHa of the temperature response characteristics of Vmax, Jmax, and Tp as well as of the nitrogen dependency of these characteristics. Based on an analysis of diurnal time courses of gas exchange rates it was found necessary including not only the relation between leaf water potential (Ψ) and stomatal conductance as used originally in LEAFC3, but additional effects on Vmax and Jmax. With the above-listed extensions, the model was capable to reproduce the observed plasticity and the recorded diurnal time courses of gas exchange rates fairly well. Thus, we conclude that the new model version can be used under a broad range of conditions, both for ecophysiological studies and as a submodel of crop growth models. The results presented here for barley will facilitate adapting photosynthesis models like LEAFC3-N to other C3-species as well. The modelling of the effects of drought stress should be further elaborated in future based on more specific experiments.  相似文献   

16.
Mercuric (Hg) and zinc (Zn) chloride toxicity was investigated in cerebroneuronal cells and gills of Bellamya bengalensis using sublethal concentrations under lab conditions. Freshwater snail B. bengalensis was exposed to mean LC50 concentration (1.56 ppm and 12.7 ppm) of Hg and Zn chloride, respectively. Bioaccumulation of Hg and Zn was observed in nervous and gill tissue in proportion to the time of exposure. Respiratory mechanisms and rate of oxygen consumption was depleted by both metals. Histopathological alterations in cerebro neuronal cells (giant, large, medium, and small) and gill filamental epithelia were apparent in Hg and Zn-exposed snails. Histopathology demonstrated increased cytoplasmic basophilia, extreme indentation of plasma membrane, karyolitic and eccentric nuclei, nuclear envelope with irregular size, and shrunken appearance of cerebroneuronal cells. Histologically, gill filamental epithelia showed hypertrophy, enlarged ciliated margins reduced length of cilia, nuclear dilations, thickening of basal lamina, and hemocytic accumulations in induced cells and severe loss of goblet mucus cells at the tip. Histopathology was accompanied by dysfunctioning cilia with decreased rate of respiration. Overall, neuronal impairment with damaged gill filament produced improper gaseous exchange leading to sluggish movement.  相似文献   

17.
A process-based crop growth model (Vegetation Interface Processes (VIP) model) is used to estimate crop yield with remote sensing over the North China Plain. Spatial pattern of the key parameter—maximum catalytic capacity of Rubisco (Vcmax) for assimilation is retrieved from Normalized Difference of Vegetation Index (NDVI) from Terra-MODIS and statistical yield records. The regional simulation shows that the agreements between the simulated winter wheat yields and census data at county-level are quite well with R2 being 0.41-0.50 during 2001-2005. Spatial variability of photosynthetic capacity and yield in irrigated regions depend greatly on nitrogen input. Due to the heavy soil salinity, the photosynthetic capacity and yield in coastal region is less than 50 μmol C m−2 s−1 and 3000 kg ha−1, respectively, which are much lower than that in non-salinized region, 84.5 μmol C m−2 s−1 and 5700 kg ha−1. The predicted yield for irrigated wheat ranges from 4000 to 7800 kg ha−1, which is significantly larger than that of rainfed, 1500-3000 kg ha−1. According to the path coefficient analysis, nitrogen significantly affects yield, by which water exerts noticeably indirect influences on yield. The effect of water on yield is regulated, to a certain extent, by crop photosynthetic capacity and nitrogen application. It is believed that photosynthetic parameters retrieved from remote sensing are reliable for regional production prediction with a process-based model.  相似文献   

18.
A system-dynamic model has been built to evaluate the competition between submerged macrophytes Potamogeton malaianus Miq. (PM) and filamentous green algae Spirogyra sp. (SP). The data background is based on a spring–summer and an autumn–winter experiment carried out in artificial field ponds. The experiments had the aim to acquire a knowledge base necessary to a successful restoration of submerged macrophyte vegetation in Lake Taihu, China by use of P. malaianus Miq. The model mainly focuses on variations in water volume; biomass dynamics of P. malaianus Miq., Spirogyra sp. and zoobenthos; nutrients cycling between water column, P. malaianus Miq., Spirogyra sp., zoobenthos, detritus and sediment. Sixteen state variables are included in the model: biomass of P. malaianus Miq., Spirogyra sp. and zoobenthos; nitrogen in sediments, detritus, in P. malaianus Miq., in Spirogyra sp. and zoobenthos; total dissolved nitrogen; phosphorus in sediments, detritus, in P. malaianus Miq., in Spirogyra sp. and in zoobenthos; total dissolved phosphorus, and water volume of the experiment pond. The calibration and validation of the model show a good accordance with the results of the spring–summer experiment and the autumn–winter experiment.  相似文献   

19.
In the Elkhorn River, burrows, tubes, and sediment mounds created by invertebrate bioturbation were observed in the exposed streambed and commonly concentrated on the fine-sediment patches, which consist of silt, clay, and organic matter. These invertebrate activities could loosen the thin layer of clogging sediments and result in an increase of pore size in the sediments, leading to greater vertical hydraulic conductivity of the streambed (K v ). The measurements of the vertical hydraulic gradient across the submerged streambed show that vertical flux in the hyporheic zone can alter directions (upward versus downward) for two locations only a few meters apart. In situ permeameter tests show that streambed K v in the upper sediment layer is much higher than that in the lower sediment layer, and the calculated K v in the submerged streambed is consistently greater than that in the clogged sediments around the shorelines of the sand bars. Moreover, a phenomenon of gas bubble release at the water-sediment interface from the subsurface sediments was observed in the groundwater seepage zone where flow velocity is extremely small. The bursting of gas bubbles can potentially break the thin clogging layer of sediments and enhance the vertical hydraulic conductivity of the streambed.  相似文献   

20.
许多具有氧化作用的空气污染物,均能使细胞产生氧化损伤,使胸腺基质淋巴生成素(thymic stromal lymphopoietin,TSLP)含量上升。而TSLP是一种启动过敏性炎症的重要因子,会导致哮喘等疾病发生率的上升。在本研究中用过氧化氢(H_2O_2)模拟具有氧化作用的空气污染物进行染毒,研究细胞氧化应激水平的变化,并讨论还原型谷胱甘肽(GSH)对细胞受氧化损伤的保护作用。将大鼠支气管上皮细胞(RTE)分组培养,每组设置6个平行实验,分别用低、中、高剂量H_2O_2染毒3 h;高剂量设置1个重复,作为保护组,在染毒前用GSH保护2 h。结果显示,高剂量组H_2O_2(3.2 mmol·L~(~(-1)))染毒的细胞,其细胞活力下降(P0.01),丙二醛(MDA)水平上升(P0.01),TSLP水平上升(P0.05),与之相比,用GSH保护后的同剂量染毒组,上述指标得到全面缓解(P0.01)。这表明高浓度的H_2O_2会损伤细胞活力,并使MDA及TSLP水平上升,而GSH对TSLP及MDA的升高有极显著的抑制作用,即对细胞有一定的保护作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号