首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. Male obliquebanded leafrollers, Choristoneura rosaceana (Harris), were induced to respond to a pheromone source tainted with a behavioural antagonist, Z9-tetradecenyl acetate, when a source releasing the antagonist was placed 10 cm upwind of the tainted source in a wind tunnel. However, placement of the antagonist upwind of an attractive pheromone source did not interrupt pheromone-mediated responses. Placement of a source releasing Z9-tetradecenyl acetate, a minor pheromone component of the sympatric species, the threelined leafroller, Pandemis limitata (Robinson), upwind of a calling P. limitata female, reduced conspecific male pheromone-mediated response but resulted in upwind flight by male C. rosaceana and contact with heterospecific females. Male P. limitata locked on and flew upwind to but did not contact heterospecific females when a source releasing Z9-tetradecenyl acetate was positioned upwind of a calling C. rosaceana female. In the field, adaptation or habituation to Z9-tetradecenyl acetate caused by atmospheric treatment with this compound apparently resulted in reciprocal heterospecific pheromone responses. More C. rosaceana males were captured in traps baited with their pheromone and the behavioural antagonist in small field plots treated atmospherically with Z9-tetradecenyl acetate than in nontreated control plots. Fewer male P. limitata were captured in traps baited with their own pheromone, or with C. rosaceana pheromone tainted with Z9-tetradecenyl acetate in plots treated atmospherically with Z9-tetradecenyl acetate than in nontreated control plots. We argue that Z9-tetradecenyl acetate is an important synomone which assists in partitioning the sexual chemical communication channels of C. rosaceana and P. limitata. Received 9 February 1999; accepted 22 March 1999.  相似文献   

2.
The availability of food resources changes over time and space, and foraging animals are constantly faced with choices about how to respond when a resource becomes depleted. We hypothesise that flying insects like bees discover new food sources using an optimal Lévy flight searching strategy and odour-mediated anemotaxis, as well as visual cues. To study these searching patterns, foraging honeybees were trained to a scented feeder which was then removed. Two new unrewarding feeders, or ‘targets’, were then positioned up- and downwind of the original location of the training feeder. The subsequent flight patterns of the bees were recorded over several hundred metres using harmonic radar. We show that the flight patterns constitute an optimal Lévy flight searching strategy for the location of the training feeder, a strategy that is also optimal for the location of alternative food sources when patchily distributed. Scented targets that were positioned upwind of the original training feeder were investigated most with the numbers of investigations declining with increasing distance from the original feeder. Scented targets in downwind locations were rarely investigated and unscented targets were largely ignored, despite having the same visual appearance as the rewarding training feeder.  相似文献   

3.
Abstract: Pheromone‐based monitoring is a promising new method for assessing the conservation status of many threatened insect species. We examined the versatility and usefulness of pheromone‐based monitoring by integrating a pheromone–kairomone trapping system and pitfall trapping system in the monitoring of two saproxylic beetles, the hermit beetle Osmoderma eremita (Coleoptera: Scarabaeidae) and its predator Elater ferrugineus (Coleoptera: Elateridae), which live inside hollow trees. We performed mark–recapture studies of both species with unbaited pitfall traps in oak hollows combined with pheromone‐baited funnel traps suspended from oak branches to intercept dispersing individuals. For O. eremita, the integrated trapping system showed that the population in the study sites may be considerably higher than estimates based on extrapolation from pitfall trapping alone (approximately 3400 vs. 1100 or 1800 individuals, respectively). Recaptures between odor‐baited funnel traps showed that males and females had similar dispersal rates, but estimating the number of dispersing individuals was problematic due to declining recapture probability between subsequent capture events. Our conservative estimate, assuming a linear decrease in capture probability, suggested that around 1900 individuals, or at least half of the O. eremita population, may perform flights from their natal host trees, representing higher dispersal rates than previous estimates. E. ferrugineus was rarely caught in pitfall traps. One hundred thirty‐nine individuals, likely almost exclusively females, were caught in odor‐baited funnel traps with approximately 4% recapture probability. If recapture probability over consecutive capture events follows that of O. eremita, this would correspond to a total population size of 2500–3000 individuals of the predator; similar to its supposed prey O. eremita. Our results demonstrate that pheromone‐based monitoring is a valuable tool in the study of species or life‐history stages that would otherwise be inaccessible.  相似文献   

4.
Summary.  The differing antagonist activity of (Z)-13-hexadecen-2-one (Z11 – 14 :MK, 1) and its 1,1,1-trifluoro derivative (Z11 –14 :TFMK, 2), two closely related analogues of the European corn borer pheromone Ostrinia nubilalis (Z strain), and their rationale is reported. Both chemicals exhibited some electrophysiological activity, and topical application of 10 pg of pheromone analogue on male antennae was sufficient to induce significantly lower depolarization responses to the pheromone versus untreated insects. In a wind tunnel, the number of European corn borer males attracted to sources containing mixtures of 1 + pheromone in ratios ≥ 1 :1 was significantly lower than the number attracted to a source containing pheromone alone. Source contact behaviour was dramatically impaired when the 1 + pheromone blend reached a ratio of 10 :1, in which only 2% of males displayed source contact in the presence of antagonist. When compound 1 was present at the source, males usually flew upwind with occasional downwind reversals; when compound 2 was present at the lure, males performed wider crosswind reversals, with little progress toward the source. In the field, traps baited with mixtures of both compounds with the pheromone in ratios of 5 :1 and 10 :1 elicited a significantly decreased number of male catches. In esterase inhibition assays, compound 2 was a potent inhibitor (IC50 = 70 nM), whereas the non-fluorinated compound 1 was not. The different activity of both compounds is presumed to be due to different mechanisms of action; considerations for using methyl ketone analogues as new behavioural antagonists of the pheromone are outlined.  相似文献   

5.
Persistence of species in fragmented landscapes depends on dispersal among suitable breeding sites, and dispersal is often influenced by the "matrix" habitats that lie between breeding sites. However, measuring effects of different matrix habitats on movement and incorporating those differences into spatially explicit models to predict dispersal is costly in terms of time and financial resources. Hence a key question for conservation managers is: Do more costly, complex movement models yield more accurate dispersal predictions? We compared the abilities of a range of movement models, from simple to complex, to predict the dispersal of an endangered butterfly, the Saint Francis' satyr (Neonympha mitchellii francisci). The value of more complex models differed depending on how value was assessed. Although the most complex model, based on detailed movement behaviors, best predicted observed dispersal rates, it was only slightly better than the simplest model, which was based solely on distance between sites. Consequently, a parsimony approach using information criteria favors the simplest model we examined. However, when we applied the models to a larger landscape that included proposed habitat restoration sites, in which the composition of the matrix was different than the matrix surrounding extant breeding sites, the simplest model failed to identify a potentially important dispersal barrier, open habitat that butterflies rarely enter, which may completely isolate some of the proposed restoration sites from other breeding sites. Finally, we found that, although the gain in predicting dispersal with increasing model complexity was small, so was the increase in financial cost. Furthermore, a greater fit continued to accrue with greater financial cost, and more complex models made substantially different predictions than simple models when applied to a novel landscape in which butterflies are to be reintroduced to bolster their populations. This suggests that more complex models might be justifiable on financial grounds. Our results caution against a pure parsimony approach to deciding how complex movement models need to be to accurately predict dispersal through the matrix, especially if the models are to be applied to novel or modified landscapes.  相似文献   

6.
A simulation model has been developed that predicts numbers and phenology of a population of codling moth, Cydia pomonella (L.), in an apple orchard. The model is a general insect population model based on the interative-cohort technique. It operates at two time scales: a fine time scale (1 h) for temperature-dependent physiological processes, and a coarse time scale (1 day) for population processes. The population is divided into a specifiable number of stages, and each stage is described by four process functions, which may be of any convenient mathematical form, and may differ among stages. Each stage is divided into cohorts of individuals born or emerged on the same day, and individuals within a cohort are considered probabilistically identical. The model simulates the processes of development, transition among stages, and mortality by using probability distributions representing these processes, and incorporates the effects of pesticides on mortality of the insect. Model output was evaluated by comparison with records of pheromone trap catches of codling moths in commercial apple orchards in North Carolina. The model predicts timing of the first spring flight well, depending on the initial age distribution used. Time between peaks of numbers of adults in the model is about 15 days longer than the observed period between flight peaks in orchards. Sensitivity analysis indicates that this discrepancy may be related to differences between measured ambient temperature and tree canopy temperature. The sensitivities of numbers of insects produced by the model, and timing of peaks in numbers present were determined for each of the parameters in the model. The parameters with greatest effect on the model output were those which control the locations of developmental rate functions and survival functions on the temperature scale. In the model, pesticides had a much larger effect on numbers of adults present than records of moths caught in pheromone traps indicate actually occurred, suggesting that moths caught in traps in commercial orchards where effective pesticides are applied may be largely immigrants.  相似文献   

7.
We explored the utility of incorporating easily measured, biologically realistic movement rules into simple models of dispersal. We depart from traditional random walk models by designing an individual-based simulation model where we decompose animal movement into three separate processes: emigration, between-patch movement, and immigration behaviour. These processes were quantified using experiments on the omnivorous insect Dicyphus hesperus moving through a tomato greenhouse. We compare the predictions of the individual-based model, along with a series of biased random walk models, against an independent experimental release of D. hesperus. We find that in this system, the short-term dispersal of these insects is described well by our individual-based model, but can also be described by a 2D grid-based biased random walk model when mortality is accounted for.  相似文献   

8.
Summary. Host plant volatiles which attract insect herbivores for egg-laying are of principal interest with respect to insect ecology and evolution. Direct applications concern population monitoring and control through behavioural manipulation. Identification of behaviourally active plant secondary metabolites is essential also for plant breeding for insect resistance. Grapevine moth females Lobesia botrana are attracted by upwind flight to green grape berries Vitis vinifera. The headspace of grape berries was collected on air filters. A solvent extract of these filters, released from a sprayer, attracted females in the wind tunnel. The results demonstrate that volatile cues mediate attraction of grapevine moth females to grape berries, and that headspace collections capture the essence of this odour signal. The air filter extracts were examined by gas chromatography coupled with electroantennographic detection, and the compounds eliciting a consistent antennal response in L. botrana females were identified by mass spectrometry. The headspace collection apparatus was calibrated for collection efficiency of the active compounds. Their recovery rate ranged from 35 % for methyl salicylate to 83 % for (E,E)-α-farnesene. A synthetic ten-component blend was then formulated. The blend consisted of compounds eliciting an antennal response, formulated in a blend ratio corrected for differences in collection efficiency. Subsequent wind tunnel tests showed that female attraction to this synthetic ten-component blend was not significantly different from attraction to grape berries, or to headspace collections of the same berries. At a release rate of 35 ng/h of the most abundant compound (E)-β-caryophyllene, 20 % of the test females approached the source of sprayed headspace collections and the ten-component synthetic blend, respectively. In comparison, 100 g of green berries, releasing the main compound (E)-β-caryophyllene at a rate of ca. 4.7 ng/h, attracted 10 % of the females by upwind flight followed by source contact.  相似文献   

9.
Yoo HJ 《Ecology》2006,87(3):634-647
In spatially heterogeneous systems, utilizing population models to integrate the effects of multiple population rates can yield powerful insights into the relative importance of the component rates. The relative importance of demographic rates and dispersal in shaping the distribution of the western tussock moth (Orgyia vetusta) among patches of its host plant was explored using stage-structured population models. Tussock moth dispersal occurs passively in first-instar larvae and is poor or absent in all other life stages. Spatial surveys suggested, however, that moth distribution is not well explained by passive dispersal; moth populations were greater on small patches and on isolated ones. Further analysis showed that several local demographic rates varied significantly with patch characteristics. Two mortality factors in particular may explain the observed patterns. First, crawler mortality both increased with patch size and was density-dependent. A single-patch difference equation model showed mortality related to patch size is strong enough to overcome the homogenizing effect of density dependence; greater equilibrium densities were predicted for smaller patches. Second, although three rates were found to vary with local patch density, only pupal parasitism by a chalcid wasp could potentially account for higher moth abundances on isolated patches. A spatially explicit simulation model of the multiple-patch system showed that spatial variation in pupal parasitism is indeed strong enough to generate such a pattern. These results demonstrate that habitat spatial structure can affect multiple population processes simultaneously, and even relatively low attack rates imposed on a reproductively valuable life stage of the host can have a dominant effect on population distribution among habitat patches.  相似文献   

10.
Summary The capture of adult male moths in female sex pheromone traps of two key agricultural pests, the corn earworm (Helicoverpa zea) and the codling moth (Cydia pomonella), is enhanced or synergized by a certain group of host-plant volatiles, the green-leaf volatiles (GLVs). Since female adults of both species call and release their sex pheromones while perched upon the leaves of their host-plants, the volatile constituents from the leaves of a number of host-plants were compared. Sex pheromone traps containing one of the prominent leaf volatiles of certainH. zea hosts, (Z)-3-hexenyl acetate, not only significantly increased the capture ofH. zea males but were preferred over traps baited only with sex pheromone. Similarly, traps baited with synthetic sex pheromome ofC. pomonella plus a blend of GLVs captured significantly more males than traps baited only with sex pheromone. Since male moths are not captured in traps baited only with these GLVs, it appears that these GLVs act as pheromone synergists which increase or enhance the attraction or arrestment of male moths in pheromone traps.  相似文献   

11.
We develop a stochastic model for the time-evolution of scalar concentrations and temporal gradients in concentration experienced by observers moving within inhomogeneous plumes that are dispersing within turbulent flows. In this model, scalar concentrations and their gradients evolve jointly as a Markovian process. Underlying the model formulation is a natural generalisation of Thomson’s well mixed condition [Thomson DJ (1987) J Fluid Mech 180:529–556]. As a consequence model outputs are necessarily compatible with statistical properties of scalars observed in experiment that are used here as model input. We then use the model to examine how insects aloft within the atmospheric boundary-layer can locate odour sources by modulating their flight patterns in response to odour cues. Mechanisms underlying odour-mediated flights have been studied extensively at laboratory-scale but an understanding of these flights over landscape scales is still lacking. Insect flights are simulated by combining the stochastic model with a simple model of insect olfactory response. These simulations show the strong influence of wind speed on the distributions of the times taken by insects to locate the source. In accordance with experimental observations [Baker TC, Vickers NJ (1997) In: Insect pheromone research: new directions, pp 248–264; Mafra-Neto A, Cardé RT (1994) Nature 369:142–144], flight patterns are predicted to become straighter and shorter, and source location is predicted to become more likely as the mean wind speed increases. The most probable arrival time to the source decreases with the mean wind speed. It is shown that scale-free movement patterns arising from olfactory-driven foraging stem directly from the power-law distribution of concentration excursion times above/below a threshold level and are robust with respect to variations in Reynolds number. Flight lengths are well represented by a power law distribution in agreement with the observed patterns of foraging bumblebees [Heinrich B (1979) Oecologia 40(3):235–245].  相似文献   

12.
Metapopulation models assume that inter-patch dispersal dominantly depends on distance between patches and the dispersal capability of organisms in question. We used a spatially explicit, individual-based model to investigate the potential effect of patch constellation on the exchange of individuals between patches. We simulated migration of individuals from a start- into a target-patch with both patches having the same size and shape. Simulation experiments were carried out for four patch constellations and two different movement patterns. Our results demonstrate a substantial effect of patch constellation on the exchange of individuals. They also show that the magnitude and even the direction of this effect crucially depends on their movement pattern. We conclude that particularly for highly correlated movement patterns patch shape and constellation can not readily be ignored when modelling inter-patch dispersal between habitat-islands.  相似文献   

13.
Russo SE  Portnoy S  Augspurger CK 《Ecology》2006,87(12):3160-3174
Seed dispersal fundamentally influences plant population and community dynamics but is difficult to quantify directly. Consequently, models are frequently used to describe the seed shadow (the seed deposition pattern of a plant population). For vertebrate-dispersed plants, animal behavior is known to influence seed shadows but is poorly integrated in seed dispersal models. Here, we illustrate a modeling approach that incorporates animal behavior and develop a stochastic, spatially explicit simulation model that predicts the seed shadow for a primate-dispersed tree species (Virola calophylla, Myristicaceae) at the forest stand scale. The model was parameterized from field-collected data on fruit production and seed dispersal, behaviors and movement patterns of the key disperser, the spider monkey (Ateles paniscus), densities of dispersed and non-dispersed seeds, and direct estimates of seed dispersal distances. Our model demonstrated that the spatial scale of dispersal for this V. calophylla population was large, as spider monkeys routinely dispersed seeds >100 m, a commonly used threshold for long-distance dispersal. The simulated seed shadow was heterogeneous, with high spatial variance in seed density resulting largely from behaviors and movement patterns of spider monkeys that aggregated seeds (dispersal at their sleeping sites) and that scattered seeds (dispersal during diurnal foraging and resting). The single-distribution dispersal kernels frequently used to model dispersal substantially underestimated this variance and poorly fit the simulated seed-dispersal curve, primarily because of its multimodality, and a mixture distribution always fit the simulated dispersal curve better. Both seed shadow heterogeneity and dispersal curve multimodality arose directly from these different dispersal processes generated by spider monkeys. Compared to models that did not account for disperser behavior, our modeling approach improved prediction of the seed shadow of this V. calophylla population. An important function of seed dispersal models is to use the seed shadows they predict to estimate components of plant demography, particularly seedling population dynamics and distributions. Our model demonstrated that improved seed shadow prediction for animal-dispersed plants can be accomplished by incorporating spatially explicit information on disperser behavior and movements, using scales large enough to capture routine long-distance dispersal, and using dispersal kernels, such as mixture distributions, that account for spatially aggregated dispersal.  相似文献   

14.
Burgess SC  Treml EA  Marshall DJ 《Ecology》2012,93(6):1378-1387
Despite the importance of dispersal for population connectivity, dispersal is often costly to the individual. A major impediment to understanding connectivity has been a lack of data combining the movement of individuals and their survival to reproduction in the new habitat (realized connectivity). Although mortality often occurs during dispersal (an immediate cost), in many organisms costs are paid after dispersal (deferred costs). It is unclear how such deferred costs influence the mismatch between dispersal and realized connectivity. Through a series of experiments in the field and laboratory, we estimated both direct and indirect deferred costs in a marine bryozoan (Bugula neritina). We then used the empirical data to parameterize a theoretical model in order to formalize predictions about how dispersal costs influence realized connectivity. Individuals were more likely to colonize poor-quality habitat after prolonged dispersal durations. Individuals that colonized poor-quality habitat performed poorly after colonization because of some property of the habitat (an indirect deferred cost) rather than from prolonged dispersal per se (a direct deferred cost). Our theoretical model predicted that indirect deferred costs could result in nonlinear mismatches between spatial patterns of potential and realized connectivity. The deferred costs of dispersal are likely to be crucial for determining how well patterns of dispersal reflect realized connectivity. Ignoring these deferred costs could lead to inaccurate predictions of spatial population dynamics.  相似文献   

15.
In the habitat of desert ants, Cataglyphis fortis, a constant wind is usually blowing during the daytime. When visiting a familiar food source, the ants steer some distance downwind of the feeder, rather than attempting a direct approach that might miss small food sources, in particular. In the downwind area, the ants pick up the odor plume emanating from the food and follow it upwind to the prey. This strategy saves considerable walking distance and time. The additional path necessitated by the downwind strategy is only about 0.75 to 2 m, depending on nest–feeder distance, while missing the food on the upwind side results in much longer search trajectories. During the initial three to five visits to a feeding site, downwind distance and length of the approach path are shortened notably, and the approach trajectory is straightened. Desert ants further exhibit considerable short-term flexibility in their approach. Experienced individuals are evidently able to decide upon leaving the nest which direction to choose toward the feeder, depending on current wind direction (that fluctuates slightly during the day). Notable changes in wind direction occur primarily overnight. For larger nest–feeder distances, the animals adjust their approach en route to the altered wind direction during their first foraging trip in the morning.  相似文献   

16.
The perceptual range of an animal towards different landscape elements affects its movements through heterogeneous landscapes. However, empirical knowledge and modeling tools are lacking to assess the consequences of variation in the perceptual range for movement patterns and connectivity. In this study we tested how changes in the assumed perception of different landscape elements affect the outcomes of a connectivity model. We used an existing individual-based, spatially explicit model for the dispersal of Eurasian lynx (Lynx lynx). We systematically altered the perceptual range in which animals recognize forest fragments, water bodies or cities, as well as the probability that they respond to these landscape elements. Overall, increasing the perceptual range of the animals enhanced connectivity substantially, both qualitatively and quantitatively. An enhanced range of attraction to forests had the strongest impact, doubling immigration success; an enhanced range of attraction to rivers had a slightly lower impact; and an enhanced range of avoidance of cities had the lowest impact. Correcting the enhancement in connectivity by the abundance of each of the landscape elements in question reversed the results, indicating the potential sensitivity of connectivity models to rare landscape elements (in our case barriers such as cities). Qualitatively, the enhanced perception resulted in strong changes in movement patterns and connectivity. Furthermore, model results were highly parameter-specific and patch-specific. These results emphasize the need for further empirical research on the perceptual capabilities of different animals in different landscapes and conditions. They further indicate the usefulness of spatially explicit individual-based simulation models for recognizing consistent patterns that emerge, despite uncertainty regarding animals’ movement behavior. Altogether, this study demonstrates the need to extend the concept of ‘perceptual ranges’ beyond patch detection processes, to encompass the wide range of elements that can direct animal movements during dispersal through heterogeneous landscapes.  相似文献   

17.
Early detection surveillance programs aim to find invasions of exotic plant pests and diseases before they are too widespread to eradicate. However, the value of these programs can be difficult to justify when no positive detections are made. To demonstrate the value of pest absence information provided by these programs, we use a hierarchical Bayesian framework to model estimates of incursion extent with and without surveillance. A model for the latent invasion process provides the baseline against which surveillance data are assessed. Ecological knowledge and pest management criteria are introduced into the model using informative priors for invasion parameters. Observation models assimilate information from spatio-temporal presence/absence data to accommodate imperfect detection and generate posterior estimates of pest extent. When applied to an early detection program operating in Queensland, Australia, the framework demonstrates that this typical surveillance regime provides a modest reduction in the estimate that a surveyed district is infested. More importantly, the model suggests that early detection surveillance programs can provide a dramatic reduction in the putative area of incursion and therefore offer a substantial benefit to incursion management. By mapping spatial estimates of the point probability of infestation, the model identifies where future surveillance resources can be most effectively deployed.  相似文献   

18.
Summary Females of the tiger blue butterfly (Tarucus theophrastus) fly upwind in search of the larval hostplant. Males perch or patrol the downwind edges, searching for incoming females or those already on the bush. A model of competitive mate-searching is developed for the case where not all receptive females are contacted by searching males: the model differs from the earlier ones of Parker (1970, 1974), particularly when few males are involved. Observed distributions of males upon bushes of different sizes agree better with the predictions of the game theory model than with a random distribution of males. The described model may be widely applicable to populations where females remate, but frequently evade detection by searching males.  相似文献   

19.
Synthetic pheromones and other behavioral chemicals are used by land managers to prevent insect-caused tree mortality or crop failure in forest and agricultural systems. Currently, no method exists to continuously measure pheromone concentration or movement in real-time. To improve our understanding of pheromone fate and transport under different forest canopies, results from a set of surrogate pheromone (sulfur hexafluoride tracer) experimental trials were used to evaluate a simple, instantaneous, three-dimensional Lagrangian dispersion model. The model was designed to predict both instantaneous and time-averaged pheromone concentrations. Overall, the results from the model show simulated time-averaged arc maximum concentrations within a factor of two of the observed data. The model correctly matched the sharp peaks and narrow widths of the meandering plumes observed in the instantaneous data, however the magnitude of the instantaneous peaks was often under-estimated. This model and evaluation provide the basis for a tool that can be used to guide deployment of synthetic pheromones or other semiochemicals for monitoring, mass trapping, or disruption of mating or aggregation.  相似文献   

20.
《Ecological modelling》2006,190(1-2):159-170
Animal dispersal in a fragmented landscape depends on the complex interaction between landscape structure and animal behavior. To better understand how individuals disperse, it is important to explicitly represent the properties of organisms and the landscape in which they move. A common approach to modelling dispersal includes representing the landscape as a grid of equal sized cells and then simulating individual movement as a correlated random walk. This approach uses a priori scale of resolution, which limits the representation of all landscape features and how different dispersal abilities are modelled.We develop a vector-based landscape model coupled with an object-oriented model for animal dispersal. In this spatially explicit dispersal model, landscape features are defined based on their geographic and thematic properties and dispersal is modelled through consideration of an organism's behavior, movement rules and searching strategies (such as visual cues). We present the model's underlying concepts, its ability to adequately represent landscape features and provide simulation of dispersal according to different dispersal abilities. We demonstrate the potential of the model by simulating two virtual species in a real Swiss landscape. This illustrates the model's ability to simulate complex dispersal processes and provides information about dispersal such as colonization probability and spatial distribution of the organism's path.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号