首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polycyclic aromatic hydrocarbons (PAH) emissions from a commercial municipal solid waste incinerator (MSWI) were studied. A MSW–coal mixture and coal only were used as fuel for the fluidized bed incinerator. Seven sampling points were chosen according to the classified four PAH emission pathways: flue gas, residue, ash and water. The mixture of MSW and coal resulted in PAH emission more than that of coal only, and PAH emission increased with increasing MSW mass percentage. Calcium oxide (CaO) or calcium carbonate (CaCO3) was added as a desulfurizer. PAH emission also changed with different desulfurizers because of their different influences on heat balance. The PAH toxic equivalent (TEQ) of all operating conditions was also examined, showing that total daily PAH emission from MSWI can be determined.  相似文献   

2.
In this work, an estimate of the elevation of airborne lead concentrations via the lead solder contained in domestic electricity installations and an investigation into the effects of human exposure were conducted using a simulation method. The elevation of airborne lead concentrations due to incineration was calculated to be 0.001 µg/m3 maximum. The simulation results of the calculations indicated that blood lead concentrations could reach as high as 10−5 µg/dl. These concentrations could primarily be attributed to the inhalation of airborne lead particles. In addition, we discuss the influences of lead solder disposal on the ecosystem via soil and water.  相似文献   

3.
The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146 different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline–manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc–carbon batteries, on average, contained the highest levels.  相似文献   

4.
SUWIC's unique mobile metals emissions monitoring laboratory has been used to measure metal pollutant spikes in the flue gas from a municipal solid waste incinerator, prior to gas clean-up. The laboratory has a heated sampling probe that extends into the plant, allowing the simultaneous on-line measurement of the concentrations of more than 30 metals by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). As little is known about temporal variation in metal concentrations, this capability is seen as a major advance. The graphs of continuous measurements show that the elemental loading is far from uniform, and that concentrations fluctuate far more than may have been conventionally expected. There are occasional significant spikes in the emission profiles for cadmium and mercury, which are believed to be due to specific items in the waste feed material. Continuous monitoring measurements are of significant value for those seeking to model metal behaviour in combustion and in pollution control devices.  相似文献   

5.
Waste incineration is still an essential technology in the concept of integrated waste management. Most of the combustion residues are incinerator bottom ash. It has been discovered that incinerator bottom ash from the incineration of separated waste in the primary chamber of the modular two-stage incinerator mainly consists of metal oxides, especially SiO2 and CaO, in proportions that are quite similar to those in cement and so the feasibility of its application as a substitute for cement in concrete was investigated. It was found that after 28 days, the flexural and compressive strengths of the binder using bottom ash were practically comparable with those of a pure cement mixture. The results show that it is reasonable to use a binder containing incinerator bottom ash for applications in which an early-stage lower strength of concrete element is acceptable.  相似文献   

6.
More stringent requirements for the protection of the environment coupled with new incentives for materials recovery, lead modern waste management practice on the line of a more differentiated approach. Separation, or more precisely, non-mixing at the source, is one of the most promising strategies. However, before deciding which categories of urban waste should be collected separately, it is useful to have more detailed knowledge regarding the characteristics of waste. A 5-year investigation has produced enough information to answer such questions as “if one decides to convert food and garden waste to compost instead of burning them, how much less cadmium would be released into the atmosphere?” or, “if the quantities of mercury released into the environment should be drastically reduced, which categories of waste should be collected and treated separately?” This paper discusses sampling and analytical techniques and defines what is a representative sample. It presents the methods applied to determine the annual flow of various chemical elements from 52 waste categories from a European urban area. The results determined through this approach are compared to the total outputs in the gas, wastewater, cinders and fly ashes of the incinerator which currently burns these wastes.  相似文献   

7.
Long range atmospheric transport is the most important sourceof contamination to the natural environment in Norway with manyheavy metals. Investigations based on aerosol studies, bulkdeposition measurements and moss analysis show that airborne transport from other parts of Europe is the major mode for supplyof vanadium, zinc, arsenic, selenium, molybdenum, cadmium, tin,antimony, tellurium, thallium, lead, and bismuth, whereas metalssuch as chromium, nickel, and copper are mainly derived from point sources within Norway and in northwestern Russia close tothe Norwegian border. Elements associated with long range transport show substantial enrichment in the humus horizon of natural soils in southern Norway, sometimes to levels suspected to cause effects on soil microbial processes. E.g. lead concentration values of 150–200 ppm are observed in the mostcontaminated areas in the south as compared to about 5 ppm inthe far north. Elements such as lead and cadmium also show enrichment in some terrestrial food chains. These elements alsoshow considerably elevated levels over background concentrationsin the water and sediment of small lakes in the southern part ofthe country. Retrospective studies based on ombrogenous peatcores indicate that long range transport has been a significantsource of heavy metal contamination in southern Norway for thelast couple of centuries. The deposition of most heavy metals inNorway has been considerably reduced over the last 20 yr, withthe exception of contributions in the north from Russian smelters.  相似文献   

8.
This study aimed to identify the metal flow in a municipal solid waste (MSW) management system. Outputs of a resource recovery facility, refuse derived fuel (RDF) production facility, carbonization facility, plastics liquefaction facility, composting facility, and bio-gasification facility were analyzed for metal content and leaching concentration. In terms of metal content, bulky and incombustible waste had the highest values. Char from a carbonization facility, which treats household waste, had a higher metal content than MSW incinerator bottom ash. A leaching test revealed that Cd and Pb in char and Pb in RDF production residue exceeded the Japanese regulatory criteria for landfilling, so special attention should be paid to final disposal of these substances. By multiplying metal content and the generation rate of outputs, the metal content of input waste to each facility was estimated. For most metals except Cr, the total contribution ratio of paper/textile/plastics, bulky waste, and incombustible waste was over 80%. Approximately 30% of Cr originated from plastic packaging. Finally, several MSW management scenarios showed that most metals are transferred to landfills and the leaching potential of metals to the environment is quite small.  相似文献   

9.
In Switzerland many kinds of waste, e.g. paper, metals, electrical and electronic equipment are separately collected and recycled to a large extent. The residual amount of municipal solid waste (MSW) has to be thermally treated before final disposal. Efforts to recover valuable metals from incineration residues have recently increased. However, the resource potential of critical elements in the waste input (sources) and their partitioning into recyclable fractions and residues (fate) is unknown. Therefore, a substance flow analysis (SFA) for 31 elements including precious metals (Au, Ag), platinum metal group elements (Pt, Rh) and rare earth elements (La, Ce, etc.) has been conducted in a solid waste incinerator (SWI) with a state-of-the-art bottom ash treatment according to the Thermo-Re® concept. The SFA allowed the determination of the element partitioning in the SWI, as well as the elemental composition of the MSW by indirect analysis. The results show that the waste-input contains substantial quantities of precious metals, such as 0.4 ± 0.2 mg/kg Au and 5.3 ± 0.7 mg/kg Ag. Many of the valuable substances, such as Au and Ag are enriched in specific outputs (e.g. non-ferrous metal fractions) and are therefore recoverable. As the precious metal content in MSW is expected to rise due to its increasing application in complex consumer products, the results of this study are essential for the improvement of resource recovery in the Thermo-Re® process.  相似文献   

10.
The aim of this study was to investigate the possibilities of using a by-product (red mud) from alumina production as a catalyst for recovery of waste. The conversion of waste mineral oil (WMO) and waste mineral oil/municipal waste plastic (WMO/MWP) blends over red mud (RM), a commercial hydrocracking catalyst (silica–alumina), and a commercial hydrotreating catalyst (Ni–Mo/alumina) to fuel has been studied. The effect of the catalyst and the temperature on the product distribution (gas, liquid, and wax) and the properties of liquid products were investigated. In the case of hydrotreatment of WMO, the liquids obtained over RM at both 400° and 425°C had larger amounts of low-boiling hydrocarbons than that of thermal or catalytic treatment with hydrotreating catalyst. Gas chromatography and nuclear magnetic resonance analysis of the liquid products showed that RM had hydrogenation and cracking activity in hydrotreatment of WMO. In coprocessing of WMO with municipal waste plastics, temperature had an important effect as well as the amount of MWP in the blend and the catalyst type. The hydrocracking at 400°C produced no liquid product. In hydrocracking at 425°C, the product distribution varied with catalyst type and MWP amount. The commercial hydrocracking catalyst had more cracking ability in the conversion of WMO/MWP to liquid and gas fuel than RM. In the case of hydrocracking over RM, the largest amount of liquid having satisfactory quality was obtained only from the blend containing 20% MWP.  相似文献   

11.
The objective of this research was to compare the leaching characteristics of heavy metals such as cadmium, chromium, copper, nickel, lead, etc., in Korean and Japanese municipal solid waste incineration (MSWI) ash. The rate of leaching of heavy metal was measured by KSLT and JTL-13, and the amount of heavy metals leached was compared with the metal content in each waste component. Finally, bio-availability testing was performed to assess the risks associated with heavy metals leached from bottom ash and fly ash. From the results, the value of neutralization ability in Japanese fly ash was four times higher than that in Korean fly ash. The reason was the difference in the content of Ca(OH)(2) in fly ash. The amount of lead leached exceeded the regulatory level in both Japanese and Korean fly ash. The rate of leaching was relatively low in ash with a pH in the range of 6-10. The bio-availability test in fly ash demonstrated that the amount of heavy metals leached was Pb>Cd>Cr, but the order was changed to Pb>Cr>Cd in the bottom ash. The leaching concentration of lead exceeded the Japanese risk level in all fly ashes from the two countries, but the leaching concentration of cadmium exceeded the regulatory level in Korean fly ash only.  相似文献   

12.
Bio-drying can enhance the sortability and heating value of municipal solid waste (MSW), consequently improving energy recovery. Bio-drying followed by size sorting was adopted for MSW with high water content to improve its combustibility and reduce potential environmental pollution during the follow-up incineration. The effects of bio-drying and waste particle size on heating values, acid gas and heavy metal emission potential were investigated. The results show that, the water content of MSW decreased from 73.0% to 48.3% after bio-drying, whereas its lower heating value (LHV) increased by 157%. The heavy metal concentrations increased by around 60% due to the loss of dry materials mainly resulting from biodegradation of food residues. The bio-dried waste fractions with particle size higher than 45 mm were mainly composed of plastics and papers, and were preferable for the production of refuse derived fuel (RDF) in view of higher LHV as well as lower heavy metal concentration and emission. However, due to the higher chlorine content and HCl emission potential, attention should be paid to acid gas and dioxin pollution control. Although LHVs of the waste fractions with size <45 mm increased by around 2× after bio-drying, they were still below the quality standards for RDF and much higher heavy metal pollution potential was observed. Different incineration strategies could be adopted for different particle size fractions of MSW, regarding to their combustibility and pollution property.  相似文献   

13.
This research centered on finding and perfecting methods of collection and disposal of refuse in Ibadan North Local Government Areas. The methodology used included questionnaire administration, personal interviews, field reconnaissance, and biochemical tests of water samples, all aimed at providing useful data for the design of effective methods of collecting and disposing refuse. The local government area was divided into three classes based on resident income: a high-income area (Bodija Avenue, etc.), a medium-income area (Sanngo, Oluyole, etc.), and a low-income area (Beere, Adeoyo, etc.). The research outcomes revealed that the waste generation rate for the local government ranged from 0.2 to 0.33kg/cap/day and waste density ranged from 172.41 to 217.61kg/m(3). Water analyses showed that the chloride, manganese, lead, and cadmium levels in water from low-income areas were above the WHO standard. The refuse generated in high and medium-income areas was collected and transported to the disposal site properly while only 54.5% of wastes were handled properly in low-income areas. Also, in order to make low-income areas free from wastes daily, an additional 15 metal skips and 9 refuse vehicles would be needed.  相似文献   

14.
Temporary stabilization of air pollution control residues using carbonation   总被引:1,自引:0,他引:1  
Carbonation presents a good prospect for stabilizing alkaline waste materials. The risk of metal leaching from carbonated waste was investigated in the present study; in particular, the effect of the carbonation process and leachate pH on the leaching toxicity of the alkaline air pollution control (APC) residues from municipal solid waste incinerator was evaluated. The pH varying test was conducted to characterize the leaching characteristics of the raw and carbonated residue over a broad range of pH. Partial least square modeling and thermodynamic modeling using Visual MINTEQ were applied to highlight the significant process parameters that controlled metal leaching from the carbonated residue. By lowering the pH to 8-11, the carbonation process reduced markedly the leaching toxicity of the alkaline APC residue; however, the treated APC residue showed similar potential risk of heavy metal release as the raw ash when subjected to an acid shock. The carbonated waste could, thereby, not be disposed of safely. Nonetheless, carbonation could be applied as a temporary stabilization process for heavy metals in APC residues in order to reduce the leaching risk during its transportation and storage before final disposal.  相似文献   

15.
A sensor unit was placed online in the particle stream produced by an eddy current separator (ECS) to investigate its functionality in non-ferrous metals recovery. The targeted feed was the 1–6 mm size fraction bottom ash from a municipal waste incinerator. The sensor unit was attached to the ECS splitter, where it counted in real-time metal and mineral particles and accurately measured the grade of the stream in the metals product. Influence of segregation (e.g. due to particle size or density) on the metals concentrate were detected and studied using the sensor data collected at different splitter distances. Tests were performed in the laboratory and in a bottom ash processing plant with two different types of ECS and two sources of bottom ash with different moisture content. The measured metal grades matched the manual analyses with errors 0%, 1.5% and 3.1% for moist, dry and very wet feed, respectively. For very wet feed the ECS metals recovery dropped, which was observed from the strongly reduced particle counts and the large changes in cumulative particle properties. The measured sample proved representative for the whole metals concentrate if it is collected at a representative position within the metals particle trajectory fan produced by the ECS. ECS-performance proved sensitively dependent on splitter distance, since a 10 mm shift may result in 10% change in metal recovery and 18% change in grade. The main functionalities of the sensor unit are determined as online quality control and facilitation of automatic control over the ECS splitter distance. These functionalities translate in significant improvements in ECS metals recovery which in turn is linked to economic benefits, increased recycling rate of scrap metals and a further reduction of the ecological drawbacks of incinerator bottom ash.  相似文献   

16.
Air emissions and residual ash samples were collected and analyzed during experiments of open, uncontrolled combustion of electronic waste (e-waste), simulating practices associated with rudimentary e-waste recycling operations. Circuit boards and insulated wires were handled separately to simulate processes associated with metal recovery. The average emissions of polychlorinated dibenzodioxins and dibenzofurans (PCDD/PCDFs) were 92 ng toxic equivalency (TEQ)/kg [n = 2, relative standard deviation (RSD) = 98%] and 11 900 ng TEQ/kg (n = 3, RSD = 50%) of the initial mass of the circuit boards and insulated wire, respectively. The value for the insulated wire is about 100 times higher than that for backyard barrel burning of domestic waste. The emission concentrations of polybrominated dibenzodioxins and dibenzofurans (PBDD/PBDFs) from the combustion of circuit boards were 100 times higher than for their polychlorinated counterparts. Particulate matter (PM) sampling of the fly ash emissions indicated PM emission factors of approximately 15 and 17 g/kg of the initial mass for the circuit boards and insulated wire, respectively. Fly ash samples from both types of e-waste contained considerable amounts of several metallic elements and halogens; lead concentrations were more than 200 times the United States regulatory limits for municipal waste combustors and 20 times those for secondary lead smelters. Leaching tests of the residual bottom ash showed that lead concentrations exceeded U.S. Environmental Protection Agency landfill limits, designating this ash as a hazardous waste.  相似文献   

17.
New waste management programs are currently aimed at developing alternative treatment technologies such as mechanical–biological treatment (MBT) and composting plants. However, there is still a high uncertainty concerning the chemical and microbiological risks for human health, not only for workers of these facilities, but also for the population living in the neighborhood. A new MBT plant is planned to be constructed adjacently to a municipal solid waste incinerator (MSWI) in Tarragona (Catalonia, Spain). In order to evaluate its potential impact and to differentiate the impacts of MSWI from those of the MBT when the latter is operative, a pre-operational survey was initiated by determining the concentrations of 20 volatile organic compounds (VOCs) and bioaerosols (total bacteria, Gram-negative bacteria, fungi and Aspergillus fumigatus) in airborne samples around the MSWI. The results indicated that the current concentrations of bioaerosols (ranges: 382–3882, 18–790, 44–926, and <1–7 CFU/m3 for fungi at 25 °C, fungi at 37 °C, total bacteria, and Gram-negative bacteria, respectively) and VOCs (ranging from 0.9 to 121.2 μg/m3) are very low in comparison to reported levels in indoor and outdoor air in composting and MBT plants, as well in urban and industrial zones. With the exception of total bacteria, no correlations were observed between the environmental concentrations of biological agents and the direction/distance from the facility. However, total bacteria presented significantly higher levels downwind. Moreover, a non-significant increase of VOCs was detected in sites closer to the incinerator, which means that the MSWI could have a very minor impact on the surrounding environment.  相似文献   

18.
提出高温分解及烟气净化处理废弃电子垃圾的技术。通过喷水系统调节分解炉内气氛,控制有机物分解速度,使有机物裂解成二氧化碳和水蒸气,有害成份经净化系统再次处理后达到环保排放标准。金属部分可进一步进行提炼回收,实现有机物和金属的绿色分离。  相似文献   

19.
The effects of residues from municipal solid waste landfill, Khon Kaen Municipality, Thailand, on corn (Zea mays L.) yield and heavy metal content were studied. Field experiments with randomized complete block design with five treatments (0, 20, 40, 60 and 80% v/v of residues and soil) and four replications were carried out. Corn yield and heavy metal contents in corn grain were analyzed. Corn yield increased by 50, 72, 85 and 71% at 20, 40, 60 and 80% treatments as compared to the control, respectively. All heavy metals content, except cadmium, nickel and zinc, in corn grain were not significantly different from the control. Arsenic, cadmium and zinc in corn grain were strongly positively correlated with concentrations in soil. The heavy metal content in corn grain was within regulated limits for human consumption.  相似文献   

20.
The reduction of SO2, HCl, and NO(x) concentrations using calcium magnesium acetate (CMA) as a novel sorbent in a simulated municipal waste incinerator flue gas was investigated. The reduction of individual SO2, HCl, and NO(x) concentrations was tested at 850 degrees C and it was found that CMA could reduce the SO2 concentration by 74%, HCl concentration by 64%, or NO(x) concentration by 94%. It was observed that individual SO2 or HCl capture increased with increasing initial oxygen concentration in the reacting gas or increasing sorbent input. NO(x) reduction decreased with increasing initial oxygen concentration in the reacting gas. The simultaneous reduction of SO2, HCl, and NO(x) concentrations by CMA was also investigated. It was found that CMA could simultaneously capture 60% SO2 and 61% HCl and reduce NO(x) concentrations by 26%, when the initial oxygen concentration in the reacting gas was 4%. During the simultaneous reduction of SO2, HCl, and NO(x), it was noted that as the initial oxygen concentration in the reacting gas increased, the efficiency of SO2 capture increased too, but the efficiency of HCl capture and the efficiency of NO(x) destruction decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号