首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
白腐菌氧化—混凝工艺处理纸浆漂白废水试验研究   总被引:2,自引:1,他引:2  
报告用白腐真菌氧化—混凝工艺处理纸浆厂四段漂白混合废水的试验情况 ,在最佳工艺条件下 ,混凝处理出水CODCr、OD4 6 5分别为 1 85 .1mg/L、0 .0 0 4 2 ,去除率分别为 86 .5 %、99.4% ,实验结果表明 :白腐真菌氧化—混凝工艺对于纸浆漂白废水是一种有实用价值的处理工艺。  相似文献   

2.
光电催化氧化处理高含氯采油废水的研究   总被引:18,自引:3,他引:15  
以高压汞灯为光源,考察了在光催化、电氧化、光电催化及光电催化/H2O2体系中降解实际油田采油废水的效率.研究了实际高含氯采油废水在TiO2悬浮态光电催化反应器中的降解动力学.结果表明,在相同的槽电压和反应时间下,光电催化体系降解有机污染物的效率均高于电化学氧化和光催化,而且在电氧化和光电催化氧化体系中均检测到有一定量的活性氯产生,从而可以提高有机污染物的降解效率.光电催化/H2O2体系中由于在紫外光的照射下H2O2分解为大量的·OH从而使得降解效率在短时间内大大提高.同时详细研究了采油废水的初始ρ(CODCr),槽电压和溶液pH等对光电催化降解的影响.   相似文献   

3.
X741.031200603440光电催化氧化处理高含氯采油废水的研究/李桂英…(中科院广州地球化学研究所有机地球化学国家重点实验室)∥环境科学研究/中国环科院.-2006,19(1).-30~34环图X-6以高压汞灯为光源,考察了在光催化、电氧化、光电催化及光电催化/H2O2体系中降解实际油田采油废水的效率。研究了实际高含氯采油废水在TiO2悬浮态光电催化反应器中的降解动力学。结果表明,在相同的槽电压和反应时间下,光电催化体系降解有机污染物的效率均高于电化学氧化和光催化,而且在电氧化和光电催化氧化体系中均检测到有一定量的活性氯产生,从而可以提高有…  相似文献   

4.
厌氧-混凝工艺处理造纸厂终端废水试验研究   总被引:1,自引:0,他引:1  
本文报告了用厌氧 -混凝工艺处理造纸厂终端废水的实验情况 ,在最佳实验条件下 ,废水从CODcr80 6 . 7m g/ L、BOD52 10 . 5 m g/ L、SS2 15 . 7m g/ L、OD4 650 . 35 0降至 CODcr6 1. 5 m g/ L、BOD52 7. 4m g/ L、SS17.3mg/ L、OD4 650 .0 11。实验结果表明对造纸厂终端废水的治理 ,本工艺是很有实用价值的一种方法  相似文献   

5.
含镍废水是一种有毒废水,废水中的镍能刺激人体精氨酶、羧化酶,引起各种炎症,损伤心肌和肝脏。据报导,镍还是致癌物质。镀镍漂洗水中含有大量硫酸镍和氯化镍。过去这种漂洗废水直接排放,既污染环境,危害人民健康,又造成经济上很大浪费。反渗透法浓缩回收镀镍废水新工艺是在一个闭路循环系统中进行的。它不排放废水和废渣、浓缩回收的镍液返回镀镍镀槽重复使用。通过反渗透管膜的淡水回到漂洗槽作为补充漂洗用水。反渗透膜是反渗透技术的心脏。这里采用的反渗透膜是二醋酸纤维素管式膜。这种膜是半透膜,它能把电镀含镍废水中的氯化镍和硫酸镍与水分离开,从而达到浓缩回收之目的。如图(一)所示:在外加压力P作用下,含  相似文献   

6.
柠檬酸有机废水的生化处理研究   总被引:18,自引:0,他引:18  
采用柠檬酸废水→培养饲料酵母→可溶化槽→光合细菌(PSB)槽→活性污泥工艺流程处理柠檬酸废水,实验结果表明,技术可行:原废水中COD_(Cr)和BOD_5的总去除率达98%以上,达国家GB8978-88排放标准;干酵母获得率1.0-1.2%,蛋白质含量46.58%;COD_(Cr)负荷达6kg/(m~3.d);TVA利用率达95%以上.本实验还筛选到对高浓度有机废水具较高同化能力的PSB混合菌种.  相似文献   

7.
文章采用RuO2-Ti板作为阳极,不锈钢板为阴极,研究了pH值、电解质种类及浓度、电压、电解时间与通电方式对酸性蒽醌绿2Ж模拟染料废水电催化氧化效果,结果表明处理酸性蒽醌绿2Ж模拟染料废水的最佳电催化氧化条件为槽电压10V、初始pH值为4、NaCl浓度为2.0g/L;在此条件下连续电解50min,COD去除率和脱色率分别为61.46%和83.14%。文章首次提出脉冲电催化氧化方式,研究表明脉冲电催化氧化可以明显提高能量效率和电流效率,降低处理成本。  相似文献   

8.
将逆电渗析(RED)电极氧化还原反应作用于有机废水降解,可以达到利用低品位热氧化降解有机废水的目的.RED反应器阳极产生氧化反应生成的HClO及阳极表面直接电化学氧化反应对有机废水产生氧化降解作用,阴极发生电芬顿反应生成H_2O_2对有机废水产生氧化降解作用.为了验证溶液浓差能驱动的RED有机废水氧化降解工作机理,通过搭建一个由40对膜电池单元所构成的实验室规模的RED有机废水氧化降解反应器及相应的实验系统,对偶氮染料——酸性橙Ⅱ模拟废水进行氧化降解机理研究.通过3次重复性实验研究发现:在通过正交试验确定的最佳降解条件下,浓度为150 mg·L~(-1)各500 mL的酸性橙Ⅱ模拟废水分别流经RED反应器阴、阳两极,阴、阳极12 min酸性橙Ⅱ平均降解率分别可达90.14%和97.87%,20 min酸性橙Ⅱ平均降解率分别达到97.56%和99.81%.初步研究结果表明,溶液浓差能驱动的RED反应器对难生化降解有机物有较好的降解效果,为后续相关理论和实验研究提供了参考依据.  相似文献   

9.
工业污水处理的基本方法可分为四大类:1.物理法(机械法)一如沉淀、浮选等方法。主要是用来分离废水中的悬浮物质,一方面使废水得到一定程度的澄清,另一方面对有用的悬浮物可以回收利用。2.化学法—如混凝、中和、氧化还原等方法,是利用化学药品进行废水处理的方法。主  相似文献   

10.
以辛醇废水为研究对象,采用空气催化氧化-ClO2助氧化相结合的方法,探讨了药用辛醇废水的处理方法.结果表明,该方法能有效的去除废水中的有机污染物,实现废水处理的资源化回收利用.处理后的废水中CODCr浓度达到国家排放标准(CODCr≤1 50 mg/L).  相似文献   

11.
一、活性炭吸附法处理废水的特点及流程: 1.活性炭吸附法处理废水的特点: 1)由于活性炭对有机物具有较好的吸附特性,因此作为废水高级处理的手段日益被人们重视。如酚类、苯类化合物、石油及石油产品等有机化合物去除效果较好,对难于用生物氧化法氧化的有机物,如杀虫剂、合成染料、合成洗涤剂等较其他方法具有独特的效果。对于重金属离子如锌、汞、铬、铝、镍等,由于  相似文献   

12.
针对合成香料废水有机污染物浓度高、毒性大、难降解及含盐量高等问题,以某香料厂实际废水作为研究对象,采用电催化氧化的方法对其进行试验研究,考察了pH值、槽电压、气体流量、温度、反应时间等因素对其CODCr去除率的影响.结果表明,这种方法能有效去除废水中的CODCr,特别是pH值、槽电压这2个因素对CODCr的去除率影响较大.利用试验中所建立的优化操作条件在100m3/d规模的实际合成香料废水预处理工程实践中,对CODCr的处理效率稳定在75%~90%.对后续生物处理过程基本不构成影响.  相似文献   

13.
通过电极的选择,催化活性炭粒子电极的制备,应用电催化氧化技术对某炼油厂含苯酚丙酮的生产废水进行预处理研究.通过对5种金属催化剂进行比较,最终选择锰离子作为活性炭粒子的催化剂,提高了粒子电极的催化活性.通过研究4种影响因素:槽电压、pH值、曝气量、水力停留时间,对COD_(Cr)去除效果的影响,得到最佳反应条件为:槽电压取值为15V,进水pH值为5.5-6.5,水力停留时间为90min,曝气量为6m~3/(m~2·h).在最优条件下,废水COD_(Cr)去除率可达到80%,可生化性BOD/COD值从0.07上升到0.43,很大程度上提高了废水的可生化性.在优化的试验条件下,生产废水中的酚类、芳香烃和醛类、酮类物质浓度都能降解到10mg/L以下,作为苯酚丙酮废水预处理效果显著,为后续生化处理提供了有利条件.  相似文献   

14.
以苯酚为模型底物,研究了中性低温常压条件下无机阴离子对CuO-H2O2氧化苯酚废水的影响及机制.结果表明,CuO-H2O2能高效彻底氧化苯酚,10 min氧化率达94.7%,氧化遵循羟基自由基机制.无机阴离子对氧化效果有不同影响,浓度越高影响越显著.HCO-3加速H2O2的无效分解,当浓度从0增加到20 mmol·L-1 时,H2O2分解速率常数由0.3738 min-1提高到0.5347 min-1,TOC去除速率常数由0.267 min-1下降到0.0194 min-1.HPO2-4通过抑制H2O2分解实现对苯酚的氧化抑制,H2O2分解速率常数及TOC去除速率常数分别由0.3738 min-1、0.267 min-1降低到0.0338 min-1、 0.0338 min-1.Cl-能够促进H2O2有效分解,对苯酚氧化有利,H2O2分解速率常数及TOC去除速率常数分别由0.3738 min-1、0.267 min-1提高到0.6040 min-1、0.3879 min-1.NO-3、SO2-4对H2O2的分解及苯酚的氧化影响不大.  相似文献   

15.
使用碳毡电极对印染废水进行连续流动式处理,实验结果表明:废水经过碳毡电极一次处理后,COD降低60%以上,二级处理后COD降低80%以上,色度明显下降,混浊度、氨氮、总硬度和金属离子浓度均有下降。一、实验方法本实验装置如图1所示,印染废水经RDB-Ⅱ型-蠕动泵以一定流速(本实验中流速为2-5ml/分)进入电极柱中,柱中以一定密度(不少于0.14g/cm~3。均匀填入碳毡电极山西煤化  相似文献   

16.
掺硼金刚石(BDD)电极在电化学氧化难生物降解性废水时具有电化学性能良好、处理效果好等特点,因而受到广泛关注.本试验采用BDD电极电化学氧化榨菜废水,并考察了稀释比、初始pH值、电流密度、极板间距等参数对COD、氨氮(NH3-N)去除率的影响.试验结果表明:在稀释比为1∶2、电流密度50 mA·cm-2、未调节pH值、极板间距为15 mm的最优工况下,COD、NH3-N去除率分别为96.9%、100%.COD去除率满足线性方程y=0.435t(R2=0.9899),NH3-N去除率满足多项式拟合方程y=0.53+0.936t+0.031t2-3.46×10-4t3(R2=0.9956).研究表明,BDD电极电化学氧化榨菜废水是一种有效的高级氧化工艺.  相似文献   

17.
丁春生  秦树林  缪佳  宁平 《环境科学》2008,29(5):1266-1270
以对硝基苯甲酸废水为处理对象,分别考察了活性炭投加量、二氧化氯投加量、pH值及反应时间等因素对二氧化氯/活性炭催化氧化工艺处理对硝基苯甲酸废水的影响.并在最优条件下,通过试验考证了该工艺作为高浓度对硝基苯甲酸废水的预处理手段,在去除废水中COD和提高可生化性(BOD5/COD)方面的综合效果.结果表明,采用ClO2与活性炭组成催化氧化体系,其处理COD为109印mg·L-1,的对硝基苯甲酸废水,效率比单独使用二氧化氯高10%;在废水pH值为4.1时,当活性炭投加量为200 g·L-l、反应时间30 min、二氧化氯投加量为300 mg·L-1,时,废水的COD降至7 100 mg·L-1,去除率达到35%, BOD5浓度提高到1 810 mg·L-1,废水的BOD5/COD值由原来的0.10提高到0.25,明显提高了废水的可生化性.因此,二氧化氯/活性炭催化氧化工艺是预处理高浓度对硝基苯甲酸废水的有效手段.  相似文献   

18.
H2O2湿式氧化处理含酸性红B染料模拟废水的研究   总被引:12,自引:1,他引:12  
用H2 O2 作氧化剂 ,在连续式的压力反应器内探索了WPO(过氧化氢湿式氧化法 )、CWPO(催化过氧化氢湿式氧化法 )氧化降解含酸性红B染料模拟废水的过程 ,分别考察温度、压力、氧化剂量及催化剂对反应过程与对象污染物降解的影响规律 .结果表明 ,与常规湿式氧化法相比 ,WPO能在较低的温度和压力下降解结构稳定的有机物 ,在 2 2 0℃、8min、0 1MPa时 ,含1 5 0 0mg·L-1 酸性红B染料模拟废水的COD和色度的去除率分别达到 6 0 5 0 %和 96 80 % .同时发现 ,通过升温和增加过氧化氢的投加量不能够使废水COD和色度的去除率进一步提高 ,故引入Cu2 作催化剂来实现CWPO过程 ,在 2 2 0℃、8min、0 1MPa条件下 ,CWPO对同一废水的COD和色度的去除率分别达到 82 5 0 %和 99 71 % .通过计算得出CWPO与WPO相比基于COD的表观活化能降低了 6 5 93 % .  相似文献   

19.
X790.31200600474臭氧化过程在工业废水中的应用:纺织、牛皮纸E1和乳清废水=Applicationofozonationprocessinindustrialwastewaters:textile,kraftE1andwheyefflu ents[刊,英]/M.R.Assalin…∥Environ.Technol..-2004,25(8).-867~872国图工业过程产生的废水中含有大量的有机和无机化合物。本研究中,将深度氧化过程(AOPs)应用于水污染的控制,研究了不同废水的臭氧化过程。选择了来自纺织、牛皮纸E1和奶酪制造过程的废水作为工业废水的实例。通过总有机碳(TOC)、色度和毒性的降低,对底物矿物化的效率进行了对比分析。结果表明臭氧化…  相似文献   

20.
耿土锁 《环保科技》2004,10(1):21-23
论述了制革废水综合治理工艺 ,即包括鞣革含铬废水的回收工艺 (加碱沉淀、压滤脱水和氧化提纯 )以及混合废水的治理工艺 (气浮池和氧化塘 )。铬回收结果可使含铬废水的铬从 2 2 0 0~ 35 0 0 mg/L降低到 1~ 1.4 mg/L,去除率高达 99.95 %~ 99.96 % ,满足国家废水排放中对铬的排放要求 ,提纯后的铬达到回用质量 ,可彻底消除二次污染 ;气浮池和氧化塘相串联具有能耗低、污泥含水率低和便于资源化的优点  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号