首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
非均相催化臭氧氧化深度处理炼油废水   总被引:1,自引:0,他引:1  
采用非均相催化剂催化臭氧氧化处理炼油废水,考察了催化剂负载率、p H、催化剂投加量和臭氧投加量及反应时间对处理效果的影响。结果表明,组合工艺最佳工艺条件为:催化剂负载率2.1%、p H 9、催化剂投量80 g/L、臭氧投量8.1 mg/L、反应时间60 min,COD、石油类、NH3-N、硫化物和SS去除率分别为91.3%、92.7%、80.5%、34.5%和59%。处理炼油废水过程中组合工艺存在明显协同效应,协同因子为1.47。中间臭氧氧化和催化臭氧氧化在最优工艺条件下对炼油废水COD的降解均符合准一级动力学规律。基于叔丁醇的实验结果,结合降解动力学可以推测,降解炼油废水过程中非均相催化剂催化臭氧产生高活性羟基自由基是降解效率提高的主导因素。  相似文献   

2.
造纸中段废水的混凝-臭氧氧化深度处理研究   总被引:15,自引:0,他引:15  
就混凝-臭氧氧化组合工艺对造纸中段废水生物处理出水的净化效果进行了研究.结果表明,Ca(OH)2对废水色度、TOC、COD和254 nm的紫外吸收值(UV254)的去除效果均优于聚合氯化铝/聚丙烯酰胺(PAC/PAM);Ca(OH)2-O3组合工艺的处理效果也优于PAC/PAM-O3工艺.当Ca(OH)2投加量为1 g/L、臭氧投加量为50 mg/L时,废水色度降低至10倍以下,COD小于150 mg/L.经Ca(OH)2混凝处理后,相对分子量在0.5~1.0 ku和10.0 ku以上的有机物显著减少;进一步臭氧氧化处理后,除0.5 ~1.0 ku范围的有机物大幅度增加外,其余分子量有机物显著减少.由于对色度贡献很大的大分子量物质的去除,废水的色度显著下降直至无色.  相似文献   

3.
高浓度钻井废水的混凝-催化氧化处理   总被引:2,自引:0,他引:2  
以华北油田某深井的高浓度钻井废水(COD高达14 460.0 mg/L)为研究对象,提出了酸化-混凝-催化氧化-吸附的组合处理工艺。重点研制了钻井废水催化氧化处理催化剂(镍基催化剂),通过实验确定了最佳工艺参数条件。着重考察了催化氧化处理的工艺条件,在pH值为4,次氯酸钙投加量为4.4 g/L,催化剂投加量为1.6 g/L的条件下COD降至403.5 mg/L,进一步吸附处理后COD降至139.9 mg/L、色度为30倍、石油类含量为3.8 mg/L、pH为8.0和SS浓度为52mg/L,最终出水水质达到《污水综合排放标准》(GB 8978-1996)二级标准,处理成本为84.8元/m3。  相似文献   

4.
臭氧-BAF组合工艺对石化行业废水深度处理的中试研究   总被引:1,自引:0,他引:1  
采用臭氧-曝气生物滤池(BAF)组合工艺对中石化九江分公司二级生化出水进行深度处理中试实验。探讨了臭氧投加量、进水水质冲击负荷等因素对该组合工艺出水COD、NH4+-N的影响。中试结果表明,在该水质条件下,臭氧最佳投加量为20~25 mg/L;组合工艺处理后出水COD低于40 mg/L,NH4+-N低于5 mg/L,达到中水回用设计标准;该组合工艺能够经受一定冲击负荷。  相似文献   

5.
改性硅藻土复合混凝剂处理深度采油废水   总被引:1,自引:0,他引:1  
某油田深度采油废水中含有大量残油,粘度大、乳化程度高、油水分离困难,本实验采用改性硅藻土吸附和无机混凝剂混凝相结合以处理深度采油废水.结果表明,对于含油浓度为250~ 350 mg/L的石油废水,用强化吸附方法,吸附剂投加量为1.5 g/L,优化实验条件下除油率可达到75%;采用强化混凝的方法,PAC在投药量为200 mg/L的情况下除油率可达到87%;采用强化吸附-混凝联合处理的优化方法,投加0.7 g/L吸附剂+PAC 200 mg/L,除油率>95%,明显高于吸附和混凝单独处理效果,大大改善了出水水质.  相似文献   

6.
混凝沉淀法处理含砷选矿废水   总被引:1,自引:0,他引:1  
某钨矿含砷选矿废水砷含量高且砷以As(V)为主要存在形态,采用混凝沉淀法处理,详细考察了生石灰、硫酸亚铁和六水三氯化铁3种混凝剂对废水中砷的去除效果。实验结果表明,在PAM投加量40 mg/L,静沉时间60 min条件下,比较分析3种混凝剂对砷的去除效果,三氯化铁为最佳除砷混凝剂。三氯化铁最佳除砷工艺条件为:pH 7.5,三氯化铁投加量986.67 mg/L,混凝反应时间25 min,PAM投加量为40 mg/L,静沉60 min,含砷选矿废水经该工艺处理后,砷去除率可达99.14%,出水砷浓度降至0.361 mg/L,达到国家污水综合排放标准(GB8978-1996)。  相似文献   

7.
MBR出水氯、紫外、臭氧单独与组合消毒   总被引:1,自引:0,他引:1  
采用氯、紫外和臭氧单独与2种组合工艺对MBR工艺中试出水进行了消毒实验,研究了不同消毒方式对指示性微生物的去除效果以及消毒副产物三卤甲烷(THMs)生成量随有效氯投加量的变化。结果表明,组合工艺消毒效果明显优于单独消毒效果,紫外剂量为25 mJ/cm2与有效氯投加量为3 mg/L的紫外与氯组合、臭氧投加量为6 mg/L与有效氯投加量为4 mg/L的臭氧与氯组合2种工艺消毒后出水中的总大肠菌群指标均满足《污水再生利用城市杂用水水质》(GB/T 18920-2002)的要求。THMs生成量随着有效氯投加量的增加而增加。相对紫外与氯组合消毒,臭氧与氯组合消毒可以大幅度降低THMs生成量,有效氯投加量为4 mg/L时,THMs生成浓度为14.11μg/L,比氯单独消毒过程降低了37.19%。  相似文献   

8.
用臭氧氧化处理镀镍漂洗废水中的有机物,主要考察pH、臭氧投加量、废水初始COD浓度、温度等因素对处理效果的影响,并对反应机理进行初步的探讨.实验结果表明,废水的COD去除率随pH的增大而升高,比较适宜的pH为6~7;适当地增加臭氧投加量有利于提高COD去除率;在一定温度范围(15~35℃)内,提高反应温度有利于废水中有机物的降解;当臭氧投加量为20 mg/(min·L),对于初始COD为56 mg/L、pH 6.5的实际镀镍漂洗废水,在25 ℃的条件下氧化100min,出水COD降至10mg/L,COD去除率达到82%;在臭氧氧化镀镍漂洗废水的反应中,部分有机物的降解是在Ni2 的催化下由臭氧分解生成氧化能力更强的自由基来完成.臭氧氧化可作为镀镍漂洗废水处理回用的预处理工艺.  相似文献   

9.
采用臭氧/活性炭联合工艺对焦化废水A2/O出水进行深度处理。考察了溶液初始pH值、臭氧投加量、活性炭投加量及使用次数、反应时间对焦化废水处理效果的影响。实验结果表明,活性炭的使用可显著提高臭氧对焦化废水COD的去除率,在溶液初始pH值为10.25、臭氧投加量为7.5 mg/min、活性炭投加量50 g/L、反应时间为30 min条件下,COD去除率达到73.51%。同时,在活性炭重复使用10次时,COD去除率为70.85%,仅降低了2.66%。  相似文献   

10.
针对焦化废水二级生化处理出水COD、色度和浊度无法达标的问题,实验研究了异相Fenton试剂催化氧化法和混凝沉淀法以及二者联合深度处理焦化废水的效果,分别探讨了H2O2、FeOOH投加量、初始pH,混凝剂投加量及种类对COD去除的影响,确定了最佳运行条件,采用GC-MS分析了联合工艺对废水中有机物的去除规律。异相Fenton试剂催化氧化静态实验研究表明,当H2O2(10%)投加量为2 mL/300 mL,FeOOH投加量为3 g/L,初始pH为4~6之间,处理效果最佳;混凝沉淀实验中最佳的混凝剂为聚丙烯酰胺阳离子,最佳投加量为8 mg/L。异相Fenton试剂催化氧化-混凝沉淀联合工艺深度处理焦化废水,出水COD基本在90 mg/L左右,浊度为0.8NTU左右,色度为40度以下,满足国家污水综合排放二级标准(GB8978-1996)。GC-MS分析显示,联合工艺能有效减少废水中有机物的种类和浓度,并将废水中长链大分子化合物和杂环化合物分解为短链的小分子化合物,构成联合工艺出水COD的主要是小分子有机物,尤其是卤代烷烃含量较高。  相似文献   

11.
臭氧-曝气生物滤池深度处理印染制革园区废水   总被引:3,自引:0,他引:3  
针对浙江省某印染制革园区污水处理厂二级生化出水,开展了处理规模36~120 t/d的臭氧-曝气生物滤池中试研究,对臭氧预处理进行优化,考察了臭氧预处理优化后与不同填料BAF组合对污染物的去除情况。结果表明,当臭氧预处理条件为投加量25 mg/L,三点投加且投加比为6:3:1,臭氧接触时间为42 min时,处理效果较好且最经济;在此臭氧预处理条件下,臭氧-活性炭BAF的出水COD能稳定在50 mg/L,色度稳定在5度,满足《城镇污水厂污染物排放标准》(GB 18918-2002)中的一级B排放要求;臭氧-混合填料BAF的出水COD和色度也能基本达到一级B排放要求;而臭氧-陶粒BAF出水COD和色度都未能达到一级B排放要求。  相似文献   

12.
采用絮凝沉淀+接触氧化+人工湿地工艺处理印染废水中COD研究。结果表明,斜板沉淀池出水COD平均值为1322mg/L,此间COD去除率为38·6%;二沉池出水COD平均值为71mg/L,此段COD去除率达94·6%;人工湿地出水COD平均值为37mg/L,人工湿地COD去除率为48·0%。处理设施COD总去除率98·3%。  相似文献   

13.
O3氧化工艺处理黄连素制药废水研究   总被引:1,自引:0,他引:1  
采用臭氧(O3)氧化法处理含高浓度黄连素和COD的制药废水,探讨了废水初始pH、O3投加量及初始黄连素浓度等因素对O3氧化过程的影响,确定了O3氧化技术处理黄连素制药废水的最佳操作条件。结果表明,O3能够有效分解废水中的黄连素,降低其COD浓度;黄连素浓度为700mg/L、COD为3500mg/L、pH为0.88的废水,进气O3浓度为14.05mg/(L·min),处理时间为180rain(即投加量为2529mg/L)时,黄连素和COD的降解率分别可达77.46%和41.28%,BOD,/COD比(B/C比)从0.06提高到0.34,增加了4.7倍;随着废水中初始黄连素浓度的升高,废水COD降解率逐渐降低。O3氧化法是一种有效的黄连素制药废水预处理技术,可以大大提高废水的可生化性。  相似文献   

14.
采用内循环好氧生物流化床对中低浓度糖业废水进行生物降解,当进水COD、NH3-N浓度分别为400~600mg/L和7~11 mg/L时,其相应去除率达到80%~90%和70%~80%,处理效果良好;COD容积负荷可达到5.1 kg COD/(m3·d),反应器具有较强的抗负荷冲击能力.采用臭氧氧化工艺对COD浓度为28...  相似文献   

15.
ClO2氧化/TiO2复合吸附剂协同体系处理印染废水的实验研究   总被引:1,自引:0,他引:1  
利用ClO2 氧化/TiO2 复合吸附剂协同体系对处理实际印染废水进行了实验研究.结果表明,对于COD为750 mg/L、色度为250倍、SS为100 mg/L的1 000 mL印染废水,当溶液pH为4.0、ClO2 用量20 mg/L、TiO2 复合吸附剂用量2.5 g、反应时间和吸附时间分别为2、8 min时,处理后的废水COD<100 mg/L、色度<40倍、SS<70 mg/L,达到了《纺织染整工业水污染物排放标准》(GB 4287-92)排放要求.并对两者的协同机理进行了理论上的探讨.  相似文献   

16.
采用一种新的工艺技术方法即水解酸化-改良UASB工艺处理玉米酒精废水。结果表明,在改良UASB运行60 d顺利启动完成后,进水COD在5 470~7 910 mg/L之间,TN在70~107 mg/L之间,TP在115~187 mg/L之间,SS在864~1 490 mg/L之间的条件下,水解酸化对COD和SS的去除率分别达50%和51%,NH3-N经过水解酸化后升高。改良UASB对COD的去除率达80%,对NH3-N、TN和TP也有一定去除,去除率分别为12%、17%和20%,经过水解酸化及改良UASB处理利于后续好氧处理。  相似文献   

17.
硼泥复合混凝剂处理印染废水的研究   总被引:18,自引:1,他引:18  
采用自制的硼泥复合混凝剂对所选择的若干水溶性染料水样和实际印染废水进行脱色试验,结果表明,混凝效果与染料种类,投药量,pH值,温度等因素有关,其中投药量范围在0.3 ̄0.6g/L,pH适用范围为4.0 ̄11.5,脱色率均可达92%以上,在处理实际印染废水样时,仅投加0.3g/L混凝剂时,其COD去除率达67%以上,脱色率和SS去除率均达98%以上,pH值也处于6 ̄9范围之内,并且比聚铝的处理效果好  相似文献   

18.
化学生物絮凝工艺是利用将化学和生物协同絮凝作用处理污水的强化一级新工艺.试验通过在不同加药量情况下化学生物絮凝和化学絮凝工艺的中试试验对比研究,得出在相同加药量条件下,化学生物絮凝污染物去除效率均优于化学絮凝工艺10%~20%.在70 mg/L液体聚合氯化铝铁复配0.5 mg/L PAM的加药条件下,化学生物絮凝工艺经过30 min的水力停留时间,在进水CODCr为100~260 mg/L,TP为2~4 mg/L,SS为80~150 mg/L,NH3-N为10~25 mg/L条件下,出水CODCr、TP、SS、NH3-N满足城镇污水处理厂污染物排放二级标准.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号