首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 468 毫秒
1.
广西钦州湾营养状况季节分析与评价研究   总被引:2,自引:0,他引:2  
根据2009年1月、4月、8月和11月对钦州湾海域调查结果,分析并评价了该海域营养状况的季节变化。结果表明,钦州湾海域总溶解无机氮(DIN)含量范围在0.023 mg/L~1.750 mg/L,硅酸盐(SiO3-Si)含量范围在0.027 mg/L~3.900 mg/L,磷酸盐(PO4-P)含量范围在0.001 mg/L~0.158 mg/L。NO3-N是DIN的主要存在形式,占62%~78%。不同的营养盐季节分布有所差异。DIN季节分布表现为夏季春季秋季冬季;PO4-P季节分布为春季秋季冬季夏季;SiO3-Si季节变化为夏季秋季春季冬季。从营养结构看,与Justic'等提出的营养盐化学计量限制标准比较符合P限制条件,PO4-P可能成为浮游植物生长的潜在限制因子。按照营养状态指数值,钦州湾海域春季、夏季和秋季表层海水处于富营养化状态,钦州湾内湾富营养化程度高,一旦水文气象条件适宜,从春季到秋季该区域随时都会发生赤潮灾害的可能。  相似文献   

2.
为了研究钦州湾养殖区的营养盐分布特征和富营养化现状、趋势和原因,于2018年冬季(2月)和夏季(8月)调查了钦州湾养殖区的营养盐及相应理化因子。结果显示,磷酸盐(PO43?)的浓度为3.7~40.0 μg/L,溶解性无机氮(DIN)浓度为41.1~664.8 μg/L ,其中,硝酸盐(NO3?)占比最高(77%),其次是铵盐(NH4+)(16%),而亚硝酸盐(NO2?)占比最低(7%)。营养盐与理化因子的相关性和主成分分析显示,冬季陆源污染物输入是影响营养盐分布的主要因素,而夏季除了陆源输入外,生物过程对营养盐分布的影响不可忽视,这与夏季DIN和PO43?的浓度明显高于冬季的现象相对应。钦州湾养殖区水体的富营养化指数( EI )范围为0~19.65,平均为4.06,富营养化超标率为77%,其中,夏季水体富营养化程度高于冬季,处于中度富营养化状态。与近40年的历史数据相比,钦州湾水体富营养化状态呈显著增长趋势。与此相对应,钦州湾养殖区水体的N/P下降明显(低于Redfield值),其根本原因是磷排放的增加。  相似文献   

3.
于2014年1月(冬季)和10月(秋季)对钦州湾海域进行了综合调查,分析了该海区分粒级Chl a的分布特征及其影响因素。结果表明,冬季Chl a平均浓度为2.38μg/L,秋季Chl a浓度显著升高,平均浓度为6.96μg/L。浮游植物粒级结构具有明显的季节变化特征,冬季浮游植物粒级组成以微型浮游植物为主,平均占Chl a总量的73.0%,小型和微微型浮游植物所占的比例分别为14.9%和12.1%;秋季,小型、微型和微微型浮游植物对Chl a总量的贡献率分别为42.3%、44.7%和12.9%。浮游植物平均粒级指数秋季(23.55μm)显著大于冬季(11.23μm)。从空间分布上看,在高营养盐含量区域大粒径的浮游植物占有优势,而其他靠近外海一侧的站位则以微型浮游植物为主。温度、营养盐和悬浮物是影响钦州湾海域浮游植物粒级Chl a分布和组成的重要环境因子。  相似文献   

4.
采煤塌陷水域是淮南矿区的一种特殊区域,为了分析采煤塌陷积水区域的氮磷空间分布特征及营养状态,选取潘一塌陷水域为研究对象,分析不同形态的氮、磷含量。结果表明,潘一塌陷水域总氮、氨氮、硝态氮的含量分别为1.38-8.22mg/L,0.44-1.16mg/L,0.21-1.23mg/L,呈现出泥河入口处氮的含量大,随着水流含量逐渐减小的趋势;总磷、可溶性总磷的含量分别为0.06-0.26mg/L,0.01-0.12mg/L,其空间分布和总氮的空间分布趋势一致。综合营养指数评价结果表明,潘一塌陷水域总体上处于轻度富营养化状态,水体中氮磷比(N:P)为21:1,塌陷水域中的总氮浓度超过总磷浓度7倍以上,说明潘一塌陷水域为磷营养限制性。  相似文献   

5.
2015年至2016年间,对钦州湾海域开展了四个航次调查研究,结合其它理化环境因子,对该海域尿素含量和浮游植物脲酶活性季节分布特征及影响因素以及尿素的来源和生物可利用性进行了初步探讨。结果表明,钦州湾表层水体中尿素分布呈现明显的由内湾向外湾递减的趋势,含量范围为0.24~5.14 μmol N/L,平均值夏季>春季>冬季>秋季,其中夏季尿素平均值为3.30 ±1.14 μmol N/L。浮游植物脲酶活性为0.15~2.60 μmol N/(L·h),冬季浮游植物脲酶活性最高,平均为0.91 ±0.55 μmol N/(L·h),其次是秋季和夏季,春季脲酶活性最低。不同季节尿素含量均≥1.00 μmol N/L,占溶解态有机氮(DON)的1.2%~63.0%,平均值为(15.6 ±14.2)%,表明尿素是钦州湾海域的重要氮源。钦州湾尿素含量和分布主要决定于陆源输入,尿素是DON的重要组成部分,故钦州湾DON具有较高的生物可利用性,为该海域浮游植物生长提供重要的氮源。  相似文献   

6.
根据2012年8月份和11月份对大连湾海水中溶解态营养盐的调查数据,对大连湾海域营养盐分布趋势、营养结构特征及其与环境因子的关系进行了分析,结果表明:无机氮(DIN)和活性硅酸盐(SiO3-Si)含量较历史研究数据明显增高,活性磷酸盐(PO4-P)含量则明显降低,并且8月份PO4-P和SiO3-Si含量均低于11月份,DIN相反;PO4-P、DIN和SiO3-Si的水平分布趋势基本一致,表现为由湾顶向湾口逐渐降低的趋势;PO4-P和NH4-N与温度、pH、化学需氧量(COD)、盐度(S)和表观耗氧量(AOU)均表现出显著的相关性,而NO2-N、SiO3-Si则仅与AOU表现出显著正相关关系;营养盐结构特征分析表明,海域海水中营养要素的主要限制元素为P。  相似文献   

7.
春季桑沟湾海域贝类养殖对海水中营养盐的影响研究   总被引:3,自引:0,他引:3  
根据2011年春季对桑沟湾海域8个监测点的营养盐的变化特征和历史资料的研究,分析了桑沟湾水域溶解性无机氮(DIN)、总氮(TN)、活性磷酸盐(PO34-)和总磷(TP)浓度变化及它们之间的相互关系,估算了贝类养殖的排泄物对海水污染的贡献率。结果表明,溶解性无机氮的平均浓度为0.106 1 mg/L,NO3-N为主要存在形式,占溶解性无机氮平均含量的78.3%,NH3-N、NO2-N分别占溶解性无机氮平均含量的14.2%和7.5%。总氮的平均浓度为0.234 7 mg/L,溶解性无机氮浓度占总氮浓度的45.2%。活性磷酸盐的平均浓度为0.013 3 mg/L,总磷的平均浓度为0.024 78 mg/L。春季桑沟湾贝类养殖对该海域海水磷含量的贡献率比氮的贡献率大,N/P为17.63,营养水平基本属于贫营养。  相似文献   

8.
钦州湾近20 a来水环境指标的变化趋势Ⅰ平水期营养盐状况   总被引:6,自引:11,他引:6  
根据 198 3、1990年和 1998~ 1999年平水期 (春、秋季 )的调查资料 ,分析了钦州湾水域的营养盐状况及其与环境因子的关系。结果表明 :本湾营养盐含量变化显著 ,无机氮呈明显递增趋势 ,无机磷则与此相反 ,而活性硅的最低值则出现在浮游植物量最高的 1990年度 ;相关分析显示 ,陆源输入的多寡和浮游植物的丰度是导致本湾N、P、Si含量变化的主要因素 ;Si/N/P值分析则体现了本湾从明显N限制到显著P限制的演化规律 ,而Si限制状态只有在浮游植物异常丰富的情况下才出现 ;通过营养状态综合指数计算 ,表明本湾水体已由明显贫营养状态上升为中营养和富营养状态  相似文献   

9.
钦州湾叶绿素a和初级生产力时空变化及其影响因素   总被引:7,自引:0,他引:7  
于2009年1—11月对广西钦州典型养殖海湾——钦州湾海域水体中叶绿素a(Chl-a)浓度和初级生产力进行了4个季节航次的调查,分析了该海湾Chl-a和初级生产力的时空变化特征并探讨其影响因素.结果表明,钦州湾表层海水Chl-a浓度周年变化在0.83~32.5 mg·m-3之间,平均为5.39 mg·m-3;Chl-a浓度季节性变化表现为夏季春季冬季秋季.初级生产力变化范围是92.3~1494.5 mg·m-2·d-1(以C计,下同),平均为425.1 mg·m-2·d-1;初级生产力季节变化特征呈现夏季冬季秋季春季.钦州湾Chl-a浓度和初级生产力在春、夏、冬季呈现内湾和三娘湾海区高、钦州港海区低的分布特征,秋季出现相反的特征.相关分析显示,钦州湾Chl-a与水温、盐度和氨氮之间存在密切的相关关系.总体来看,陆源输入的营养盐及贝类养殖活动是影响Chl-a和初级生产力时空变化的重要因素.  相似文献   

10.
辽宁长海县海域营养状况季节分析与评价   总被引:4,自引:1,他引:3  
根据2007年1月、4月、7月和10月对长海县水域调查结果,分析并评价了该海域营养状况的季节变化。结果表明,长海县海域TN含量范围在211.26~1364.19μg/L,溶解态占43%~87%。总无机氮(TIN)是浮游植物生长吸收的主要氮源,长海海域TIN含量范围在2.85~359.98μg/L,占TN的16%~53%。NO3-N是TIN的主要存在形式,占61%~93%。不同的营养盐季节分布不尽相同。TIN季节分布表现为秋季冬季夏季春季;PO4-P季节分布为冬季秋季春季夏季;SiO4-Si季节变化为夏季冬季秋季春季。长海海域浮游植物在调查期间为P限制,且该海域属贫营养水平。  相似文献   

11.
田野  薛超  刘春颖  李培峰 《环境科学研究》2016,29(10):1451-1458
为了解近海海水中NO的时空分布特征及其影响因素,采用化学发光法对2010—2011年胶州湾内表层海水中的c(NO)进行了观测,并结合水文、生物等要素的同步观测资料,探讨了该海域NO分布特征及影响因素.结果表明:胶州湾内表层海水c(NO)春季最低,为(11.8±4.6) pmol/L;秋季最高,为(471.3±106.3) pmol/L;夏季和冬季差别不大.该海域c(NO)的水平分[JP+1]布呈湾中心及湾口部分较低、河口较高的特点.湾口部分c(NO)春季最低,为2.0 pmol/L;湾中心部分c(NO)秋季最高,达356.0 pmol/L.c(NO)与温度、盐度及c(NO2-)表现出相关性,陆地径流输入对海水中NO的分布也有影响,大沽河下游丰水季c(NO)达到348.1 pmol/L,枯水季c(NO)仅为119.8 pmol/L.研究显示,胶州湾表层海水为大气NO的源,2010—2011年胶州湾表层海水NO的海-气通量为3.8×10-15 mol/(cm2·s),胶州湾年NO释放量(以N计)约为5.8×106 g.   相似文献   

12.
杭州湾表层海水营养盐分布特征及富营养化状况研究   总被引:1,自引:0,他引:1  
根据2015年3月和8月杭州湾的海水质量监测数据,分析了该海域的营养盐分布特征以及富营养化状况,结果表明:杭州湾表层海水无机氮变化范围为0.36~4.22 mg/L,活性磷酸盐的含量范围为0.014~1.51 mg/L,化学需氧量含量范围为0.56~3.18 mg/L.该海域无机氮和活性磷酸盐超标严重,表层海水已处于重度富营养化状态,调查站位EI均大于1.该海域表层海水无机氮、活性磷酸盐、化学需氧量和富营养化指数高值区均与陆源入海口、养殖区、排污口等人类活动影响较大的区域有关.  相似文献   

13.
本研究于2018年冬季、春季、夏季和秋季对梅山湾水质进行监测,并对梅山湾水体中营养盐的时空变化特征及富营养化进行分析,结果表明:NO3-N是DIN的主要成分,占比为68.25%~98.21%。冬、春和秋季DIN和PO4-P浓度均值均高于夏季,夏季的SiO3-Si则高于其他季节。除夏季外,冬、春和秋季的部分营养盐浓度与叶绿素a均呈显著负相关(P<0.01),表明不同季节梅山湾的营养盐不仅受浮游植物的消耗影响,还与外源输入及环境介质的释放相关。除夏季外,其他3个季节盲肠段的PO4-P浓度均值高于湾内,由北堤向南堤呈不断下降的趋势。春季和夏季,盲肠段的SiO3-Si比湾内低,与秋、冬季相反。综合污染指数评价结果表明春季和秋季盲肠段主要为中度污染,湾内主要为轻度污染,夏季则相反;潜在富营养化评价结果表明盲肠段主要为磷中等限制潜在性富营养以及贫营养,湾内主要为磷限制潜在性富营养和磷限制富营养。  相似文献   

14.
贵州高原水库百花湖富营养化特征分析   总被引:2,自引:0,他引:2  
为了解贵州高原水库百花湖的富营养化特征,于2011年5月(平水期)、8月(丰水期)、11月(枯水期)对水体富营养化特征的主要指标及环境因子进行采样调查与分析。结果表明:2011年百花湖水库呈富营养型(TSI M>50)3个时期富营养化状态指数表现为丰水期>枯水期>平水期。百花湖水库的总氮(TN)、总磷(TP)和Chl-a表底层浓度的平均值分别为1.48~1.61 mg/L、0.04~0.07 mg/L、20.27~10.41 mg/m3;透明度(SD)为0.60~1.80 m。水体中Chl-a浓度与TN、TP浓度呈负相关和极不明显的关系,与NO-+-2-N、NH4-N浓度呈极显著负相关,与NO 3-N呈负相关,与水温呈正相关,与pH和DO呈极显著的正相关。  相似文献   

15.
基于2012年夏秋季大连湾海水中溶解态和不同粒级颗粒物中氮、磷、硅、叶绿素a的调查资料,对大连湾海水不同粒级颗粒物中营养盐和叶绿素a的时空分布特征进行了分析,对不同粒级浮游植物的营养要素组成及营养盐结构特征进行了探讨.结果表明,大连湾海水中溶解态营养盐、叶绿素a高值区主要出现在臭水套和甜水套湾附近海域,并由湾内向湾外递减,各粒级颗粒物中营养盐分布趋势存在着不一致性,但高值区易出现在西北部海域; 除无机氮外,海水中营养盐总体表现出秋季高于夏季,各粒级叶绿素a浓度表现为夏季高于秋季;磷是大连湾海水中浮游植物生长的限制元素,硅是不同粒级浮游植物营养盐的限制要素;微微型浮游植物对现有的营养结构更具适应性.  相似文献   

16.
象山港海域水质时空格局的自组织特征映射神经网络识别   总被引:3,自引:2,他引:1  
于2007—2008年对象山港23个站点(包括10个电厂站点)的水质样品进行连续2年的季节性采集,采用SOM(Self-Organizing Map)工具箱,结合k-nn(knearest neighbors)神经元聚类对15个水质参数进行分析,以探明象山港海域水质时空变化并识别敏感的影响区域.结果显示,象山港海域N/P(物质的量比)平均值为27.0.水体污染指数(AI)和海水营养指数(NI)分别指示整个象山港水质处于严重污染和富营养化状态,但水质加权指数(WDX)显示,加权水质标准未超过3类水质,说明传统的AI和NI指数不能反映象山港的实际水质状况.经SOM分析发现,象山港海域各取样站点按季节和空间格局可分为8个聚类组.从季节上看,pH和油类含量在春季最低;夏季水温、COD、NO2--N最高,而DO最低.NO3--N、DIN、DIP在秋冬季节高于春夏季节,但透明度相反.Chl-a含量以夏季最高,冬季最低.GLM(General Linear Model)方差分析显示,不同季节的安全性指数(SFT)和N/P无显著差异(p>0.05),而NI、AI和WDX差异极显著(p<0.01).空间分析显示,象山港水体可分为港底区和口中部区,其中,港底区盐度、pH显著低于口中部区(p<0.01),而NO2--N、NH4+-N、DIN、DIP、Chl-a则显著高于口中部区(p<0.05).除WDX无显著差异外,港底区的N/P显著低于口中部区(p<0.01),而NI、AI、SFT相反(p<0.05).建议港区底部宜采用养殖大型海藻方式以减轻富营养化,此外,冬季黄墩港的水体中粪大肠菌群严重超标,生食该季节贝类产品时需要检测.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号