首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
In spite of historical and current interest in Ciona intestinalis and its congeners, little is known about evolutionary relationships among the members of the genus Ciona. Here 744-bp sequences of the mitochondrial cytochrome c oxidase subunit I (COI) gene are used to examine phylogenetic relationships among three described species (C. intestinalis, C. roulei, C. savignyi) sampled from multiple coastal sites in the Northeast Pacific (CA, USA), Northwest Atlantic (from New Hampshire to Connecticut, USA), Northeast Atlantic (Sweden and The Netherlands), and Mediterranean (Banyuls-sur-Mer, France). The samples were collected in June–October 2005. The COI sequences of Northeast Pacific/Mediterranean (Type A) and Northwest Atlantic (Type B) C. intestinalis differ by ∼12% and C. roulei is nested within Type B C. intestinalis. Ciona savignyi differs from all other haplotypes by 13–16%. A previously undescribed but morphologically distinct Ciona sp. found at the Banyuls-sur-Mer site was >10% divergent from all other haplotypes. Although these data arise from a single gene study, they indicate that further elucidation of species relationships within the genus and of the species’ distributions will be needed if continuing invasions and potential reproductive isolation are to be investigated.  相似文献   

2.
Panulirus argus (Latreille in Ann Mus Hist Nat Paris 3:388–395, 1804) is the lobster of greatest economic importance throughout its distribution. In this study, mitochondrial (Cytochrome Oxidase I and 16S ribosomal genes) and nuclear (Adenine Nucleotide Transporter gene) sequences were used to evaluate the taxonomic status of P. argus sampled from five sites in the Caribbean Sea and nine sites in the Southwest Atlantic. Phylogenetic analyses indicate that lobsters from the two regions form two monophyletic groups with a molecular divergence similar to that observed between distinct congeneric lobster species and much larger than that found between conspecific lobster populations. Therefore, the Caribbean and the Southwest Atlantic lobster populations originally attributed to P. argus belong to different species, with an estimated time of isolation of around 16 Million years. An important consequence of these findings is that the fisheries of spiny lobsters from the Caribbean and the Southwest Atlantic species must be managed separately.  相似文献   

3.
The nurse shark, Ginglymostoma cirratum, inhabits shallow, tropical, and subtropical waters in the Atlantic and the eastern Pacific. Unlike many other species of sharks, nurse sharks are remarkably sedentary. We assayed the mitochondrial control region and eight microsatellite loci from individuals collected primarily in the western Atlantic to estimate the degree of population subdivision. Two individuals from the eastern Atlantic and one from the Pacific coast of Panama also were genotyped. Overall, the mtDNA haplotype (h = 48 ± 5%) and nucleotide (π = 0.08 ± 0.06%) diversities were low. The microsatellite data mirror the mitochondrial results with the average number of alleles ([`(N)]A \bar{N}_{A}  = 9) and observed heterozygosity ([`(H)]O \bar{H}_{O}  = 0.58) both low. The low levels of diversity seen in both the mtDNA and the microsatellite may be due to historical sea level fluctuations and concomitant loss of shallow water habitat. Eight of the 10 pair-wise western Atlantic F ST estimates for mtDNA indicated significant genetic subdivision. Pair-wise F ST values for the microsatellite loci indicated a similar pattern as the mtDNA. The western Atlantic population of nurse sharks is genetically subdivided with the strongest separation seen between the offshore islands and mainland Brazil, likely due to deep water acting as a barrier to dispersal. The eastern and western Atlantic populations were closely related. The eastern Pacific individual is quite different from Atlantic individuals and may be a cryptic, sister species.  相似文献   

4.
Eurythoe complanata (Pallas 1766) has been considered a cosmopolitan species with a great morphological similarity across its geographic range. To elucidate whether E. complanata is actually a single species, genetic (cytochrome oxidase subunit I and allozymes) and morphological differences were compared among specimens from the Pacific, Caribbean, and South Atlantic Oceans. Large levels of COI divergence (10–22%) and diagnostic allozyme loci identified three cryptic species: one in the eastern Pacific and two in the Atlantic, with one being morphologically differentiated and found only in islands. COI sequences between Pacific and Atlantic lineages were much more divergent than those of other transisthmian invertebrates, indicating their split before the Panama Isthmus closure or a faster evolutionary rate of COI for this species. The existence of two Atlantic species may be a consequence of parapatric speciation followed by a secondary invasion or even a sympatric speciation in the Atlantic oceanic islands.  相似文献   

5.
The rhopalia and statocysts of Periphylla periphylla (Péron and Lesueur in Ann Mus Hist Nat Marseille 14:316–366,1809) and Chironex fleckeri Southcott (Aust J Mar Freshw Res 7(2):254–280 1956) were examined histologically and showed several homologous characteristics. Differences in sensory area distribution could be connected to a slightly different functionality of equilibrium sensing. In P. periphylla, the statoliths (crystals) grow independently of each other; whereas in C. fleckeri, one large crystal covers the smaller ones. The structures of both statoliths were examined in detail with single-crystal diffraction, microtomography and diffraction contrast tomography. The single compact statolith of C. fleckeri consisted of bassanite as was previously known only for other rhopaliophoran medusae. An origin area with several small oligocrystals was located in the centre of the cubozoan statolith. The origin areas and the accretion of statoliths are similar in both species. Our results lead to the assumption that the single bassanite statolith of C. fleckeri (Cnidaria, Cubozoa) is a progression of the scyphozoan multiplex statolith. It is therefore suggested that the Cubozoa are derived from a scyphozoan ancestor and are a highly developed taxa within the Rhopaliophora.  相似文献   

6.
Blue mussels in the genus Mytilus first arrived in the Atlantic Ocean from the Pacific during the Pliocene, following the opening of the Bering Strait. Repeated periods of glaciation throughout the Pleistocene led to re-isolation of the two ocean basins and the allopatric divergence of Mytilus edulis in the Atlantic and M. trossulus in the Pacific. Mytilus trossulus has subsequently colonized the northwest Atlantic (NW Atlantic) so that the two species are presently sympatric and hybridize throughout much of the Canadian Maritimes and the Gulf of Maine. To estimate when M. trossulus arrived in the NW Atlantic, we have examined sequence variation within a portion of the female mtDNA lineage large untranslated region (F-LUR) for 156 mussels sampled from three Pacific and eleven Atlantic populations of M. trossulus. Although we found no evidence of reciprocal monophyly for Pacific and NW Atlantic M. trossulus, limited gene flow between ocean basins has led to the divergence of unique sequence clades within each ocean basin. In contrast, relative genetic homogeneity indicates high levels of gene flow within each basin. Coalescence-based analysis of the F-LUR sequences suggests that M. trossulus recolonized the NW Atlantic from the northeast Pacific subsequent to a demographic expansion in the Pacific that occurred ~96,000 years before present (ybp). Estimates of timing of divergence for Pacific and NW Atlantic populations and the time since expansion among NW Atlantic sequence clades indicate that M. trossulus arrived in the NW Atlantic more recently, between 20,000 and 46,000 ybp. Given that these estimates overlap with the dates of peak ice in the NW Atlantic during the last glacial maximum (LGM, ~18,000–21,000 ybp), we suggest that colonization of the NW Atlantic by M. trossulus occurred during, but more likely just subsequent to, the LGM and was followed by rapid temporal and spatial expansion in the region.  相似文献   

7.
The orange roughy Hoplostethus atlanticus is a well-known commercial species with a global distribution. There is no consensus about levels of connectivity among populations despite a range of techniques having been applied. We used cytochrome c oxidase subunit I (COI) and cytochrome b sequences to study genetic connectivity at a global scale. Pairwise ΦST analyses revealed a lack of significant differentiation among samples from New Zealand, Australia, Namibia, and Chile. However, low but significant differentiation (ΦST = 0.02–0.13, P < 0.05) was found between two Northeast Atlantic sites and all the other sites with COI. AMOVA and the haplotype genealogy confirmed these results. The prevalent lack of genetic differentiation is probably due to active adult dispersal under the stepping-stone model. Demographic analyses suggested the occurrence of two expansion events during the Pleistocene period.  相似文献   

8.
Species of the reef goby genus Gnatholepis exhibit enormous geographic ranges with little evidence of population segregation detectable based on mitochondrial DNA. To determine if genetic differentiation is evident with more rapidly evolving markers, seven microsatellite loci were screened from the species Gnatholepis anjerensis and G. scapulostigma and population segregation was tested among fish from across the South Pacific. Both AMOVA and pairwise F ST analyses showed that, in concordance with previous mitochondrial results, most genetic variance occurs within individual populations, as population differentiation is evident only over the largest distances (>3,700 km). This result is contrasted with previous studies demonstrating that despite their relatively long larval periods, some gobiid fishes exhibit population differentiation on small (<100 km) geographic scales. Coalescence analysis showed that current Pacific populations of these species originated in the Pleistocene, presumably related to sea level fluctuations associated with episodes of glaciation. However, rate analysis based on a phylogeny of Gnatholepis species indicates that the species themselves are much older, consistent with a complex history of rapid, short-term population contractions and expansions, with corresponding rapid dispersal.  相似文献   

9.
Octocorals are diverse and abundant on many marine hard substrates, and, within this group, members of the family Plexauridae are an important component of tropical reef assemblages, especially in the Caribbean. To understand historical relationships within this large and diverse assemblage, and to test the monophyly of the family and some of its genera, DNA sequences of two mitochondrial loci (msh1 and ND2, ~1,185 bp) were analyzed from 46 species in 21 genera from deep and shallow waters in the tropical western Atlantic and in the tropical western and eastern Pacific (plus 9 taxa in the closely related Gorgoniidae and 1 species of the more distantly related Alcyoniidae). Five strongly supported clades were recovered. Three large clades correspond roughly to the Plexauridae, Paramuriceidae, and Gorgoniidae, and two smaller clades were comprised of taxa previously assigned to several families. Astrogorgia sp. did not group with any of the clades. The mutual relationships among the five clades remain unclear. Several genera previously regarded as unrelated appear to be grouped among the three families; e.g. Hypnogorgia sp. (Paramuriceidae) falls within a clade consisting of both Pacific and Atlantic Muricea spp. (Plexauridae), while Swiftia sp., Scleracis sp., and an Atlantic Thesea sp. (all Paramuriceidae) group with the gorgoniids. In several instances, genera containing Atlantic and Pacific species were recovered as monophyletic (Muricea spp., Bebryce spp.). However, in at least three cases (Echinomuricea spp., Thesea spp., Villogorgia spp.), placement of Atlantic and Pacific species in the same genus may reflect convergence of sclerite morphology. The results indicate a strong need for reexamination of octocoral taxonomy using a combination of molecular, morphological, and chemical evidence.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00227-005-1592-y.Communicated by J.P. Grassle, New Brunswick  相似文献   

10.
Commercially harvested marine bivalve populations show a broad range of population-genetic patterns that may be driven by planktonic larval dispersal (gene flow) or by historical (genetic drift) and ecological processes (selection). We characterized microsatellite genetic variation among populations and year classes of the commercially harvested Arctic surfclam, Mactromeris polynyma, in order to test the relative significance of gene flow and drift on three spatial scales: within commercially harvested populations in the northwest Atlantic; among Atlantic populations; and between the Atlantic and Pacific oceans. We found small nonsignificant genetic subdivision among eight populations from the northwest Atlantic (F ST = 0.002). All of these Atlantic populations were highly significantly differentiated from a northeast Pacific population (F ST = 0.087); all populations showed high inbreeding coefficients (F IS = 0.432). We tested one likely source of heterozygote deficits by aging individual clams and exploring genetic variation among age classes within populations (a temporal Wahlund effect). Populations showed strikingly different patterns of age structure, but we found little differentiation among age classes. In one case, we were able to analyze genetic diversity between age classes older or younger than the advent of intensive commercial harvesting. The results generally suggest spatially broad and temporally persistent genetic homogeneity of these bivalves. We discuss the implications of the results for the biology and management of surfclam populations. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
We examined the population structure of the black tiger prawn, Penaeus monodon Fabricius, 1798, in the Indo-West Pacific by analyzing the geographic distribution of elongation factor 1-alpha intron sequences from specimens collected during the winter and spring of 1997. Both the molecular phylogeny of alleles and F-statistics indicated very strong differentiation between populations from the western Indian Ocean and western Pacific. This pattern is concordant with other recent studies of marine species in this region, implying that the Indo-Australian Archipelago represents a biogeographic break between populations in the Indo-West Pacific. F ST-values among populations in the western Indian Ocean also indicate structure within this region, whereas no structure was found among western Pacific populations. Nucleotide diversity was significantly lower in the western Indian Ocean populations than in the western Pacific, implying that the populations have regional differences in demographic history. Received: 16 November 1998 / Accepted: 26 May 1999  相似文献   

12.
The crab genus Xantho Leach, 1814 is restricted to the northeastern Atlantic Ocean and the Mediterranean Sea. It consists of four species, Xantho hydrophilus (Herbst, 1790), X. poressa (Olivi, 1792), X. pilipes A. Milne-Edwards, 1867, and X. sexdentatus (Miers, 1881). X. hydrophilus has been divided into two geographic forms, of which one, X. h. granulicarpus (Forest, 1953), is postulated to be endemic to the Mediterranean Sea. In this study, we reconstruct phylogenetic relationships of the genus Xantho and related genera from the Atlantic Ocean or Mediterranean Sea and compare different geographic populations of Xantho hydrophilus and, to a lesser extent, of X. poressa by means of population genetic and morphometric analyses. The molecular phylogeny is based on two mitochondrial genes (large subunit rRNA and cytochrome oxidase I) and indicates that X. poressa, X. hydrophilus and X. sexdentatus form a monophyletic group, the latter two species sharing identical haplotypes. On the other hand, X. pilipes shows affinities to Xanthodius denticulatus. Population genetics based on the COI gene reveal genetic differentiation within X. hydrophilus. Morphometric results also give evidence for distinct geographic forms in X. hydrophilus with a clear discrimination. In comparison, morphometric discrimination between different geographic populations of X. poressa is less clear, but still significant. We therefore suggest a recent/ongoing morphological and genetic differentiation within Xantho hydrophilus, restricted gene flow between its Atlantic and Mediterranean populations (not allowing subspecific differentiation) and possible mtDNA introgression between the species X. hydrophilus and X. sexdentatus.  相似文献   

13.
Megrim, Lepidorhombus whiffiagonis, and four spot megrim, Lepidorhombus boscii, are two marine fish species of high commercial interest. Despite their quite heavy exploitation little is known on the genetic structure of their populations. The present work aimed at characterizing the first seven microsatellites markers available for the two megrim species. These new markers were in a second step employed to describe the population structure of the two species among their almost entire habitat range (Atlantic and Mediterranean samples). Our study confirmed the existence of a strong genetic difference between Atlantic and Mediterranean megrim species already described in the literature for L. whiffiagonis on the basis of variations at ribosomal genes. Additionally our analysis gave the first evidences of a strong genetic differentiation among Atlantic populations in both megrim species (within Atlantic global FST in L. whiffiagonis and L. boscii were respectively 0.158 and 0.145). When describing megrim population structure, the comparison between allele-frequency-based tests (FST comparisons) and genotype-based inferences (Bayesian approach) gave evidences of a hierarchical structure of the populations. In conclusion, our work enlighten the existence of two different stocks within the Atlantic Ocean and one in the Mediterranean Sea that will clearly need to be managed separately. As the present results do not fully support the current megrim stock boundaries they will surely help to rethink megrim management policies in the future.  相似文献   

14.
 Phylogenetic analyses of the left domain of the mitochondrial DNA control-region sequence have been used to examine the relationships among species of the genus Merluccius (Rafinesque, 1810), and to compare these with hypotheses based on morphological, meristic and allozyme characters. Analysis of aligned sequences revealed that transition bias was much lower than in mammalian mtDNA, and that nucleotide composition of control-region sequences was biased toward A and T. We have roughly calibrated a molecular clock for the genus, based on the rise of the Isthmus of Panamá, which is believed to have created a barrier to dispersal between marine species of the Atlantic and Pacific Oceans. Our mtDNA-based phylogeny was highly congruent with allozyme-based phylogenies, but poorly so with a previously described phylogeny based on morphology. Specifically, our phylogeny resolved two well-supported principal clades, one of American (west Atlantic and east Pacific) species and the other of Euro–African (east Atlantic) species. This suggests an evolutionary history during which the ancestral lineage of Merluccius was divided between two geographic regions, with subsequent dispersal and vicariant events resulting in the evolution and distribution of extant taxa. However, the relationships between some taxa within the American clade could not be resolved. We suggest that this is consistent with an hypothesis of a rapid origin and radiation of these taxa. Received: 12 December 1998 / Accepted: 15 October 1999  相似文献   

15.
Stock heterogeneity was investigated in albacore tuna (Thunnus alalunga, Bonnaterre 1788), a commercially important species in the North Atlantic Ocean and Mediterranean Sea. Twelve polymorphic microsatellite loci were examined in 581 albacore tuna from nine locations, four in the north-east Atlantic Ocean (NEA), three in the Mediterranean Sea (MED) and two in the south-western Pacific Ocean (SWP). Maximum numbers of alleles per locus ranged from 9 to 38 (sample mean, 5.2–22.6 per locus; overall mean, 14.2 ± 0.47 SE), and observed heterozygosities per locus ranged from 0.44 to 1.00 (overall mean: 0.79 ± 0.19 SE). Significant deficits of heterozygotes were observed in 20% of tests. Multilocus F ST values were observed ranging from 0.00 to Θ = 0.036 and Θ′ = 0.253, with a mean of Θ = 0.013 and Θ′ = 0.079. Pairwise F ST values showed that the SWP, NEA and MED stocks were significantly distinct from one another, thus corroborating findings in previous studies based on mitochondrial DNA, nuclear DNA (other than microsatellites) and allozyme analyses. Heterogeneity was observed for the first time between samples within the Mediterranean Sea. GENELAND indicated the potential presence of three populations across the NEA and two separate populations in the Mediterranean Sea. Observed genetic structure may be related to migration patterns and timing of movements of subpopulations to the feeding grounds in either summer or autumn. We suggest that a more intensive survey be conducted throughout the entire fishing season to ratify or refute the currently accepted genetic homogeneity within the NEA albacore stock.  相似文献   

16.
Genetic differentiation of the Atlantic swordfish (Xiphias gladius) was investigated by a single nucleotide polymorphism (SNP) at the calmodulin gene (CAM) intron locus. Clearly distinct allele and genotype frequencies were observed between the north (20–41°N) and mid-south (10°N–33°S) Atlantic samples. Much lower frequency of A allele (37.5–57.1%) was observed in the north samples (n = 160 in total) than in the mid-south samples (83.3–92.6%; n=354), and homozygote BB was common in the north samples (23.4–31.3%) but very rare or absent (0–3.9%) in the mid-south samples. Very strong population subdivision was observed between the two groups (F ST = 0.34, P < 0.001), while the allele and genotype frequencies within each ocean basin persisted over time (1990–2002 in the north, and 1994–2002 in the mid-south). Of two samples from the presumed boundary zone, one (n = 18) (14°N, 48°W) presented intermediate frequencies of the A allele (66.7%) and BB homozygote (11.1%), while the other (n = 23) (10–17°N, 28–37°W) shared similar frequencies of the A allele (89.1%) and BB homozygote (4.3%) with those of the mid-south Atlantic samples. These results indicate that the gene flow and individual migration between the north and mid-south Atlantic populations are considerably restricted and that the current management boundary between the north and south Atlantic swordfish stocks of 5°N should be reconsidered.  相似文献   

17.
The pore signature of calanoid copepods is of increasing interest in phylogenetic studies. Some recent studies have been restricted to the urosome on the assumption that most of the species components reside there. The present paper tests that assumption in eight species of the genus Pleuromamma by assessing the signatures of the cephalosome, metasome and urosome separately in each species. Most of the species-specific information is in the urosome, but a significant proportion also resides in the cephalosome and a lesser component in the metasome. Grouping of the species relative to their pore signatures conformed with that derived from conventional morphological characters in the genus Pleuromamma, as previously demonstrated in a very different calanoid genus, Eucalanus. Thus, the urosomal signature is confirmed as a convenient and quick tool for phylogenetic studies. Six of the species examined in the present study were collected in the northeastern Atlantic between 1973 and 1976. The remaining two were collected from the western Pacific Ocean and the western Indian Ocean in 1993 and 1976, respectively.  相似文献   

18.
Remotely operated vehicle (ROV)-based field studies on the distribution and behaviour of Periphylla periphylla Péron and Lesueur (Ann Mus Hist Nat Marseille 14:316–366, 1809), from three Norwegian fjords have been combined with on-board experiments and morphological and histological studies in order to understand the trophic ecology of this species. Field studies from one of the fjords showed that the zooplankton biomass was negatively related with P. periphylla abundance, indicating a predatory effect. The majority of zooplankton biomass tended to be distributed above the aggregation of P. periphylla, which in turn showed highest abundance at 100–200 m depth. Observation on the orientation of medusae passing the ROV when descending down in the water column at dawn and dusk, showed no consistency with the theory of diel vertical migration. Estimated metabolic demand of P. periphylla indicated a daily predation impact on the prey assemblage of 13% as an average for the fjord. In situ behavioural observations showed that the dominant tentacle posture of large medusae was straight upward, with tentacles extended to the oral–aboral body axis. The hunting mode alternates between ambush and ramming, whereby tentacle posture minimises the water turbulence that may otherwise alarm the prey. The musculature of the tentacles is well developed, with an especially strong longitudinal muscle on the oral side, facilitating fast movement of the tentacle towards the mouth. In addition, ring-, radial-, and diagonal musculatures are also present. The diagonal is probably most important for the corkscrew retraction of the tentacle, used at the moment of prey capture. Results from laboratory experiments show that different body-parts of P. periphylla vary in sensitivity for chemical and mechanical stimuli, including hydrodynamic disturbance and vibration in the surrounding water. Feeding success is facilitated by combining the vibration-sense on the tentacle tips and the marginal lappets, the touch-sense on the tentacle bases and marginal lappets, and a taste control of the captured prey at the mouthlips.  相似文献   

19.
The genetic structure of Patagonian toothfish populations in the Atlantic and western Indian Ocean Sectors of the Southern Ocean (SO) were analysed using partial sequences of the mitochondrial 12S rRNA gene and seven microsatellite loci. Both haplotype frequency data (F ST>0.906, P<0.01) and microsatellite genotype frequency data (F ST=0.0141–0.0338, P<0.05) indicated that populations of toothfish from around the Falkland Islands were genetically distinct from those at South Georgia (eastern Atlantic Sector SO), around Bouvet Island (western Atlantic Sector SO) and the Ob Seamount (western Indian Ocean Sector of the SO). Genetic differentiation between these populations is thought to result from hydrographic isolation, as the sites are separated by two, full-depth, ocean-fronts and topographic isolation, as samples are separated by deep water. The South Georgia, Bouvet and Ob Seamount samples were characterised by an identical haplotype. However, microsatellite genotype frequencies showed genetic differentiation between South Georgia samples and those obtained from around Bouvet Island and nearby seamounts (F ST=0.0037, P<0.05). These areas are separated by large geographic distance and water in excess of 3,000 m deep, below the distributional range of toothfish (<2,200 m). No significant genetic differentiation was detected between samples around Bouvet Island and the Ob Seamount although comparisons may have been influenced by low sample size. These localities are linked by topographic features, including both ridges and seamounts, that may act as oceanic “stepping stones” for migration between these populations. As for other species of deep-sea fish, Patagonian toothfish populations are genetically structured at the regional and sub-regional scales.  相似文献   

20.
Fish belonging to the genus Macroramphosus are distributed throughout the Atlantic, Indian and Pacific oceans. Some authors consider this genus monotypic, Macroramphosus scolopax being the only valid species. Other authors consider (based on several morphological and ecological characters) that another species (Macroramphosus gracilis) exists and occurs frequently in sympatry with the first one. Intermediate forms are also reported in literature. In this paper, using the mitochondrial control region and the nuclear first S7 intron markers, we failed to find genetic differences between individuals considered to belong to both species as well as the intermediate forms. Our results suggest that in the northeastern Atlantic, Macroramphosus is represented by a single species, M. scolopax, with different morphotypes interbreeding in the sampling areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号