首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large seasonal fluctuations of the water table are characteristic of aquifers with a low specific yield, including those fractured, double-porosity aquifers that have significant matrix porosity containing virtually immobile porewater, such as the Chalk of northern Europe. Where these aquifers are contaminated, a strong relationship between water table elevation and contaminant concentration in groundwater is commonly observed, of significance to the assessment, monitoring, and remediation of contaminated groundwater. To examine the processes governing contaminant redistribution by a fluctuating water table within the 'seasonally unsaturated zone', or SUZ, profiles of porewater solute concentrations have been established at a contaminated site in southern England. These profiles document the contaminant distribution in porewater of the Chalk matrix over the SUZ at a greater level of detail than recorded previously. A novel double-porosity solute transport code has been developed to simulate the evolution of the SUZ matrix porewater contaminant profiles, given a fluctuating water table, when the groundwater is initially contaminated and the SUZ is initially free of contamination. The model is simply characterised by: the matrix-fracture porosity ratio, the matrix block geometry, and a characteristic diffusion time. De-saturation and re-saturation of fractures is handled by a new approximation method. Contaminant accumulates in the upper levels of the SUZ, where it is less accessible to mobile groundwater, and acts as a persistent secondary source of contamination once the original source of contamination has been removed or has become depleted. The 'SUZ process' first attenuates the progress of contaminants in groundwater, and subsequently controls the slow release of contamination back to the mobile groundwater, thus prolonging the duration of groundwater contamination by many years. The SUZ process should operate in any fractured, micro-porous lithology e.g. fractured clays and mudstones, making this approach widely applicable.  相似文献   

2.
This work focuses on the phenomenon of the immiscible two-phase flow of water and oil in saturated heterogeneous soil columns. The goal is to develop a fast and reliable method for quantifying soil heterogeneities for incorporation into the relevant capillary pressure and relative permeability functions. Such data are commonly used as input data in simulators of contaminant transport in the subsurface. Rate-controlled drainage experiments are performed on undisturbed soil columns and the transient response of the axial distribution of water saturation is determined from electrical measurements. The transient responses of the axial distribution of water saturation and total pressure drop are fitted with the multi-flowpath model (MFPM) where the pore space is regarded as a system of parallel paths of different permeability. The MFPM enables us to quantify soil heterogeneity at two scales: the micro-scale parameters describe on average the effects of pore network heterogeneities on the two-phase flow pattern; the macro-scale parameters indicate the variability of permeability at the scale of interconnected pore networks. The capillary pressure curve is consistent with that measured with mercury intrusion porosimetry over the low pressure range. The oil relative permeability increases sharply at a very low oil saturation (< 10− 3) and tends to a high end value. The water relative permeability decreases abruptly at a low oil saturation (~ 0.1), whereas the irreducible wetting phase saturation is quite high. The foregoing characteristics of the two-phase flow properties are associated with critical (preferential) flowpaths that comprise a very small percentage of the total pore volume, control the overall hydraulic conductivity, and are consistent with the very broad range of pore-length scales usually probed in soil porous matrix.  相似文献   

3.
We investigated groundwaters in the vicinity of a coal ash site near an electric generating station in the western U.S.A. The purpose of the study was to ascertain why fine particles or colloids appear in some subsurface water samples there. If such fine particles are merely introduced during bailing or pumping operations which suspend otherwise immobile soil colloids, we should exclude these particulate materials from the water samples before analysis intended to quantify what is moving through the aquifer. However, if the colloids were truly suspended and moving with the groundwater flow in situ, then we should includes their contribution to our assessment of the mobile loads.Application of very careful sampling techniques (slow pumping rates, no atmospheric exposure) did not cause the large quantities of colloids observed previously to disappear from well water in which they occured. Additionally, the same sampling procedures did not cause similar abundances of colloids to appear in waters collected from neighboring wells installed and developed in the same manner and in the same geologic strata. Thus we believe sampling artifacts do not explain the colloids' presence in the groundwater samples.On the other hand, the groundwater chemistry and the nature of the suspended colloids (size, composition) strongly suggest these fine particles were suspended and therefore moving with the groundwater flow. At wells exhibiting large amounts of suspended colloids (≈10–100 mg L−1), the water was enriched in CO2 and depleted in O2 relative to nearby locations. The colloids were typically between 0.1 and 2 μm in size and were primarily silicates. These results suggest to us that, where infiltrating water is percolating through a site that has been mixed with coal ash, the secondary carbonate mineral in the soils are being dissolved; removal of this cementing carbonate phase may consequently release soil silicate colloids to be carried in the flowing water.Such processes may enhance contaminant transport in groundwater by augmenting the pollutant load moving in the groundwater, and increasing the permeability of the porous medium to pollutant infiltration with water water and/or rainwater.  相似文献   

4.
Hydrogeologic and hydrochemical data for subway tunnel seepage waters in Seoul (Republic of Korea) were examined to understand the effect of underground tunnels on the degradation of urban groundwater. A very large quantity of groundwater (up to 63 million m3 year− 1) is discharged into subway tunnels with a total length of 287 km, resulting in a significant drop of the local groundwater table and the abandonment of groundwater wells. For the tunnel seepage water samples (n = 72) collected from 43 subway stations, at least one parameter among pathogenic microbes (total coliform, heterotrophic bacteria), dissolved Mn and Fe, NH4+, NO3, turbidity, and color exceeded the Korean Drinking Water Standards. Locally, tunnel seepage water was enriched in dissolved Mn (avg. 0.70 mg L− 1, max. 5.58 mg L− 1), in addition to dissolved Fe, NH4+, and pathogenic microbes, likely due to significant inflow of sewage water from broken or leaking sewer pipes.Geochemical modeling of redox reactions was conducted to simulate the characteristic hydrochemistry of subway tunnel seepage. The results show that variations in the reducing conditions occur in urban groundwater, dependent upon the amount of organic matter-rich municipal sewage contaminating the aquifer. The organic matter facilitates the reduction and dissolution of Mn- and Fe-bearing solids in aquifers and/or tunnel construction materials, resulting in the successive increase of dissolved Mn and Fe. The present study clearly demonstrates that locally significant deterioration of urban groundwater is caused by a series of interlinked hydrogeologic and hydrochemical changes induced by underground tunnels.  相似文献   

5.
The KBS-3 underground nuclear waste repository concept designed by the Swedish Nuclear Fuel and Waste Management Co. (SKB) includes a bentonite buffer barrier surrounding the copper canisters and the iron insert where spent nuclear fuel will be placed. Bentonite is also part of the backfill material used to seal the access and deposition tunnels of the repository. The bentonite barrier has three main safety functions: to ensure the physical stability of the canister, to retard the intrusion of groundwater to the canisters, and in case of canister failure, to retard the migration of radionuclides to the geosphere. Laboratory experiments (< 10 years long) have provided evidence of the control exerted by accessory minerals and clay surfaces on the pore water chemistry. The evolution of the pore water chemistry will be a primordial factor on the long-term stability of the bentonite barrier, which is a key issue in the safety assessments of the KBS-3 concept.In this work we aim to study the long-term geochemical evolution of bentonite and its pore water in the evolving geochemical environment due to climate change. In order to do this, reactive transport simulations are used to predict the interaction between groundwater and bentonite which is simulated following two different pathways: (1) groundwater flow through the backfill in the deposition tunnels, eventually reaching the top of the deposition hole, and (2) direct connection between groundwater and bentonite rings through fractures in the granite crosscutting the deposition hole. The influence of changes in climate has been tested using three different waters interacting with the bentonite: present-day groundwater, water derived from ice melting, and deep-seated brine. Two commercial bentonites have been considered as buffer material, MX-80 and Deponit CA-N, and one natural clay (Friedland type) for the backfill. They show differences in the composition of the exchangeable cations and in the accessory mineral content. Results from the simulations indicate that pore water chemistry is controlled by the equilibrium with the accessory minerals, especially carbonates. pH is buffered by precipitation/dissolution of calcite and dolomite, when present. The equilibrium of these minerals is deeply influenced by gypsum dissolution and cation exchange reactions in the smectite interlayer. If carbonate minerals are initially absent in bentonite, pH is then controlled by surface acidity reactions in the hydroxyl groups at the edge sites of the clay fraction, although its buffering capacity is not as strong as the equilibrium with carbonate minerals. The redox capacity of the bentonite pore water system is mainly controlled by Fe(II)-bearing minerals (pyrite and siderite). Changes in the groundwater composition lead to variations in the cation exchange occupancy, and dissolution–precipitation of carbonate minerals and gypsum. The most significant changes in the evolution of the system are predicted when ice-melting water, which is highly diluted and alkaline, enters into the system. In this case, the dissolution of carbonate minerals is enhanced, increasing pH in the bentonite pore water. Moreover, a rapid change in the population of exchange sites in the smectite is expected due to the replacement of Na for Ca.  相似文献   

6.
Simulating the fate and transport of TCE from groundwater to indoor air   总被引:1,自引:0,他引:1  
This work provides an exploratory analysis on the relative importance of various factors controlling the fate and transport of volatile organic contaminants (in this case, TCE) from a DNAPL source zone located below the water table and into the indoor air. The analysis is conducted using the multi-phase compositional model CompFlow Bio, with the base scenario problem geometry reminiscent of a field experiment conducted by Rivett [Rivett, M.O., (1995), Soil–gas signatures from volatile chlorinated solvents: Borden field experiments. Groundwater, 33(1), 84–98.] at the Borden aquifer where groundwater was observed to transport a contaminant plume a substantial distance without vertical mass transport of the contaminant across the capillary fringe and into the vadose zone. Results for the base scenario model indicate that the structure of the permeability field was largely responsible for deflecting the groundwater plume upward towards the capillary fringe, permitting aqueous phase diffusion to transport the TCE into the vadose zone. Alternative permeability realizations, generated as part of a Monte Carlo simulation process, at times deflected the groundwater plume downwards causing the extended thickness of the saturated zone to insulate the vadose zone from exposure to the TCE by upward diffusive transport. Comparison of attenuation coefficients calculated using the CompFlow Bio and Johnson and Ettinger [Johnson, P.C. and Ettinger, R.A., (1991), Heuristic model for predicting the intrusion rate of contaminant vapors into buildings. Environmental Science and Technology, 25, 1445–1452.] heuristic model exhibited fortuitous agreement for the base scenario problem geometry, with this agreement diverging for the alternative permeability realizations as well as when parameters such as the foundation slab fracture aperture, the indoor air pressure drop, the capillary fringe thickness, and the infiltration rate were varied over typical ranges.  相似文献   

7.
The distributions of hydrocarbon contaminants and hydrogeochemical parameters were investigated in a shallow sand aquifer highly contaminated with petroleum hydrocarbons leaked from solvent storage tanks. For these purposes, a variety of field investigations and studies were performed, which included installation of over 100 groundwater monitoring wells and piezometers at various depths, soil logging and analyses during well and piezometer installation, chemical analysis of groundwater, pump tests, and slug tests. Continuous water level monitoring at three selected wells using automatic data-logger and manual measuring at other wells were also conducted. Based on analyses of the various investigations and tests, a number of factors were identified to explain the distribution of the hydrocarbon contaminants and hydrogeochemical parameters. These factors include indigenous biodegradation, hydrostratigraphy, preliminary pump-and-treat remedy, recharge by rainfall, and subsequent water level fluctuation. The permeable sandy layer, in which the mean water table elevation is maintained, provided a dominant pathway for contaminant transport. The preliminary pump-and-treat action accelerated the movement of the hydrocarbon contaminants and affected the redox evolution pattern. Seasonal recharge by rain, together with indigenous biodegradation, played an important role in the natural attenuation of the petroleum hydrocarbons via mixing/dilution and biodegradation. The water level fluctuations redistributed the hydrocarbon contaminants by partitioning them into the soil and groundwater. The identified factors are not independent but closely inter-correlated.  相似文献   

8.
The influence of the colonization of salt marsh sediments with Halimione portulacoides was evaluated by analysing the fluorescent dissolved organic matter (FDOM) in sediment pore waters from a salt marsh at different depths. Cores of sediments at colonized and non-colonized sites were collected from a coastal lagoon (Ria de Aveiro, Portugal). The DOC content of extracted pore waters was determined and characterized by synchronous molecular fluorescence (Deltalambda=60nm) and UV-visible spectroscopies. The common practice of freezing sediment cores for further and later chemical investigation was shown not to be an appropriate methodology of sample preservation. On the contrary, freezing of extracted and filtered pore water seemed not to affect either the DOC content or the fluorescence properties of pore waters. Two types of fluorescent substances were found in the pore waters spectra; one corresponding to humic-like substances and another one resembling proteins. However, major differences were found in the spectra of pore waters depending on both depth and the presence/absence of vegetation colonization.  相似文献   

9.
Rainfall and runoff were measured for many years on small watersheds on 10–15% slopes in east-central Ohio. Surface runoff from watersheds used for corn (Zea mays L.) production was high with conventional tillage and very low with no-tillage. A 50-year storm produced 15 times more runoff from a plowed watershed than from a mulch-covered no-till watershed. Reduced runoff from the no-till surface resulted in increased percolation and enhanced the potential for transport of agricultural chemicals to the groundwater. The mulched surface of the no-till watershed also created a favorable environment for the deep burrowing earthworm, Lumbricus terrestris L., whose burrows can transmit water rapidly downward through the soil profile, thus contributing to the high infiltration rates.Open biopores and smaller structural pores were counted and measured to characterize the major flow paths of water movement in the no-till soil. Photos of horizontal surfaces at 2.5-, 7.5-, 15-, and 30 - cm depths and vertical faces of impregnated samples from the 1- and 5-cm depths were evaluated by image analysis. Number of pores was inversely proportional to pore diameter, however pores in the 0.05–1.0-mm diameter range accounted for less porosity than did those in the 1.0–5.0-mm range. The large pores were nearly vertical earthworm burrows and were continuously open from near the surface to the bedrock. Surface applications of lime increased subsoil pH in the no-till watershed but had little effect below the plow sole in the tilled watershed, suggesting that rapid movement of water in large pores can enhance chemical migration into the subsoil.  相似文献   

10.
This paper introduces a new direct method for measuring water and contaminant fluxes in porous media. The method uses a passive flux meter (PFM), which is essentially a self-contained permeable unit properly sized to fit tightly in a screened well or boring. The meter is designed to accommodate a mixed medium of hydrophobic and/or hydrophilic permeable sorbents, which retain dissolved organic/inorganic contaminants present in the groundwater flowing passively through the meter. The contaminant mass intercepted and retained on the sorbent is used to quantify cumulative contaminant mass flux. The sorptive matrix is also impregnated with known amounts of one or more water soluble 'resident tracers'. These tracers are displaced from the sorbent at rates proportional to the groundwater flux; hence, in the current meter design, the resident tracers are used to quantify cumulative groundwater flux. Theory is presented and quantitative tools are developed to interpret the water flux from tracers possessing linear and nonlinear elution profiles. The same theory is extended to derive functional relationships useful for quantifying cumulative contaminant mass flux. To validate theory and demonstrate the passive flux meter, results of multiple box-aquifer experiments are presented and discussed. From these experiments, it is seen that accurate water flux measurements are obtained when the tracer used in calculations resides in the meter at levels representing 20 to 70 percent of the initial condition. 2,4-Dimethyl-3-pentanol (DMP) is used as a surrogate groundwater contaminant in the box aquifer experiments. Cumulative DMP fluxes are measured within 5% of known fluxes. The accuracy of these estimates generally increases with the total volume of water intercepted.  相似文献   

11.
The spatial pattern and magnitude of mass fluxes at the stream-aquifer interface have important implications for the fate and transport of contaminants in river basins. Integral pumping tests were performed to quantify average concentrations of chlorinated benzenes in an unconfined aquifer partially penetrated by a stream. Four pumping wells were operated simultaneously for a time period of 5 days and sampled for contaminant concentrations. Streambed temperatures were mapped at multiple depths along a 60m long stream reach to identify the spatial patterns of groundwater discharge and to quantify water fluxes at the stream-aquifer interface. The combined interpretation of the results showed average potential contaminant mass fluxes from the aquifer to the stream of 272microgm(-2)d(-1) MCB and 71microgm(-2)d(-1) DCB, respectively. This methodology combines a large-scale assessment of aquifer contamination with a high-resolution survey of groundwater discharge zones to estimate contaminant mass fluxes between aquifer and stream.  相似文献   

12.
Monitoring of contaminant concentrations, e.g., for the estimation of mass discharge or contaminant degradation rates, often is based on point measurements at observation wells. In addition to the problem, that point measurements may not be spatially representative, a further complication may arise due to the temporal dynamics of groundwater flow, which may cause a concentration measurement to be not temporally representative. This paper presents results from a numerical modeling study focusing on temporal variations of the groundwater flow direction. “Measurements” are obtained from point information representing observation wells installed along control planes using different well frequencies and configurations. Results of the scenario simulations show that temporally variable flow conditions can lead to significant temporal fluctuations of the concentration and thus are a substantial source of uncertainty for point measurements. Temporal variation of point concentration measurements may be as high as the average concentration determined, especially near the plume fringe, even when assuming a homogeneous distribution of the hydraulic conductivity. If a heterogeneous hydraulic conductivity field is present, the concentration variability due to a fluctuating groundwater flow direction varies significantly within the control plane and between the different realizations. Determination of contaminant mass fluxes is also influenced by the temporal variability of the concentration measurement, especially for large spacings of the observation wells. Passive dosimeter sampling is found to be appropriate for evaluating the stationarity of contaminant plumes as well as for estimating average concentrations over time when the plume has fully developed. Representative sampling has to be performed over several periods of groundwater flow fluctuation. For the determination of mass fluxes at heterogeneous sites, however, local fluxes, which may vary considerably along a control plane, have to be accounted for. Here, dosimeter sampling in combination with time integrated local water flux measurements can improve mass flux estimates under dynamic flow conditions.  相似文献   

13.
This article reports on a field modelling study to investigate the processes controlling the plume evolution of para-toluenesulfonamide (p-TSA) in anoxic groundwater in Berlin, Germany. The organic contaminant p-TSA originates from the industrial production process of plasticisers, pesticides, antiseptics and drugs and is of general environmental concern for urban water management. Previous laboratory studies revealed that p-TSA is degradable under oxic conditions, whereas it appears to behave conservatively in the absence of oxygen (O2). p-TSA is ubiquitous in the aquatic environment of Berlin and present in high concentrations (up to 38 μg L?1) in an anoxic aquifer downgradient of a former sewage farm, where groundwater is partly used for drinking water production. To obtain refined knowledge of p-TSA transport and degradation in an aquifer at field scale, measurements of p-TSA were carried out at 11 locations (at different depths) between 2005 and 2010. Comparison of chloride (Cl?) and p-TSA field data showed that p-TSA has been retarded in the same manner as Cl?. To verify the transport behaviour under field conditions, a two-dimensional transport model was setup, applying the dual-domain mass transfer approach in the model sector corresponding to an area of high aquifer heterogeneity. The distribution of Cl? and p-TSA concentrations from the site was reproduced well, confirming that both compounds behave conservatively and are subjected to retardation due to back diffusion from water stagnant zones. Predictive simulations showed that without any remediation measures, the groundwater quality near the drinking water well galleries will be affected by high p-TSA loads for about a hundred years.  相似文献   

14.
Contamination has occurred many non-indurated and bedrock systems wherein the groundwater flows almost exclusively through a network of connected, open fractures. The matrix surrounding the fractures often possesses porosity which allows contaminant diffusion into the matrix. If the diffusion rates are fast relative to the fracture groundwater velocity, transport effects may be predicted by considering the system to be an equivalent porous medium (EPM). The rapidity with which fracture/immobile-matrix equilibrium is established will be determined in part by the: fracture aperture (2b); interfracture spacing (2B); porosity in the immobile matrix im); and the matrix diffusion coefficient (D′). Two systems which are characterized by very different values of the above parameters have been studied by our laboratories. At Alkali Lake, Oregon, the EPM approach describes contaminant transport well. At Bayview Park, Ontario, the EPM approach is not appropriate. Several features of the two sites are compared to illustrate the different nature of these two sites. These features include: (1) natural characteristics of the groundwater systems; (2) contaminant distributions; (3) observed transport; and (4) computed fracture/immobile-matrix diffusion times.  相似文献   

15.
Lignitic mine soils represent a typical two-scale dual-porosity medium consisting of a technogenic mixture of overburden sediments that include lignitic components as dust and as porous fragments embedded within a mostly coarse-textured matrix. Flow and transport processes in such soils are not sufficiently understood to predict the course of soil reclamation or of mine drainage. The objective of this contribution is to identify the most appropriate conceptual model for describing small-scale heterogeneity effects on flow on the basis of the physical structure of the system. Multistep flow experiments on soil cores are analyzed using either mobile–immobile or mobile–mobile type 1D dual-porosity models, and a 3D numerical model that considers a local-scale distribution of fragments. Simulations are compared with time series' of upward infiltration and matric potential heads measured at two depths using miniature tensiometers. The 3D and the 1D dual-permeability models yielded comparable results as long as pressure heads are in local equilibrium; however, could describe either the upward infiltration or the matric potential curves but not both at the same time. The mobile–immobile type dual-porosity model failed to describe the data. A simultaneous match with pressure heads and upward infiltration data could only be obtained with the 1D dual-permeability model (i.e., mobile–mobile) by assuming an additional restriction of the inter-domain water transfer. These results indicate that for unsaturated flow conditions at higher matric potential heads (i.e., here >− 40 hPa), water in a restricted part of the fragment domain must be more mobile as compared to water in the sandy matrix domain. Closer inspections of the pore system and first neutron radiographic imaging support the hypothesis that a more continuous pore region exists at these pressure heads in the vicinity of the lignitic fragments possibly formed by fragment contacts and a lignitic dust interface-region between the two domains. The results suggest that the small-scale structure is too complex as to be represented by weighted contributions of individual components alone.  相似文献   

16.
An inexpensive scheme to reclaim groundwaters contaminated by volatile organics at the Gloucester landfill site, near Ottawa, Canada, involved pumping of contaminated water into an conducted to evaluate the possible enhancement of biodegradation to improve this remedial measure.Batch experiments revealed that toluene (0.8–1.5 mg L−1) was rapidly degraded aerobically while chloroform (1.2–1.0 mg L−1) was recalcitrant under aerobic or anaerobic (denitrifying) conditions. Dynamic column experiments confirmed these findings. In column experiments, both chloroform and toluene were retarded relative to the pore water velocity, but to a far lesser extent than predicted by hydrophobic sorption theory. This discrepancy is attributed to the large particulate nature of the sorbent (sawdust) which prevented rapidly migrating organics from attaining an equilibrium partitioning with the bulk of this organic matter. Addition of acetate and nitrate at 20 mg L−1 stimulated aerobic activity, but was inhibitory to toluene degradation. However, when nutrient addition ceased, enhanced toluene degradation was produced by the larger microbial population.In the field experiment, addition of acetate and nitrate to groundwater influent into the sawdust/sand pit may have stimulated benzene biodegradation, but had no apparent influence on volatile chlorinated hydrocarbon biodegradation. As in the column experiments, sorptive retardation was considerably less than predicted, due to a lack of equilibrium partitioning of organic solutes within the sawdust.Enhancing biodegradation in this remedial scheme was unsuccessful for a broad range of volatile organic compound types. Periodic nutrient addition to create variable environments for microbes appears to hold more promise for remediation than the continuous nutrient input scheme. This experience demonstrates the need for realistic field-scale experiments before translating laboratory studies into full-scale remedial operations.  相似文献   

17.
Three methods for predicting element mobility in soils have been applied to an iron-rich soil, contaminated with arsenic, cadmium and zinc. Soils were collected from 0 to 30 cm, 30 to 70 cm and 70 to 100 cm depths in the field and soil pore water was collected at different depths from an adjacent 100 cm deep trench. Sequential extraction and a column leaching test in the laboratory were compared to element concentrations in pore water sampled directly from the field. Arsenic showed low extractability, low leachability and occurred at low concentrations in pore water samples. Cadmium and zinc were more labile and present in higher concentrations in pore water, increasing with soil depth. Pore water sampling gave the best indication of short term element mobility when field conditions were taken into account, but further extraction and leaching procedures produced a fuller picture of element dynamics, revealing highly labile Cd deep in the soil profile.  相似文献   

18.
Traditionally, monitoring of soil, groundwater and surface water quality is coordinated by different authorities in the Netherlands. Nowadays, the European Water Framework Directive (EU, 2,000) stimulates an integrated approach of the complete soil-groundwater-surface water system. Based on water quality data from several test catchments, we propose a conceptual model stating that stream water quality at different discharges is the result of different mixing ratios of groundwater from different depths. This concept is used for a regional study of the groundwater contribution to surface water contamination in the Dutch province of Noord-Brabant, using the large amount of available data from the regional monitoring networks. The results show that groundwater is a dominant source of surface water contamination. The poor chemical condition of upper and shallow groundwater leads to exceedance of the quality standards in receiving surface waters, especially during quick flow periods.  相似文献   

19.
Phase diagrams were used for the formulation of alcohol–surfactant–solvent and to identify the DNAPL (Dense Non Aqueous Phase Liquid) extraction zones. Four potential extraction zones of Mercier DNAPL, a mixture of heavy aliphatics, aromatics and chlorinated hydrocarbons, were identified but only one microemulsion zone showed satisfactory DNAPL recovery in sand columns. More than 90 sand column experiments were performed and demonstrate that: (1) neither surfactant in water, alcohol–surfactant solutions, nor pure solvent can effectively recover Mercier DNAPL and that only alcohol–surfactant–solvent solutions are efficient; (2) adding salts to alcohol–surfactant or to alcohol–surfactant–solvent solutions does not have a beneficial effect on DNAPL recovery; (3) washing solution formulations are site specific and must be modified if the surface properties of the solids (mineralogy) change locally, or if the interfacial behavior of liquids (type of oil) changes; (4) high solvent concentrations in washing solutions increase DNAPL extraction but also increase their cost and decrease their density dramatically; (5) maximum DNAPL recovery is observed with alcohol–surfactant–solvent formulations which correspond to the maximum solubilization in Zone C of the phase diagram; (6) replacing part of surfactant SAS by the alcohol n-butanol increases washing solution efficiency and decreases the density and the cost of solutions; (7) replacing part of n-butanol by the nonionic surfactant HOES decreases DNAPL recovery and increases the cost of solutions; (8) toluene is a better solvent than D-limonene because it increases DNAPL recovery and decreases the cost of solutions; (9) optimal alcohol–surfactant–solvent solutions contain a mixture of solvents in a mass ratio of toluene to D-limonene of one or two. Injection of 1.5 pore volumes of the optimal washing solution of n-butanol–SAS–toluene–D-limonene in water can recover up to 95% of Mercier DNAPL in sand columns. In the first pore volume of the washing solution recovered in the sand column effluent, the DNAPL is in a water-in-oil microemulsion lighter than the excess aqueous phase (Winsor Type II system), which indicates that part of the DNAPL was mobilized. In the next pore volumes, DNAPL is dissolved in a oil-in-water microemulsion phase and is mobilized in an excess oil phase lighter than the microemulsion (Winsor Type I system). The main drawback of this oil extraction process is the high concentration of ingredients necessary for DNAPL dissolution, which makes the process expensive. Because mobilization of oil seems to occur at the washing solution front, an injection strategy must be developed if there is no impermeable limit at the aquifer base. DNAPL recovery in the field could be less than observed in sand columns because of a smaller sweep efficiency related to field sand heterogeneities. The role of each component in the extraction processes in sand column as well as the Winsor system type have to be better defined for modeling purposes. Injection strategies must be developed to recover ingredients of the washing solution that can remain in the soil at the end of the washing process. ©1997 Elsevier Science B.V.  相似文献   

20.
Bankside groundwater is widely used as drinking water resource and, therefore, contamination has to be avoided. In the European Union groundwater protection is explicit subject to Water Framework Directive. While groundwater pollution may originate from different sources, this study investigated on impacts via flood events.Groundwater was sampled with increasing distance to the river Rhine near Karlsruhe, Germany. Samples were HPLC-MS-MS analyzed for the river contaminant carbamazepine to indicate river water infiltration, giving permanent presence in 250 m distance to the river (14-47 μg L−1). Following a flood event, concentrations of about 16-20 μg L−1 could also be detected in a distance of 750 m to the river. Furthermore, estrogenic activity as determined with the Yeast Estrogen Screen assay was determined to increase up to a 17β-ethinylestradiol equivalent concentration (E-EQ) = 2.9 ng L−1 near the river, while activity was initially measured following the flood with up to E-EQ = 2.6 ng L−1 in 750 m distance. Detections were delayed with increasing distance to the river indicating river water expansion into the aquifer.Flood suspended matter and floodplain soil were fractionated and analyzed for estrogenic activity in parallel giving up to 1.4 ng g−1 and up to 0.7 ng g−1, respectively. Target analysis focusing on known estrogenic active substances only explained <1% of measured activities.Nevertheless, river water infiltration was shown deep into bankside groundwater, thus, impacting groundwater quality. Therefore, flood events have to be in the focus when aiming for groundwater and drinking water protection as well as for implementation of Water Framework Directive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号