首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The natural methane oxidation potential of methanotrophic bacteria in landfill top covers is a sustainable and inexpensive method to reduce methane emissions to the atmosphere. Basically, the activity of methanotrophic bacteria is limited by the availability of oxygen in the soil. A column study was carried out to determine whether and to what extent vegetation can improve soil aeration and maintain the methane oxidation process. Tested soils were clayey silt and mature compost. The first soil is critical in light of surface crusting due to vertical erosion of an integral part of fine-grained material, blocking pores required for the gas exchange. The second soil, mature compost, is known for its good methane oxidation characteristics, due to high air-filled porosity, favorable water retention capacity and high nutrient supply. The assortment of plants consisted of a grass mixture, Canadian goldenrod and a mixture of leguminous plants. The compost offered an excellent methane oxidation potential of 100% up to a CH4-input of 5.6 l CH4 m−2 h−1. Whereas the oxidation potential was strongly diminished in the bare control column filled with clayey silt even at low CH4-loads. By contrast the planted clayey silt showed an increased methane oxidation potential compared to the bare column. The spreading root system forms secondary macro-pores, and hence amplifies the air diffusivity and sustain the oxygen supply to the methanotrophic bacteria. Water is produced during methane oxidation, causing leachate. Vegetation reduces the leachate by evapotranspiration. Furthermore, leguminous plants support the enrichment of soil with nitrogen compounds and thus improving the methane oxidation process. In conclusion, vegetation is relevant for the increase of oxygen diffusion into the soil and subsequently enhances effective methane oxidation in landfill cover soils.  相似文献   

2.
In order to devise design criteria for biocovers intended to enhance the microbial oxidation of landfill methane it is critical to understand the factors influencing gas migration and methane oxidation in landfill cover soils. On an old municipal solid waste landfill in north-western Germany soil gas concentrations (10, 40, 90 cm depth), topsoil methane oxidation capacity and soil properties were surveyed at 40 locations along a 16 m grid. As soil properties determine gas flow patterns it was hypothesized that the variability in soil gas composition and the subsequent methanotrophic activity would correspond to the variability of soil properties. Methanotrophic activity was found to be subject to high spatial variability, with values ranging between 0.17 and 9.80 g CH4 m−2 h−1. Considering the current gas production rate of 0.03 g CH4 m−2 h−1, the oxidation capacity at all sampled locations clearly exceeded the flux to the cover, and can be regarded as an effective instrument for mitigating methane fluxes. The methane concentration in the cover showed a high spatial heterogeneity with values between 0.01 and 0.32 vol.% (10 cm depth), 22.52 vol.% (40 cm), and 36.85 vol.% (90 cm). The exposure to methane raised the oxidation capacity, suggested by a statistical correlation to an increase in methane concentration at 90 cm depth. Methane oxidation capacity was further affected by the methanotroph bacteria pH optimum and nutrient availability, and increased with decreasing pH towards neutrality, and increased with soluble ion concentration). Soil methane and carbon dioxide concentration increased with lower flow resistance of the cover, as represented by the soil properties of a reduced bulk density, increase in air capacity and in relative ground level.  相似文献   

3.
Limits and dynamics of methane oxidation in landfill cover soils   总被引:1,自引:0,他引:1  
In order to understand the limits and dynamics of methane (CH4) oxidation in landfill cover soils, we investigated CH4 oxidation in daily, intermediate, and final cover soils from two California landfills as a function of temperature, soil moisture and CO2 concentration. The results indicate a significant difference between the observed soil CH4 oxidation at field sampled conditions compared to optimum conditions achieved through pre-incubation (60 days) in the presence of CH4 (50 ml l−1) and soil moisture optimization. This pre-incubation period normalized CH4 oxidation rates to within the same order of magnitude (112-644 μg CH4 g−1 day−1) for all the cover soils samples examined, as opposed to the four orders of magnitude variation in the soil CH4 oxidation rates without this pre-incubation (0.9-277 μg CH4 g−1 day−1).Using pre-incubated soils, a minimum soil moisture potential threshold for CH4 oxidation activity was estimated at 1500 kPa, which is the soil wilting point. From the laboratory incubations, 50% of the oxidation capacity was inhibited at soil moisture potential drier than 700 kPa and optimum oxidation activity was typical observed at 50 kPa, which is just slightly drier than field capacity (33 kPa). At the extreme temperatures for CH4 oxidation activity, this minimum moisture potential threshold decreased (300 kPa for temperatures <5 °C and 50 kPa for temperatures >40 °C), indicating the requirement for more easily available soil water. However, oxidation rates at these extreme temperatures were less than 10% of the rate observed at more optimum temperatures (∼30 °C). For temperatures from 5 to 40 °C, the rate of CH4 oxidation was not limited by moisture potentials between 0 (saturated) and 50 kPa. The use of soil moisture potential normalizes soil variability (e.g. soil texture and organic matter content) with respect to the effect of soil moisture on methanotroph activity. The results of this study indicate that the wilting point is the lower moisture threshold for CH4 oxidation activity and optimum moisture potential is close to field capacity.No inhibitory effects of elevated CO2 soil gas concentrations were observed on CH4 oxidation rates. However, significant differences were observed for diurnal temperature fluctuations compared to thermally equivalent daily isothermal incubations.  相似文献   

4.
Observations on the methane oxidation capacity of landfill soils   总被引:1,自引:0,他引:1  
The objective of this study was to determine the role of CH4 loading to a landfill cover in the control of CH4 oxidation rate (g CH4 m−2 d−1) and CH4 oxidation efficiency (% CH4 oxidation) in a field setting. Specifically, we wanted to assess how much CH4 a cover soil could handle. To achieve this objective we conducted synoptic measurements of landfill CH4 emission and CH4 oxidation in a single season at two Southeastern USA landfills. We hypothesized that percent oxidation would be greatest at sites of low CH4 emission and would decrease as CH4 emission rates increased. The trends in the experimental results were then compared to the predictions of two differing numerical models designed to simulate gas transport in landfill covers, one by modeling transport by diffusion only and the second allowing both advection and diffusion. In both field measurements and in modeling, we found that percent oxidation is a decreasing exponential function of the total CH4 flux rate (CH4 loading) into the cover. When CH4 is supplied, a cover’s rate of CH4 uptake (g CH4 m−2 d−2) is linear to a point, after which the system becomes saturated. Both field data and modeling results indicate that percent oxidation should not be considered as a constant value. Percent oxidation is a changing quantity and is a function of cover type, climatic conditions and CH4 loading to the bottom of the cover. The data indicate that an effective way to increase the % oxidation of a landfill cover is to limit the amount of CH4 delivered to it.  相似文献   

5.
A low-cost alternative approach to reduce landfill gas (LFG) emissions is to integrate compost into the landfill cover design in order to establish a biocover that is optimized for biological oxidation of methane (CH4). A laboratory and field investigation was performed to quantify respiration in an experimental compost biocover in terms of oxygen (O2) consumption and carbon dioxide (CO2) production and emission rates. O2 consumption and CO2 production rates were measured in batch and column experiments containing compost sampled from a landfill biowindow at Fakse landfill in Denmark. Column gas concentration profiles were compared to field measurements. Column studies simulating compost respiration in the biowindow showed average CO2 production and O2 consumption rates of 107 ± 14 g m−2 d−1 and 63 ± 12 g m−2 d−1, respectively. Gas profiles from the columns showed elevated CO2 concentrations throughout the compost layer, and CO2 concentrations exceeded 20% at a depth of 40 cm below the surface of the biowindow. Overall, the results showed that respiration of compost material placed in biowindows might generate significant CO2 emissions. In landfill compost covers, methanotrophs carrying out CH4 oxidation will compete for O2 with other aerobic microorganisms. If the compost is not mature, a significant portion of the O2 diffusing into the compost layer will be consumed by non-methanotrophs, thereby limiting CH4 oxidation. The results of this study however also suggest that the consumption of O2 in the compost due to aerobic respiration might increase over time as a result of the accumulation of biomass in the compost after prolonged exposure to CH4.  相似文献   

6.
Availability and properties of materials for the Fakse Landfill biocover   总被引:1,自引:0,他引:1  
Methane produced in landfills can be oxidized in landfill covers made of compost; often called biocovers. Compost materials originating from seven different sources were characterized to determine their methane-oxidizing capacity and suitability for use in a full-scale biocover at Fakse Landfill in Denmark. Methane oxidation rates were determined in batch incubations. Based on material availability, characteristics, and the results of batch incubations, five of the seven materials were selected for further testing in column incubations. Three of the best performing materials showed comparable average methane oxidation rates: screened garden waste compost, sewage sludge compost, and an unscreened 4-year old garden waste compost (120, 112, and 108 g m−2 d−1, respectively). On the basis of these results, material availability and cost, the unscreened garden waste compost was determined to be the optimal material for the biocover. Comparing the results to criteria given in the literature it was found that the C/N ratio was the best indicator of the methane oxidation capacity of compost materials. The results of this work indicate that batch incubations measuring methane oxidation rates offer a low-cost and effective method for comparing compost sources for suitability of use in landfill biocovers.  相似文献   

7.
According to the European Landfill Directive 1999/31/EC and the related Italian Legislation (“D. Lgs. No. 36/2003”), monitoring and control procedures of landfill gas emissions, migration and external dispersions are clearly requested. These procedures could be particularly interesting in the operational circumstance of implementing a temporary cover, as for instance permitted by the Italian legislation over worked-out landfill sections, awaiting the evaluation of expected waste settlements.A possible quantitative approach for field measurement and consequential evaluation of landfill CO2, CH4 emission rates in pairs consists of the static, non-stationary accumulation chamber technique. At the Italian level, a significant and recent situation of periodical landfill gas emission monitoring is represented by the sanitary landfill for non-hazardous waste of the “Fano” town district, where monitoring campaigns with the static chamber have been annually conducted during the last 5 years (2005-2009). For the entire multiyear monitoring period, the resulting CO2, CH4 emission rates varied on the whole up to about 13,100 g CO2 m−2 d−1 and 3800 g CH4 m−2 d−1, respectively.The elaboration of these landfill gas emission data collected at the “Fano” case-study site during the monitoring campaigns, presented and discussed in the paper, gives rise to a certain scientific evidence of the possible negative effects derivable from the implementation of a temporary HDPE cover over a worked-out landfill section, notably: the lateral migration and concentration of landfill gas emissions through adjacent, active landfill sections when hydraulically connected; and consequently, the increase of landfill gas flux velocities throughout the reduced overall soil cover surface, giving rise to a flowing through of CH4 emissions without a significant oxidation. Thus, these circumstances are expected to cause a certain increase of the overall GHG emissions from the given landfill site.  相似文献   

8.
Landfill aeration by means of low pressure air injection is a promising tool to reduce long term emissions from organic waste fractions through accelerated biological stabilization. Top covers that enhance methane oxidation could provide a simple and economic way to mitigate residual greenhouse gas emissions from in situ aerated landfills, and may replace off-gas extraction and treatment, particularly at smaller and older sites. In this respect the installation of a landfill cover system adjusted to the forced-aerated landfill body is of great significance. Investigations into large scale lysimeters (2 × 2 × 3 m) under field conditions have been carried out using different top covers including compost materials and natural soils as a surrogate to gas extraction during active low pressure aeration. In the present study, the emission behaviour as well as the water balance performance of the lysimeters has been investigated, both prior to and during the first months of in situ aeration. Results reveal that mature sewage sludge compost (SSC) placed in one lysimeter exhibits in principle optimal ambient conditions for methanotrophic bacteria to enhance methane oxidation. Under laboratory conditions the mature compost mitigated CH4 loadings up to 300 l CH4/m2 d. In addition, the compost material provided high air permeability even at 100% water holding capacity (WHC). In contrast, the more cohesive, mineral soil cover was expected to cause a notably uniform distribution of the injected air within the waste layer. Laboratory results also revealed sufficient air permeability of the soil materials (TS-F and SS-Z) placed in lysimeter C. However, at higher compaction density SS-Z became impermeable at 100% WHC.Methane emissions from the reference lysimeter with the smaller substrate cover (12–52 g CH4/m2 d) were significantly higher than fluxes from the other lysimeters (0–19 g CH4/m2 d) during in situ aeration. Regarding water balance, lysimeters covered with compost and compost-sand mixture, showed the lowest leachate rate (18–26% of the precipitation) due to the high water holding capacity and more favourable plant growth conditions compared to the lysimeters with mineral, more cohesive, soil covers (27–45% of the precipitation).On the basis of these results, the authors suggest a layered top cover system using both compost material as well as mineral soil in order to support active low-pressure aeration. Conventional soil materials with lower permeability may be used on top of the landfill body for a more uniform aeration of the waste due to an increased resistance to vertical gas flow. A compost cover may be built on top of the soil cover underlain by a gas distribution layer to improve methane oxidation rates and minimise water infiltration. By planting vegetation with a high transpiration rate, the leachate amount emanating from the landfill could be further minimised. The suggested design may be particularly suitable in combination with intermittent in situ aeration, in the later stage of an aeration measure, or at very small sites and shallow deposits. The top cover system could further regulate water infiltration into the landfill and mitigate residual CH4 emissions, even beyond the time of active aeration.  相似文献   

9.
10.
A double tracer technique was used successfully to quantify whole-site methane (CH4) emissions from Fakse Landfill. Emissions from different sections of the landfill were quantified by using two different tracers. A scaled-down version of the tracer technique measuring close-by to localized sources having limited areal extent was also used to quantify emissions from on-site sources at the landfill facility, including a composting area and a sewage sludge storage pit. Three field campaigns were performed. At all three field campaigns an overall leak search showed that the CH4 emissions from the old landfill section were localized to the leachate collection wells and slope areas. The average CH4 emissions from the old landfill section were quantified to be 32.6 ± 7.4 kg CH4 h−1, whereas the source at the new section was quantified to be 10.3 ± 5.3 kg CH4 h−1. The CH4 emission from the compost area was 0.5 ± 0.25 kg CH4 h−1, whereas the carbon dioxide (CO2) and nitrous oxide (N2O) flux was quantified to be in the order of 332 ± 166 kg CO2 h−1 and 0.06 ± 0.03 kg N2O h−1, respectively. The sludge pit located west of the compost material was quantified to have an emission of 2.4 ± 0.63 kg h−1 CH4, and 0.03 ± 0.01 kg h−1 N2O.  相似文献   

11.
Landfill cover soils oxidize a considerable fraction of the methane produced by landfilled waste. Despite many efforts this oxidation is still poorly quantified. In order to reduce the uncertainties associated with methane oxidation in landfill cover soils, a simulation model was developed that incorporates Stefan-Maxwell diffusion, methane oxidation, and methanotrophic growth. The growth model was calibrated to laboratory data from an earlier study. There was an excellent agreement between the model and the experimental data. Therefore, the model is highly applicable to laboratory column studies, but it has not been validated with field data. A sensitivity analysis showed that the model is most sensitive to the parameter expressing the maximum attainable methanotrophic activity of the soil. Temperature and soil moisture are predicted to be the environmental factors affecting the methane oxidizing capacity of a landfill cover soil the most. Once validated with field data, the model will enable a year-round estimate of the methane oxidizing capacity of a landfill cover soil.  相似文献   

12.
Landfills that generate too little biogas for economic energy recovery can potentially offset methane (CH4) emissions through biological oxidation by methanotrophic bacteria in cover soils. This study reports on the CH4 oxidation efficiency of a 10-year old landfill cap comprising a volcanic pumice soil. Surface CH4 and CO2 fluxes were measured using field chambers during three sampling intervals over winter and summer. Methane fluxes were temporally and spatially variable (?0.36 to 3044 mg CH4 m?2 h?1); but were at least 15 times lower than typical literature CH4 fluxes reported for older landfills in 45 of the 46 chambers tested. Exposure of soil from this landfill cover to variable CH4 fluxes in laboratory microcosms revealed a very strong correlation between CH4 oxidation efficiency and CH4/CO2 ratios, confirming the utility of this relationship for approximating CH4 oxidation efficiency. CH4/CO2 ratios were applied to gas concentrations from the surface flux chambers and indicated a mean CH4 oxidation efficiency of 72%. To examine CH4 oxidation with soil depth, we collected 10 soil depth profiles at random locations across the landfill. Seven profiles exhibited CH4 removal rates of 70–100% at depths <60 cm, supporting the high oxidation rates observed in the chambers. Based on a conservative 70% CH4 oxidation efficiency occurring at the site, this cover soil is clearly offsetting far greater CH4 quantities than the 10% default value currently adopted by the IPCC.  相似文献   

13.
Methane oxidation was studied at a closed boreal landfill (area 3.9 ha, amount of deposited waste 200,000 tonnes) equipped with a passive gas collection and distribution system and a methane oxidative top soil cover integrated in a European Union landfill directive-compliant, multilayer final cover. Gas wells and distribution pipes with valves were installed to direct landfill gas through the water impermeable layer into the top soil cover. Mean methane emissions at the 25 measuring points at four measurement times (October 2005–June 2006) were 0.86–6.2 m3 ha?1 h?1. Conservative estimates indicated that at least 25% of the methane flux entering the soil cover at the measuring points was oxidized in October and February, and at least 46% in June. At each measurement time, 1–3 points showed significantly higher methane fluxes into the soil cover (20–135 m3 ha?1 h?1) and methane emissions (6–135 m3 ha?1 h?1) compared to the other points (<20 m3 ha?1 h?1 and <10 m3 ha?1 h?1, respectively). These points of methane overload had a high impact on the mean methane oxidation at the measuring points, resulting in zero mean oxidation at one measurement time (November). However, it was found that by adjusting the valves in the gas distribution pipes the occurrence of methane overload can be to some extent moderated which may increase methane oxidation. Overall, the investigated landfill gas treatment concept may be a feasible option for reducing methane emissions at landfills where a water impermeable cover system is used.  相似文献   

14.
The capacity of laboratory-scale aerated biofilters to oxidize methane was investigated. Four types of organic and mineral-organic materials were flushed with a mixture of CH4, CO2 and air (1:1:8 by volume) during a six-month period. The filter bed materials were as follows: (1) municipal waste compost, (2) an organic horticultural substrate, (3) a composite of expanded perlite and compost amended with zeolite, and (4) the same mixture of perlite and compost amended with bentonite. Methanotrophic capacity during the six months of the experiment reached maximum values of between 889 and 1036 g m−2 d−1. Batch incubation tests were carried out in order to determine the influence of methane and oxygen concentrations, as well as the addition of sewage sludge, on methanotrophic activity. Michaelis constants KM for CH4 and O2 were 4.6-14.9%, and 0.7-12.3%, respectively. Maximum methanotrophic activities Vmax were between 1.3 and 11.6 cm3 g−1 d−1. The activity significantly increased when sewage sludge was added. The main conclusion is that the type of filter bed material (differing significantly in organic matter content, water-holding capacity, or gas diffusion coefficient) was not an important factor in determining methanotrophic capacity when oxygen was supplied to the biofilter.  相似文献   

15.
Alkaline eluate from municipal solid waste (MSW) incineration residue deposited in landfill alkalizes waste and soil layers. From the viewpoint of accelerating stability and preventing heavy metal elution, pH of the landfill layer (waste and daily cover soil) should be controlled. On the other hand, pH of leachate from existing MSW landfill sites is usually approximately neutral. One of the reasons is that daily cover soil can neutralize alkaline solution containing Ca2+ as cation. However, in landfill layer where various types of wastes and reactions should be taken into consideration, the ability to neutralize alkaline solutions other than Ca(OH)2 by soil should be evaluated. In this study, the neutralization capacities of various types of soils were measured using Ca(OH)2 and NaOH solutions. Each soil used in this study showed approximately the same capacity to neutralize both alkaline solutions of Ca(OH)2 and NaOH. The cation exchange capacity was less than 30% of the maximum alkali neutralization capacity obtained by the titration test. The mechanism of neutralization by the pH-dependent charge can explain the same neutralization capacities of the soils. Although further investigation on the neutralization capacity of the soils for alkaline substances other than NaOH is required, daily cover soil could serve as a buffer zone for alkaline leachates containing Ca(OH)2 or other alkaline substances.  相似文献   

16.
Evaluating field-scale methane oxidation in landfill cover soils using numerical models is gaining interest in the solid waste industry as research has made it clear that methane oxidation in the field is a complex function of climatic conditions, soil type, cover design, and incoming flux of landfill gas from the waste mass. Numerical models can account for these parameters as they change with time and space under field conditions. In this study, we developed temperature, and water content correction factors for methane oxidation parameters. We also introduced a possible correction to account for the different soil structure under field conditions. These parameters were defined in laboratory incubation experiments performed on homogenized soil specimens and were used to predict the actual methane oxidation rates to be expected under field conditions. Water content and temperature corrections factors were obtained for the methane oxidation rate parameter to be used when modeling methane oxidation in the field. To predict in situ measured rates of methane with the model it was necessary to set the half saturation constant of methane and oxygen, Km, to 5%, approximately five times larger than laboratory measured values. We hypothesize that this discrepancy reflects differences in soil structure between homogenized soil conditions in the lab and actual aggregated soil structure in the field. When all of these correction factors were re-introduced into the oxidation module of our model, it was able to reproduce surface emissions (as measured by static flux chambers) and percent oxidation (as measured by stable isotope techniques) within the range measured in the field.  相似文献   

17.
The long-term effectiveness of the geological barrier beneath municipal-waste landfills is a critical issue for soil and groundwater protection. This study examines natural clayey soils directly in contact with the waste deposited in three landfills over 12 years old in Spain. Several physicochemical and geological parameters were measured as a function of depth. Electrical conductivity (EC), water-soluble organic carbon (WSOC), Cl, NH4+, Na+ and exchangeable NH4+ and Na+ were used as parameters to measure the penetration of landfill leachate pollution. Mineralogy, specific surface area and cationic-exchange capacities were analyzed to characterize the materials under the landfills. A principal component analysis, combined with a Varimax rotation, was applied to the data to determine patterns of association between samples and variables not evident upon initial inspection. The main factors explaining the variation in the data are related to waste composition and local geology. Although leachates have been in contact with clays for long time periods (13-24 years), WSOC and EC fronts are attenuated at depths of 0.2-1.5 m within the clay layer. Taking into account this depth of the clayey materials, these natural substrata (>45% illite-smectite-type sheet silicates) are suitable for confining leachate pollution and for complying with European legislation. This paper outlines the relevant differences in the clayey materials of the three landfills in which a diffusive flux attenuation capacity (Ac) is defined as a function (1) of the rate of decrease of the parameters per meter of material, (2) of the age and area of the landfill and (3) of the quantity and quality of the wastes.  相似文献   

18.
Landfills are significant sources of atmospheric methane (CH4) that contributes to climate change, and therefore there is a need to reduce CH4 emissions from landfills. A promising cost efficient technology is to integrate compost into landfill covers (so-called “biocovers”) to enhance biological oxidation of CH4. A full scale biocover system to reduce CH4 emissions was installed at Fakse landfill, Denmark using composted yard waste as active material supporting CH4 oxidation. Ten biowindows with a total area of 5000 m2 were integrated into the existing cover at the 12 ha site. To increase CH4 load to the biowindows, leachate wells were capped, and clay was added to slopes at the site. Point measurements using flux chambers suggested in most cases that almost all CH4 was oxidized, but more detailed studies on emissions from the site after installation of the biocover as well as measurements of total CH4 emissions showed that a significant portion of the emission quantified in the baseline study continued unabated from the site. Total emission measurements suggested a reduction in CH4 emission of approximately 28% at the end of the one year monitoring period. This was supported by analysis of stable carbon isotopes which showed an increase in oxidation efficiency from 16% to 41%. The project documented that integrating approaches such a whole landfill emission measurements using tracer techniques or stable carbon isotope measurements of ambient air samples are needed to document CH4 mitigation efficiencies of biocover systems. The study also revealed that there still exist several challenges to better optimize the functionality. The most important challenges are to control gas flow and evenly distribute the gas into the biocovers.  相似文献   

19.
Methane is an important greenhouse gas emitted from landfill sites and old waste dumps. Biological methane oxidation in landfill covers can help to reduce methane emissions. To determine the influence of different plant covers on this oxidation in a compost layer, we conducted a lysimeter study. We compared the effect of four different plant covers (grass, alfalfa + grass, miscanthus and black poplar) and of bare soil on the concentration of methane, carbon dioxide and oxygen in lysimeters filled with compost. Plants were essential for a sustainable reduction in methane concentrations, whereas in bare soil, methane oxidation declined already after 6 weeks. Enhanced microbial activity - expected in lysimeters with plants that were exposed to landfill gas - was supported by the increased temperature of the gas in the substrate and the higher methane oxidation potential. At the end of the first experimental year and from mid-April of the second experimental year, the methane concentration was most strongly reduced in the lysimeters containing alfalfa + grass, followed by poplar, miscanthus and grass. The observed differences probably reflect the different root morphology of the investigated plants, which influences oxygen transport to deeper compost layers and regulates the water content.  相似文献   

20.
The wet air oxidation (WAO) of municipal landfill leachate catalyzed by cupric ions and promoted by hydrogen peroxide was investigated. The effect of operating conditions such as WAO treatment time (15-30 min), temperature (160-200 °C), Cu2+ concentration (250-750 mg L−1) and H2O2 concentration (0-1500 mg L−1) on chemical oxygen demand (COD) removal was investigated by factorial design considering a two-stage, sequential process comprising the heating-up of the reactor and the actual WAO. The leachate, at an initial COD of 4920 mg L−1, was acidified to pH 3 leading to 31% COD decrease presumably due to the coagulation/precipitation of colloidal and other organic matter. During the 45 min long heating-up period of the WAO reactor under an inert atmosphere, COD removal values up to 35% (based on the initial COD value) were recorded as a result of the catalytic decomposition of H2O2 to reactive hydroxyl radicals. WAO at 2.5 MPa oxygen partial pressure advanced treatment further; for example, 22 min of oxidation at 200 °C, 250 mg L−1 Cu2+ and 0-1500 mg L−1 H2O2 resulted in an overall (i.e. including acidification and heating-up) COD reduction of 78%. Amongst the operating variables in question, temperature had the strongest influence on both the heating-up and WAO stages, while H2O2 concentration strongly affected the former and reaction time the latter. Nonetheless, the effects of temperature and H2O2 concentration were found to depend on the concentration levels of catalyst as suggested by the significance of their 3rd order interaction term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号