首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The natural methane oxidation potential of methanotrophic bacteria in landfill top covers is a sustainable and inexpensive method to reduce methane emissions to the atmosphere. Basically, the activity of methanotrophic bacteria is limited by the availability of oxygen in the soil. A column study was carried out to determine whether and to what extent vegetation can improve soil aeration and maintain the methane oxidation process. Tested soils were clayey silt and mature compost. The first soil is critical in light of surface crusting due to vertical erosion of an integral part of fine-grained material, blocking pores required for the gas exchange. The second soil, mature compost, is known for its good methane oxidation characteristics, due to high air-filled porosity, favorable water retention capacity and high nutrient supply. The assortment of plants consisted of a grass mixture, Canadian goldenrod and a mixture of leguminous plants. The compost offered an excellent methane oxidation potential of 100% up to a CH4-input of 5.6 l CH4 m−2 h−1. Whereas the oxidation potential was strongly diminished in the bare control column filled with clayey silt even at low CH4-loads. By contrast the planted clayey silt showed an increased methane oxidation potential compared to the bare column. The spreading root system forms secondary macro-pores, and hence amplifies the air diffusivity and sustain the oxygen supply to the methanotrophic bacteria. Water is produced during methane oxidation, causing leachate. Vegetation reduces the leachate by evapotranspiration. Furthermore, leguminous plants support the enrichment of soil with nitrogen compounds and thus improving the methane oxidation process. In conclusion, vegetation is relevant for the increase of oxygen diffusion into the soil and subsequently enhances effective methane oxidation in landfill cover soils.  相似文献   

2.
A low-cost alternative approach to reduce landfill gas (LFG) emissions is to integrate compost into the landfill cover design in order to establish a biocover that is optimized for biological oxidation of methane (CH4). A laboratory and field investigation was performed to quantify respiration in an experimental compost biocover in terms of oxygen (O2) consumption and carbon dioxide (CO2) production and emission rates. O2 consumption and CO2 production rates were measured in batch and column experiments containing compost sampled from a landfill biowindow at Fakse landfill in Denmark. Column gas concentration profiles were compared to field measurements. Column studies simulating compost respiration in the biowindow showed average CO2 production and O2 consumption rates of 107 ± 14 g m−2 d−1 and 63 ± 12 g m−2 d−1, respectively. Gas profiles from the columns showed elevated CO2 concentrations throughout the compost layer, and CO2 concentrations exceeded 20% at a depth of 40 cm below the surface of the biowindow. Overall, the results showed that respiration of compost material placed in biowindows might generate significant CO2 emissions. In landfill compost covers, methanotrophs carrying out CH4 oxidation will compete for O2 with other aerobic microorganisms. If the compost is not mature, a significant portion of the O2 diffusing into the compost layer will be consumed by non-methanotrophs, thereby limiting CH4 oxidation. The results of this study however also suggest that the consumption of O2 in the compost due to aerobic respiration might increase over time as a result of the accumulation of biomass in the compost after prolonged exposure to CH4.  相似文献   

3.
Availability and properties of materials for the Fakse Landfill biocover   总被引:1,自引:0,他引:1  
Methane produced in landfills can be oxidized in landfill covers made of compost; often called biocovers. Compost materials originating from seven different sources were characterized to determine their methane-oxidizing capacity and suitability for use in a full-scale biocover at Fakse Landfill in Denmark. Methane oxidation rates were determined in batch incubations. Based on material availability, characteristics, and the results of batch incubations, five of the seven materials were selected for further testing in column incubations. Three of the best performing materials showed comparable average methane oxidation rates: screened garden waste compost, sewage sludge compost, and an unscreened 4-year old garden waste compost (120, 112, and 108 g m−2 d−1, respectively). On the basis of these results, material availability and cost, the unscreened garden waste compost was determined to be the optimal material for the biocover. Comparing the results to criteria given in the literature it was found that the C/N ratio was the best indicator of the methane oxidation capacity of compost materials. The results of this work indicate that batch incubations measuring methane oxidation rates offer a low-cost and effective method for comparing compost sources for suitability of use in landfill biocovers.  相似文献   

4.
The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation and corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm−3, reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100 g CH4 m−2 d−1, covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH4 m−2 d−1 and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity and diffusive ingress of atmospheric air. For one material with elevated levels of fine particles and high organic matter content, methane production impeded the quantification of methane oxidation potentials. Regarding the design of landfill cover layers it was concluded that the magnitude of the expected methane load, the texture and expected compaction of the cover material are key variables that need to be known. Based on these, a column study can serve as an appropriate testing system to determine the methane oxidation capacity of a soil intended as landfill cover material.  相似文献   

5.
Landfill aeration by means of low pressure air injection is a promising tool to reduce long term emissions from organic waste fractions through accelerated biological stabilization. Top covers that enhance methane oxidation could provide a simple and economic way to mitigate residual greenhouse gas emissions from in situ aerated landfills, and may replace off-gas extraction and treatment, particularly at smaller and older sites. In this respect the installation of a landfill cover system adjusted to the forced-aerated landfill body is of great significance. Investigations into large scale lysimeters (2 × 2 × 3 m) under field conditions have been carried out using different top covers including compost materials and natural soils as a surrogate to gas extraction during active low pressure aeration. In the present study, the emission behaviour as well as the water balance performance of the lysimeters has been investigated, both prior to and during the first months of in situ aeration. Results reveal that mature sewage sludge compost (SSC) placed in one lysimeter exhibits in principle optimal ambient conditions for methanotrophic bacteria to enhance methane oxidation. Under laboratory conditions the mature compost mitigated CH4 loadings up to 300 l CH4/m2 d. In addition, the compost material provided high air permeability even at 100% water holding capacity (WHC). In contrast, the more cohesive, mineral soil cover was expected to cause a notably uniform distribution of the injected air within the waste layer. Laboratory results also revealed sufficient air permeability of the soil materials (TS-F and SS-Z) placed in lysimeter C. However, at higher compaction density SS-Z became impermeable at 100% WHC.Methane emissions from the reference lysimeter with the smaller substrate cover (12–52 g CH4/m2 d) were significantly higher than fluxes from the other lysimeters (0–19 g CH4/m2 d) during in situ aeration. Regarding water balance, lysimeters covered with compost and compost-sand mixture, showed the lowest leachate rate (18–26% of the precipitation) due to the high water holding capacity and more favourable plant growth conditions compared to the lysimeters with mineral, more cohesive, soil covers (27–45% of the precipitation).On the basis of these results, the authors suggest a layered top cover system using both compost material as well as mineral soil in order to support active low-pressure aeration. Conventional soil materials with lower permeability may be used on top of the landfill body for a more uniform aeration of the waste due to an increased resistance to vertical gas flow. A compost cover may be built on top of the soil cover underlain by a gas distribution layer to improve methane oxidation rates and minimise water infiltration. By planting vegetation with a high transpiration rate, the leachate amount emanating from the landfill could be further minimised. The suggested design may be particularly suitable in combination with intermittent in situ aeration, in the later stage of an aeration measure, or at very small sites and shallow deposits. The top cover system could further regulate water infiltration into the landfill and mitigate residual CH4 emissions, even beyond the time of active aeration.  相似文献   

6.
In order to devise design criteria for biocovers intended to enhance the microbial oxidation of landfill methane it is critical to understand the factors influencing gas migration and methane oxidation in landfill cover soils. On an old municipal solid waste landfill in north-western Germany soil gas concentrations (10, 40, 90 cm depth), topsoil methane oxidation capacity and soil properties were surveyed at 40 locations along a 16 m grid. As soil properties determine gas flow patterns it was hypothesized that the variability in soil gas composition and the subsequent methanotrophic activity would correspond to the variability of soil properties. Methanotrophic activity was found to be subject to high spatial variability, with values ranging between 0.17 and 9.80 g CH4 m−2 h−1. Considering the current gas production rate of 0.03 g CH4 m−2 h−1, the oxidation capacity at all sampled locations clearly exceeded the flux to the cover, and can be regarded as an effective instrument for mitigating methane fluxes. The methane concentration in the cover showed a high spatial heterogeneity with values between 0.01 and 0.32 vol.% (10 cm depth), 22.52 vol.% (40 cm), and 36.85 vol.% (90 cm). The exposure to methane raised the oxidation capacity, suggested by a statistical correlation to an increase in methane concentration at 90 cm depth. Methane oxidation capacity was further affected by the methanotroph bacteria pH optimum and nutrient availability, and increased with decreasing pH towards neutrality, and increased with soluble ion concentration). Soil methane and carbon dioxide concentration increased with lower flow resistance of the cover, as represented by the soil properties of a reduced bulk density, increase in air capacity and in relative ground level.  相似文献   

7.
A field scale trial was undertaken at a landfill site in Sydney, Australia (2004-2008), to investigate passive drainage and biofiltration of landfill gas as a means of managing landfill gas emissions from low to moderate gas generation landfill sites. The objective of the trial was to evaluate the effectiveness of a passive landfill gas drainage and biofiltration system at treating landfill gas under field conditions, and to identify and evaluate the factors that affect the behaviour and performance of the system.The trial results showed that passively aerated biofilters operating in a temperate climate can effectively oxidise methane in landfill gas, and demonstrated that maximum methane oxidation efficiencies greater than 90% and average oxidation efficiencies greater than 50% were achieved over the 4 years of operation. The trial results also showed that landfill gas loading was the primary factor that determined the behaviour and performance of the passively aerated biofilters. The landfill gas loading rate was found to control the diffusion of atmospheric oxygen into the biofilter media, limiting the microbial methane oxidation process. The temperature and moisture conditions within the biofilter were found to be affected by local climatic conditions and were also found to affect the behaviour and performance of the biofilter, but to a lesser degree than the landfill gas loading.  相似文献   

8.
Final landfill covers are highly engineered to prevent methane release into the atmosphere. However, methane production begins soon after waste placement and is an unaddressed source of emissions. The methane oxidation capacity of methanotrophs embedded in a “bio-tarp” was investigated as a means to mitigate methane release from open landfill cells. The bio-tarp would also serve as an alternative daily cover during routine landfill operation.Evaluations of nine synthetic geotextiles identified two that would likely be suitable bio-tarp components. Pilot tarp prototypes were tested in continuous flow systems simulating landfill gas conditions. Multilayered bio-tarp prototypes consisting of alternating layers of the two geotextiles were found to remove 16% of the methane flowing through the bio-tarp. The addition of landfill cover soil, compost, or shale amendments to the bio-tarp increased the methane removal up to 32%. With evidence of methane removal in a laboratory bioreactor, prototypes were evaluated at a local landfill using flux chambers installed atop intermediate cover at a landfill. The multilayered bio-tarp and amended bio-tarp configurations were all found to decrease landfill methane flux; however, the performance efficacy of bio-tarps was not significantly different from controls without methanotrophs. Because highly variable methane fluxes at the field site likely confounded the test results, repeat field testing is recommended under more controlled flux conditions.  相似文献   

9.
Methane emissions from active or closed landfills can be reduced by means of methane oxidation enhanced in properly designed landfill covers, known as “biocovers”. Biocovers usually consist of a coarse gas distribution layer to balance gas fluxes placed beneath an appropriate substrate layer. The application of such covers implies use of measurement methods and evaluation approaches, both during the planning stage and throughout the operation of biocovers in order to demonstrate their efficiency. Principally, various techniques, commonly used to monitor landfill surface emissions, can be applied to control biocovers. However, particularly when using engineered materials such as compost substrates, biocovers often feature several altered, specific properties when compared to conventional covers, e.g., respect to gas permeability, physical parameters including water retention capacity and texture, and methane oxidation activity. Therefore, existing measuring methods should be carefully evaluated or even modified prior to application on biocovers. This paper discusses possible strategies to be applied in monitoring biocover functionality. On the basis of experiences derived from investigations and large-scale field trials with compost biocovers in Austria, an assessment approach has been developed. A conceptual draft for monitoring biocover performance and recommendations for practical application are presented.  相似文献   

10.
Landfills are significant sources of atmospheric methane (CH4) that contributes to climate change, and therefore there is a need to reduce CH4 emissions from landfills. A promising cost efficient technology is to integrate compost into landfill covers (so-called “biocovers”) to enhance biological oxidation of CH4. A full scale biocover system to reduce CH4 emissions was installed at Fakse landfill, Denmark using composted yard waste as active material supporting CH4 oxidation. Ten biowindows with a total area of 5000 m2 were integrated into the existing cover at the 12 ha site. To increase CH4 load to the biowindows, leachate wells were capped, and clay was added to slopes at the site. Point measurements using flux chambers suggested in most cases that almost all CH4 was oxidized, but more detailed studies on emissions from the site after installation of the biocover as well as measurements of total CH4 emissions showed that a significant portion of the emission quantified in the baseline study continued unabated from the site. Total emission measurements suggested a reduction in CH4 emission of approximately 28% at the end of the one year monitoring period. This was supported by analysis of stable carbon isotopes which showed an increase in oxidation efficiency from 16% to 41%. The project documented that integrating approaches such a whole landfill emission measurements using tracer techniques or stable carbon isotope measurements of ambient air samples are needed to document CH4 mitigation efficiencies of biocover systems. The study also revealed that there still exist several challenges to better optimize the functionality. The most important challenges are to control gas flow and evenly distribute the gas into the biocovers.  相似文献   

11.
12.
Municipal solid waste landfills represent the dominant option for waste disposal in many parts of the world. While some countries have greatly reduced their reliance on landfills, there remain thousands of landfills that require aftercare. The development of cost-effective strategies for landfill aftercare is in society’s interest to protect human health and the environment and to prevent the emergence of landfills with exhausted aftercare funding. The Evaluation of Post-Closure Care (EPCC) methodology is a performance-based approach in which landfill performance is assessed in four modules including leachate, gas, groundwater, and final cover. In the methodology, the objective is to evaluate landfill performance to determine when aftercare monitoring and maintenance can be reduced or possibly eliminated. This study presents an improved gas module for the methodology. While the original version of the module focused narrowly on regulatory requirements for control of methane migration, the improved gas module also considers best available control technology for landfill gas in terms of greenhouse gas emissions, air quality, and emissions of odoriferous compounds. The improved module emphasizes the reduction or elimination of fugitive methane by considering the methane oxidation capacity of the cover system. The module also allows for the installation of biologically active covers or other features designed to enhance methane oxidation. A methane emissions model, CALMIM, was used to assist with an assessment of the methane oxidation capacity of landfill covers.  相似文献   

13.
Methane oxidation in a landfill cover with capillary barrier   总被引:6,自引:0,他引:6  
The methane oxidation potential of a landfill cover with capillary barrier was investigated in an experimental plant (4.8 m x 0.8 m x 2.1m). The cover soil consisted of two layers, a mixture of compost plus sand (0.3 m) over a layer of loamy sand (0.9 m). Four different climatic conditions (summer, winter, spring and fall) were simulated. In and outgoing fluxes were measured. Gas composition, temperature, humidity, matrix potential and gas pressure were monitored in two profiles. CH4 oxidation rate within the investigated top cover ranged from 98% to 57%. The minimum was observed for a short time after irrigation. Temperature distribution, gas concentration profiles and lab-scaled batch experiments indicate that before irrigation the highest oxidising activity took place in a depth of about 30 cm. After irrigation the oxidising horizon seemed to migrate upwards since methanotrophic bacteria develop better there due to an adequate supply with oxygen. It can be assumed that the absence of oxygen is one of the most important limiting factors for the CH4 oxidation process. Abrupt cross-overs between horizons of different soil material may lead to zones of increased water saturation and decreased soil respiration.  相似文献   

14.
The effect of leachate irrigation on methanotrophic activity in sandy loam-based landfill cover soil with vegetation was investigated. Laboratory-scale experiments were conducted to investigate the methane oxidation reaction in cover soil with and without plants (tropical grass). The methane oxidation rate in soil columns was monitored during leachate application at different organic concentrations and using different irrigation patterns. The results showed that the growth of plants on the final cover layer of landfill was promoted when optimal supplement nutrients were provided through leachate irrigation. The vegetation also helped to promote methane oxidation in soil, whereas leachate application helped increase the methane oxidation rate in nonvegetated cover soil. Intermittent application of leachate (once every 4 days) improved the methane oxidation activity as compared to daily application. Nevertheless, the adverse effects of organic overloading on methane oxidation rate and plant growth were also observed.  相似文献   

15.
Methane generated at landfills contributes to global warming and can be mitigated by biocover systems relying on microbial methane oxidation. As part of a closure plan for an old unlined landfill without any gas management measures, an innovative biocover system was established. The system was designed based on a conceptual model of the gas emission patterns established through an initial baseline study. The study included construction of gas collection trenches along the slopes of the landfill where the majority of the methane emissions occurred. Local compost materials were tested as to their usefulness as bioactive methane oxidizing material and a suitable compost mixture was selected. Whole site methane emission quantifications based on combined tracer release and downwind measurements in combination with several local experimental activities (gas composition within biocover layers, flux chamber based emission measurements and logging of compost temperatures) proved that the biocover system had an average mitigation efficiency of approximately 80%. The study showed that the system also had a high efficiency during winter periods with temperatures below freezing. An economic analysis indicated that the mitigation costs of the biocover system were competitive to other existing greenhouse gas mitigation options.  相似文献   

16.
Methane oxidation was studied at a closed boreal landfill (area 3.9 ha, amount of deposited waste 200,000 tonnes) equipped with a passive gas collection and distribution system and a methane oxidative top soil cover integrated in a European Union landfill directive-compliant, multilayer final cover. Gas wells and distribution pipes with valves were installed to direct landfill gas through the water impermeable layer into the top soil cover. Mean methane emissions at the 25 measuring points at four measurement times (October 2005–June 2006) were 0.86–6.2 m3 ha?1 h?1. Conservative estimates indicated that at least 25% of the methane flux entering the soil cover at the measuring points was oxidized in October and February, and at least 46% in June. At each measurement time, 1–3 points showed significantly higher methane fluxes into the soil cover (20–135 m3 ha?1 h?1) and methane emissions (6–135 m3 ha?1 h?1) compared to the other points (<20 m3 ha?1 h?1 and <10 m3 ha?1 h?1, respectively). These points of methane overload had a high impact on the mean methane oxidation at the measuring points, resulting in zero mean oxidation at one measurement time (November). However, it was found that by adjusting the valves in the gas distribution pipes the occurrence of methane overload can be to some extent moderated which may increase methane oxidation. Overall, the investigated landfill gas treatment concept may be a feasible option for reducing methane emissions at landfills where a water impermeable cover system is used.  相似文献   

17.
The capacity of laboratory-scale aerated biofilters to oxidize methane was investigated. Four types of organic and mineral-organic materials were flushed with a mixture of CH4, CO2 and air (1:1:8 by volume) during a six-month period. The filter bed materials were as follows: (1) municipal waste compost, (2) an organic horticultural substrate, (3) a composite of expanded perlite and compost amended with zeolite, and (4) the same mixture of perlite and compost amended with bentonite. Methanotrophic capacity during the six months of the experiment reached maximum values of between 889 and 1036 g m−2 d−1. Batch incubation tests were carried out in order to determine the influence of methane and oxygen concentrations, as well as the addition of sewage sludge, on methanotrophic activity. Michaelis constants KM for CH4 and O2 were 4.6-14.9%, and 0.7-12.3%, respectively. Maximum methanotrophic activities Vmax were between 1.3 and 11.6 cm3 g−1 d−1. The activity significantly increased when sewage sludge was added. The main conclusion is that the type of filter bed material (differing significantly in organic matter content, water-holding capacity, or gas diffusion coefficient) was not an important factor in determining methanotrophic capacity when oxygen was supplied to the biofilter.  相似文献   

18.
Observations on the methane oxidation capacity of landfill soils   总被引:1,自引:0,他引:1  
The objective of this study was to determine the role of CH4 loading to a landfill cover in the control of CH4 oxidation rate (g CH4 m−2 d−1) and CH4 oxidation efficiency (% CH4 oxidation) in a field setting. Specifically, we wanted to assess how much CH4 a cover soil could handle. To achieve this objective we conducted synoptic measurements of landfill CH4 emission and CH4 oxidation in a single season at two Southeastern USA landfills. We hypothesized that percent oxidation would be greatest at sites of low CH4 emission and would decrease as CH4 emission rates increased. The trends in the experimental results were then compared to the predictions of two differing numerical models designed to simulate gas transport in landfill covers, one by modeling transport by diffusion only and the second allowing both advection and diffusion. In both field measurements and in modeling, we found that percent oxidation is a decreasing exponential function of the total CH4 flux rate (CH4 loading) into the cover. When CH4 is supplied, a cover’s rate of CH4 uptake (g CH4 m−2 d−2) is linear to a point, after which the system becomes saturated. Both field data and modeling results indicate that percent oxidation should not be considered as a constant value. Percent oxidation is a changing quantity and is a function of cover type, climatic conditions and CH4 loading to the bottom of the cover. The data indicate that an effective way to increase the % oxidation of a landfill cover is to limit the amount of CH4 delivered to it.  相似文献   

19.
According to the European Landfill Directive 1999/31/EC and the related Italian Legislation (“D. Lgs. No. 36/2003”), monitoring and control procedures of landfill gas emissions, migration and external dispersions are clearly requested. These procedures could be particularly interesting in the operational circumstance of implementing a temporary cover, as for instance permitted by the Italian legislation over worked-out landfill sections, awaiting the evaluation of expected waste settlements.A possible quantitative approach for field measurement and consequential evaluation of landfill CO2, CH4 emission rates in pairs consists of the static, non-stationary accumulation chamber technique. At the Italian level, a significant and recent situation of periodical landfill gas emission monitoring is represented by the sanitary landfill for non-hazardous waste of the “Fano” town district, where monitoring campaigns with the static chamber have been annually conducted during the last 5 years (2005-2009). For the entire multiyear monitoring period, the resulting CO2, CH4 emission rates varied on the whole up to about 13,100 g CO2 m−2 d−1 and 3800 g CH4 m−2 d−1, respectively.The elaboration of these landfill gas emission data collected at the “Fano” case-study site during the monitoring campaigns, presented and discussed in the paper, gives rise to a certain scientific evidence of the possible negative effects derivable from the implementation of a temporary HDPE cover over a worked-out landfill section, notably: the lateral migration and concentration of landfill gas emissions through adjacent, active landfill sections when hydraulically connected; and consequently, the increase of landfill gas flux velocities throughout the reduced overall soil cover surface, giving rise to a flowing through of CH4 emissions without a significant oxidation. Thus, these circumstances are expected to cause a certain increase of the overall GHG emissions from the given landfill site.  相似文献   

20.
A double tracer technique was used successfully to quantify whole-site methane (CH4) emissions from Fakse Landfill. Emissions from different sections of the landfill were quantified by using two different tracers. A scaled-down version of the tracer technique measuring close-by to localized sources having limited areal extent was also used to quantify emissions from on-site sources at the landfill facility, including a composting area and a sewage sludge storage pit. Three field campaigns were performed. At all three field campaigns an overall leak search showed that the CH4 emissions from the old landfill section were localized to the leachate collection wells and slope areas. The average CH4 emissions from the old landfill section were quantified to be 32.6 ± 7.4 kg CH4 h−1, whereas the source at the new section was quantified to be 10.3 ± 5.3 kg CH4 h−1. The CH4 emission from the compost area was 0.5 ± 0.25 kg CH4 h−1, whereas the carbon dioxide (CO2) and nitrous oxide (N2O) flux was quantified to be in the order of 332 ± 166 kg CO2 h−1 and 0.06 ± 0.03 kg N2O h−1, respectively. The sludge pit located west of the compost material was quantified to have an emission of 2.4 ± 0.63 kg h−1 CH4, and 0.03 ± 0.01 kg h−1 N2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号