首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) is one of the most serious crop pests in northern China, calling for accurate prediction of pest outbreaks and strategies for pest control. A computer model is developed to simulate the population dynamics of H. armigera over a wide area in northern China. The area considered covers 12 provinces where serious outbreaks of H. armigera have been observed. In this model, pest development is driven by local ambient temperature, and adults migrate long distances between regions and select preferred hosts for oviposition within a region. Six types of host including cotton, wheat, corn, peanut, soybean and a single category composed of all other minor hosts are considered in this model. Survival rates of eggs and larvae are based on life-table data, and simulated as a function of host type, host phenology and temperature. The incidence of diapause depends on temperature and photoperiod experienced during the larval stage. Survival rate of non-diapause pupae is a nonlinear function of rainfall, and overwinter survival rate is a nonlinear function of temperature. Insecticide is applied when population density exceeds the economic threshold on a host crop within a region. Comparisons of model output with light-trap data indicate that our model reflects the pest population dynamics over a wide area, and could potentially be used for testing novel pest control strategies in northern China.  相似文献   

2.
A population model for the peach fruit moth, Carposina sasakii Matsumura, was constructed to understand the population dynamics of this pest species and to develop an effective management strategy for various orchard (apple, peach, apple + peach) systems. The model was structured by the five developmental stages of C. sasakii: egg, larva, pupa, larval-cocoon (overwintering larva), and adult. The model consisted of a series of component models: (1) a bimodal spring adult emergence model, (2) an adult oviposition model, (3) stage emergence models of eggs, larvae, and pupae, (4) a larval survival rate model in fruits, (5) a larval-cocoon formation model, and (6) an insecticide effect model. Simulations using the model described the typical patterns of C. sasakii adult abundance in various orchard systems well, and was specific to the composition of host plants: three adult abundance peaks (first peak, mid-season peak, and last peak) a year with decreased peaks after the first peak in monoculture orchards of late apple, two adult peaks a year with a much higher last peak in monoculture orchards of early peach, and three adult peaks a year with much higher later peaks in mixed orchards of late apple and early peach. The average deviation between model outputs and actual records for first and second adult peak dates was 2.8 and 3.9 d, respectively, in simulations without an insecticide effect. The deviation decreased when insecticide effects were incorporated into the model. We also performed a sensitivity analysis of our model, and suggest possible applications of the model.  相似文献   

3.
Predation by the medusa Aurelia aurita L. on early first-feeding stage larvae of the herring clupea harengus L. was studied in the laboratory. The medusae were captured in Loch Etive, Scotland. Herring larvae were reared from the extificially fertilized eggs of spawning Clyde herring caught in March, 1982. Swimming speeds, volume searched”, capture efficiency and predation rates increased as medusa size increased. Predation rates on fish larvae increased with prey density, but appeared to approach a maximum at high prey densities; in 1 h experiments, a maximum rate of predation of 6.64 larvae h-1 was estimated by fitting an Ivlev function. A model to predict predation rates was constructed from swimming speeds, sizes and densities of medusae and larvae, and capture efficiency. The rates of predation predicted from the model fell within the range of experimental data, but tended to underestimate rates and did not account for saturation of medusae. Swimming patterns of medusae changed after prey capture: (a) before capture, encounter rates were low and medusae were relatively less active; (b) after capture of 1 larva, encounter rates doubled, with the stimulated medusae exhibiting increased activity and an aftered “searching” path; and (c) after capture of many larvae, swimming speeds and encounter rates of medusae decreased.  相似文献   

4.
A discrete dense patch of eggs and larvae of hoki (Macruronus novaezelandiae) within the hoki spawning grounds off Westland, New Zealand, was sampled to examine prey selectivity by larvae and to obtain estimates of larval mortality and growth. The patch was tracked using a free-drifting drogue, and surveys of the horizontal distribution of larvae before and after the patch study indicated that the drogue had successfully followed the patch. Modal analysis of the size-frequency distributions of hoki larvae revealed up to six cohorts within the patch at any one sampling time, and a growth rate of 0.21 mm standard length per day. The daily mortality coefficient for larvae within the patch was 0.19, although this is considered to be an overestimate. Differences in the mean length between cohorts suggest that hoki have a synchronised, diel spawning periodicity, and results of a simple cellular design model revealed that ten continuous days of spawning were required to yield the observed size structure of the hoki larvae population within the patch. Diet analysis of larvae in the patch showed that copepods of the genus Calocalanus are actively selected, and are especially important in the diet of early-stage larvae. Based on aspects of larval diet, morphology, and rates of mortality and growth, it is hypothesised that hoki larvae are adapted to a low-food environment, and that predation is likely to be more important as a source of mortality than starvation.  相似文献   

5.
Plant-mediated competition among insect herbivores occurs when one species induces changes in plant chemistry, nutrition, or morphology that render plants resistant to attack by others. We explored plant-mediated interspecific interactions between the potato leafhopper (Empoasca fabae) and the Colorado potato beetle (Leptinotarsa decemlineata), two important pests on potatoes. Leafhoppers colonize fields in advance of beetles, and thus the possibility exists that previous feeding by leafhoppers induces changes in potato plants that have adverse consequences for beetles. The consequences of leafhopper-induced resistance for beetle performance were studied in the greenhouse, field cages, and in large open-field plots. Potato plants were exposed to four densities of leafhoppers (none, low, moderate, and high), and visible feeding symptoms were measured as percentage leaf curling, chlorosis, and necrosis. The oviposition preference, performance, and survivorship of Colorado potato beetles were then measured on the four categories of induced plants in field-cage and greenhouse settings. In open field plots, survival on the four categories of induced plants was determined by placing cohorts of beetle adults onto plants and measuring the densities of resulting eggs, larvae, and emerging Fl adults. Leafhopper-induced symptoms on potato plants were density dependent, with the percentage of curled, chlorotic, and necrotic leaves increasing with leafhopper density. Previous feeding by leafhoppers adversely affected oviposition and larval performance of beetles. Fewer egg masses were deposited on plants that incurred high levels of leafhopper feeding. Similarly, larval development was delayed and emerging adult beetles weighed less when fed induced foliage from the high leafhopper-density treatment. Beetles survived less well in the field on plants experiencing moderate and high levels of leafhopper feeding as evidenced by lower densities of eggs, larvae, and emerging F1 adults. Overall, leafhoppers and beetles competed through feeding-induced changes in plant quality. Notably, the asymmetric interaction took place at a large spatial scale in open field plots and had negative consequences that persisted to the next beetle generation. Ultimately, to establish an effective management strategy for crop pests such as leafhoppers, it is essential to consider the positive indirect effects of induced resistance along with the negative direct effects on crop yield.  相似文献   

6.
Summary. The eggs of some ladybirds are known to be toxic to intraguild ladybird predators. However, this defence is of little value if the eggs are killed before their toxicity becomes apparent. The results presented in this paper indicate that chemicals on the surface of the eggs of two species of ladybirds signal the relative risk of cannibalism and intraguild predation. In Adalia bipunctata and Coccinella septempunctata, 87% of the chemicals are alkanes. Each species of ladybird is less reluctant to eat their own eggs than those of the other species. This asymmetry is to be expected because there is a greater risk to ladybirds from intraguild predation than cannibalism. Similar alkanes to those on the surface of the eggs of A. bipunctata are present in tracks left by larvae and on the elytra of the adults of this species. Those in the larval tracks deter females from ovipositing in patches of prey already being attacked by their larvae and those on the elytra are used in mate recognition. That different context dependent messages could be signalled by similar chemicals is an example of semiochemical parsimony. Received 25 February 2000; accepted 22 May 2000  相似文献   

7.
Most models developed for the movement and fate of eggs and larvae of aquatic species are based on a particle tracking approach. Although this method has many advantages due to its high flexibility, particle tracking may become computationally intensive for complex geometries and when large numbers of particles are needed to simulate the population properly. In continuous models based on advection and dispersion mechanisms, the computational burden is independent of the size of the population. We developed a continuous fate and transport model for striped bass eggs and larvae in the San Francisco Bay-Delta. The model predicts the concentration of eggs and larvae at any location over time. The method of moments was used to account for the effect of temperature and age on the transition of eggs to larvae and larvae to juveniles. Egg and larval mortality were represented as functions of temperature, and eggs also experienced settling mortality. The fate and transport model used the same one-dimensional spatial grid as the existing Delta Simulation Model II (DSM2) hydrodynamics model. DSM2 output of flow rates, water depths, and cross-sectional areas were inputted into the fate and transport model to determine transport. The model was applied to striped bass eggs and larvae data collected during years 1990-1994; agreement between the modeled and the measured data was acceptable in most cases. Exploratory simulations were performed to demonstrate how the model could be used to evaluate the effects on egg and larval survival and total juvenile production of water diversions for supply and agricultural use and changes in the long-term mean water temperature. The model can be further used to examine the impact of various operation strategies in the San Francisco Bay-Delta, where diversion losses of early life stages of fishes remain a major management issue.  相似文献   

8.
Some organisms use morphological structures obtained by behavioural processes to lower mortality by predation. We test whether larvae of the limnephilid caddisfly Potamophylax latipennis (Curtis) vary their responses to the presence of different predators (dragonfly naiads, fire salamander larvae or brown trout) by choosing organic or mineral cases. We offered both case types to larvae, and simulated differences in predation risk using water conditioned with chemicals from the different predators. Our results show that Potamophylax larvae detect and discriminate predators using water-borne chemical cues and alter their choice of case type according to the perceived predation risk. Moreover, the distribution of larvae bearing cases of different anti-predator value matches the spatial variation in predation risk in the field.  相似文献   

9.
《Ecological modelling》2007,200(1-2):109-118
A method for parameters estimation of stage-specific mortality and fecundity rate functions in poikilotherm organisms, and in particular for arthropod structured population, is proposed. The application of this method requires three types of information: stage-frequency data of a sampled population, development rate function and time evolution of forcing variables affecting the rate functions. By means of an individual-based model (a microscopic model) the number of eggs produced by the adults is generated starting from the number of individuals collected at each sampling time. Using a compartmental model (a macroscopic model) a stage-structured population dynamics is described and compared with observations. Non-linear regression methods based on least square principle are used to estimate the optimal parameters of the mortality and fecundity rate functions combining microscopic and macroscopic models. As a case study, the parameter estimation of the temperature-dependent mortality function of olives fruit fly Bactrocera oleae is presented.  相似文献   

10.
Nest predation has been suggested as an explanation of the adaptive significance and evolution of conspecific brood parasitism, an alternative reproductive tactic pursued by females in several animal taxa. I used new nest boxes that contained only decoy eggs and were erected on lakes differing in real nest predation risk to test this hypothesis in the common goldeneye (Bucephala clangula), a hole-nesting duck. I used broken eggs to simulate predation risk of the boxes to determine if parasites having no previous experience with the boxes discriminate between seemingly safe and risky nest sites. Parasites laid eggs in the experimental boxes independently of the simulated predation risk, suggesting that they do not use broken eggs or nest disarray as indicators of predation intensity. Parasites preferred experimental boxes on lakes where real nest predation risk was low, supporting the nest predation risk hypothesis. Assuming that females in high risk areas have had experience of nest predation, they may take this into account in selecting host nests.  相似文献   

11.
The incidence of cannibalism of larval Spodoptera frugiperda (Lepidoptera: Noctuidae) on maize under field conditions was investigated using field cages. Cannibalism was found to account for approximately 40% mortality when maize plants were infested with two or four fourth-instar larvae over a 3-day period. Field trials examined the effect of larval density on the prevalence of natural enemies of S. frugiperda. The abundance of predators (earwigs, staphylinids, other predatory beetles, and Chrysoperla spp.) was significantly greater on maize plants with higher levels of larval feeding damage, while the relationship between predator abundance and number of S. frugiperda larvae per plant was less clear. As larval damage is probably a more reliable indicator of previous larval density than numbers collected at an evaluation, this indicates that predation risk will be greater for larvae living in large groups. Parasitism accounted for 7.1% mortality of larvae in sorghum, and involved six species of Hymenoptera and Tachinidae. There was no effect of larval density or within-plant distribution on the probability of larval attack by parasitoids. The selective benefits of cannibalism, in relation to the risk of predation and parasitism, are discussed. Received: 23 March 2000 / Accepted: 24 June 2000  相似文献   

12.
For parasitoids, host finding is a central problem that has been solved through a variety of behavioural mechanisms. Among species in which females do not make direct contact with hosts, as is the case for many dipteran parasitoids, eggs must be laid in an appropriate part of the host habitat. The asilid fly Mallophora ruficauda lays eggs in clusters on tall vegetation. Upon eclosion, pollen-sized larvae fall and parasitize soil-dwelling scarab beetle larvae. We hypothesized that wind dissemination of M. ruficauda larvae is important in the host-finding process and that females lay eggs at heights that maximize parasitism of its concealed host. Through numerical and analytical models resembling those used to describe seed and pollen wind dispersal, we estimated an optimal oviposition height in the 1.25- to 1.50-m range above the ground. Our models take into account host distribution, plant availability and the range over which parasitic larvae search for hosts. Supporting our findings, we found that the results of the models match heights at which egg clusters of M. ruficauda are found in the field. Generally, work on facilitation of host finding using plants focuses on plants as indicators of host presence. We present a case where plants are used in a different way, as a means of offspring dispersal. For parasitoids that carry out host searching at immature stages rather than as adults, plants are part of a dissemination mechanism of larvae that, as with minute seeds, uses wind and a set of simple rules of physics to increase offspring success.  相似文献   

13.
Summary. The defensive chemistry of the ladybird beetle Epilachna paenulata (Coleoptera: Coccinellidae) was characterized as a mixture of piperidine, homotropane and pyrrolidine alkaloids. Whole body extracts of adult beetles contain four major alkaloids: 1-(6-Methyl-2,3,4,5-tetrahydro-pyridin-2-yl)-propan-2-one; 1-(6-methyl-2-piperidyl)-propan-2-one; 9-aza-1-methyl-bicyclo[3.3.1]nonan-3-one and 1- (2′′- hydroxyethyl)-2-(12′-aminotridecyl)-pyrrolidine. Comparative studies of the defensive chemistry of eggs, larvae, pupae and adults showed both qualitative and quantitative differences in alkaloid composition among the four life stages, and also within adult age. Laboratory predation bioassays with wolf spiders showed that the adults are better protected than the larvae and pupae. Field tests showed the adult alkaloid extract to be deterrent to ants.  相似文献   

14.
In integrated pest management (IPM), biological control is one of the possible options for the prevention or remediation of an unacceptable pest activity or damage. The success of forecast models in IPM depends, among other factors, on the knowledge of temperature effect over pests and its natural enemies. In this work, we simulated the effects of parasitism of Lysiphlebus testaceipes (Cresson, 1880) (Hymenoptera: Aphidiidae) on Aphis gossypii (Glover, 1877) (Hemiptera: Aphididae), a pest that is associated to crops of great economic importance in several parts of the world. We made use of experimental data relative to the host and its parasitoid at different temperatures. Age structure was incorporated into the dynamics through the Penna model. The results obtained showed that simulation, as a forecast model, can be a useful tool for biological control programs.  相似文献   

15.
Galerucella placida Baly (Coleoptera: Chrysomelidae) is a potential biocontrol agent of the rice-field weed Polygonum orientale L. (Polygonaceae). The volatile organic compound (VOC) profiles from undamaged and mechanically damaged plants, and from plants 12- and 36-h following continuous feeding of female G. placida adults and 2nd instar larvae were identified and quantified by GC–MS and GC-FID analyses. Twenty-four and 21 compounds were identified in volatiles of undamaged and insect feeding plants, respectively; whereas 22 compounds were detected in volatiles of mechanically damaged plants. Decanal and 1-dodecanol were unique to undamaged plants, and linalool was detected in volatiles of undamaged and mechanically damaged plants, but not in volatiles of insect damaged plants. However, the beetles are not attracted by none of these volatile components, when tested individually in Y-shaped glass tube olfactometer bioassays. In all plants, methyl jasmonate was predominant. 1-Undecanol was the least amount in undamaged plants, and plants 12-h after feeding by G. placida adults and larvae; whereas 1-tridecanol was the least abundant in plants 36-h after feeding by G. placida adults and larvae, and mechanically damaged plants. The beetles showed significant preference to the whole volatile blends from plants 12-h after feeding by larvae and plants 36-h after feeding by either larvae or adults compared to those of undamaged plants. Further, G. placida responded to individual synthetic compounds, 3-hexanol, 1-octen-3-ol, nonanal, and geraniol at 7, 1.38, 3.75 and 4.5 µg/25 µL CH2Cl2, respectively, and provide a basis for attraction of the potential biocontrol agent in the field.  相似文献   

16.
Natural enemies exert selection pressure on their prey. Predators and parasitoids drive their prey into the evolution of novel traits to cope with this stress. When eggs and juveniles are the target of enemies, defense strategies may rely on adults. However, it is not easy to predict whether adults should actively protect unrelated offspring. Females of the golden egg bug (Phyllomorpha laciniata) mainly oviposit on conspecifics of either sex. Females can also lay eggs on their food plant. Eggs placed on plants suffer from a higher mortality caused by natural enemies than eggs carried by bugs. Females never carry their own eggs and males are seldom related to the eggs they carry. We experimentally explored if conspecifics protect the eggs by studying the behavioral interaction between P. laciniata individuals and the specialist egg parasitoid Gryon bolivari. All bugs exhibited active responses against parasitoids regardless of the sex of the bug, the egg load, and their mating status. Most of the responses prevented parasitoids from reaching the eggs, and thus they reduced the risk of egg parasitization. Although responses of bugs were effective to overcome parasitoid attacks, we suggest that egg protection against parasitoids has evolved as a co-opted trait from a general defense of adult bugs against enemies. In this system, egg defense is not an individual's strategy to protect the offspring, but rather a consequence of the eggs being attached to one's body. It may also explain the low parasitization carried eggs suffer in the wild. The results further highlight the idea of conspecifics as an enemy-free space in P. laciniata.  相似文献   

17.
A number of wildlife species including the grey partridge (Perdix perdix) have shown dramatic post-war population declines. Multiple drivers have been proposed as reasons for the declines, for example agrochemical use and intensification of agricultural practices, climate, predation, and changes in landscape structure. These drivers may interact in non-linear ways and are inherently spatio-temporal in nature. Therefore models used to investigate mechanisms should be spatio-temporal, of proper scale, and have a high degree of biological realism. Here we describe the development and testing of an agent-based model (ABM) of grey partridge using a well documented pre-decline historical data set in conjunction with a pattern-oriented modelling (POM) approach. Model development was an iterative process of defining performance criteria, testing model behaviour, and reformulating as necessary to emulate system properties whilst ensuring that internal mechanisms were biologically realistic. The model was documented using ODdox, a new protocol for describing large agent-based models. Parameter fitting in the model was achieved to within ±2% accuracy for 15 out of 17 field data patterns used, and within 5% for the remaining two. Tests of interactions between input parameters showed that 62% of parameter pairs tested had significant interactions underlining the complex nature of the model structure. Sensitivity analysis identified chick mortality as being the most sensitive factor, followed by adult losses to hunting and adult overwinter mortality, agreeing in general with previous partridge models. However, the ABM used here could separate individual drivers, providing a better understanding of the underlying mechanisms behind population regulation, and allowing factors to be compared directly. The ABM used is rich in output signals allowing detailed testing and refinement of the model. This approach is particularly suited to systems such as the partridge system where data for comparison to model outputs is readily available. Despite the accurate fit between historical data and model output, making use of the predictive power of the approach the model requires further calibration and testing under modern field conditions.  相似文献   

18.
Predation of calanoid copepods on their own and other copepods’ offspring   总被引:1,自引:0,他引:1  
Predation of eggs and nauplii by adult copepods is often used to explain unexpected death rates in population dynamics studies, but the phenomenon has been rarely investigated or quantified. Therefore, we studied the predatory feeding of adult females (Acartia clausi, Centropages hamatus, Centropages typicus, and Temora longicornis) on their own and other species’ eggs and young nauplii with different densities of single animal-prey, mixtures of animal-prey and in the presence of diatoms. All species preyed on eggs and nauplii of their own and all other species. Maximal egg predation varied between 7 and 64 eggs fem?1 day?1. Ingestion of Centropages spp. eggs was lowest, potentially due to the spiny egg surface. Maximal feeding rates on nauplii ranged from 5 to 45 nauplii fem?1 day?1. T. longicornis preferred eggs, when eggs and nauplii were offered together at the same densities, and the other predators selected for nauplii. At a diatom concentration of 60 μg C l?1 predation on eggs by C. typicus was higher than without algae, whereas A. clausi and T. longicornis did not change their uptake of eggs. Feeding on nauplii in the presence of diatoms was again enhanced in C. typicus, and unaffected in A. clausi and C. hamatus. T. longicornis reduced its feeding on nauplii in the presence of diatoms. Calculated predation rates, using field abundances of predators and prey, suggest that predation of copepods on their own young stages may account for ca. 30 % of total mortality of young stages in North Sea copepod populations.  相似文献   

19.
Effect of Introduced Crayfish and Mosquitofish on California Newts   总被引:15,自引:0,他引:15  
One goal of conservation biology is to explain population declines. We present field survey data and experimental evidence that implicate introduced predators as a possible cause of decline in the California newt ( Taricha torosa ). In 1994 and 1995 we surveyed 10 streams in the Santa Monica Mountains of southern California for amphibians. These streams contained California newts when surveyed between 1981 and 1986. Of the 10 streams surveyed in 1994, three contained introduced mosquitofish ( Gambusia affinis ) and/or crayfish ( Procambarus clarkii ). These three streams contained no California newt eggs, larvae, or adults. The seven streams without introduced predators contained California newts. We conducted laboratory and field experiments to determine if California newt larvae and egg masses are susceptible to predation by mosquitofish and crayfish. Results from these experiments indicate that crayfish consume California newt egg masses and that both mosquitofish and crayfish consume larval newts. In 24-hour field experiments, no newt larvae survived in crayfish enclosures, and only 13% of the larvae survived with mosquitofish. Newt larvae are known to have antipredator adaptations for native predators. Apparently, these adaptations are not adequate for coexistence with introduced crayfish or mosquitofish. Heavy rains in 1995 removed introduced crayfish from one stream. We found newt egg masses, larvae, and adults in that stream the following spring. This same stream showed no evidence of California newts when crayfish were present in matched-date surveys in 1994. These experiments and surveys present evidence that predation by mosquitofish and crayfish may cause localized decline of newts in mountain streams of southern California. Understanding the effects of nonnative species is an important step in preventing detrimental introductions in the future.  相似文献   

20.
The most frequently investigated defence mechanism among larvae of tortoise beetles is protection by faecal shields, which generally present chemicals that are directly sequestered and/or modified from larval host-plants. In the present work we investigate the tortoise beetle Chelymorpha reimoseri that feeds on the leaves of Ipomoea carnea fistulosa (Convolvulaceae), seeking for the importance of this mechanism to their larvae. We show that 4th instar larvae suffer low predation regardless of the presence of shields in field and laboratory bioassays with ants and chicks. Chloroform extract from larvae without shields provided high protection against predation as shown in bioassays in the field, as well as against chicks, suggesting that C. reimoseri does not rely on the shield for protection. The aqueous extract of the shields did not show activity in such bioassays. The compounds responsible for this protection have yet to be identified, and it remains an open question as to whether they are sequestered from the host plant or de novo biosynthesized. This is the first record of chemical defence in cassidine beetles without the need for faecal shields. These findings indicate that more attention should be paid to chemicals present in the tissues of larvae and/or adults of tortoise beetles; the protective compounds sequestered from host plants or de novo biosynthesized can provide an alternative or complementary strategy against predation in these insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号