首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Predicting species distribution and habitat suitability (HS) modelling, across broad spatial scales, is now a major challenge in marine ecology. The resulting knowledge is of considerable use in supporting the implementation of environmental legislation, integrated coastal zone management and ecosystem-based fisheries management. This contribution considers the identification of seafloor morphological characteristics, together with wave energy conditions, that determine the presence of European lobster (Homarus gammarus); and it predicts suitable habitats over the Basque continental shelf (Bay of Biscay), in summer. The results obtained, by applying Ecological-Niche Factor Analysis (ENFA), indicate that lobster habitat differs considerably from the mean environmental condition over the study area; likewise, that it is restrictive in terms of the range of conditions in which they dwell. The best of the environmental predictors found to be: distance to the rock substrate; Benthic Position Index; wave flux over the seafloor; and the underlying bathymetry. A habitat suitability map was produced, with a high model quality (Boyce index: 0.98 ± 0.06). The most suitable habitat for European lobster are locations at the boundary between sedimentary- and rocky-bottoms, coincident with seafloor depressions with a steep slope, with medium to high wave energy conditions, and located within a range of water depths of 35–40 m. This approach demonstrates the applicability of the method in case studies where only presence data are available, together with the inclusion of environmental variables obtained from different sources.  相似文献   

3.
Modelling species distributions with presence data from atlases, museum collections and databases is challenging. In this paper, we compare seven procedures to generate pseudo-absence data, which in turn are used to generate GLM-logistic regressed models when reliable absence data are not available. We use pseudo-absences selected randomly or by means of presence-only methods (ENFA and MDE) to model the distribution of a threatened endemic Iberian moth species (Graellsia isabelae). The results show that the pseudo-absence selection method greatly influences the percentage of explained variability, the scores of the accuracy measures and, most importantly, the degree of constraint in the distribution estimated. As we extract pseudo-absences from environmental regions further from the optimum established by presence data, the models generated obtain better accuracy scores, and over-prediction increases. When variables other than environmental ones influence the distribution of the species (i.e., non-equilibrium state) and precise information on absences is non-existent, the random selection of pseudo-absences or their selection from environmental localities similar to those of species presence data generates the most constrained predictive distribution maps, because pseudo-absences can be located within environmentally suitable areas. This study shows that if we do not have reliable absence data, the method of pseudo-absence selection strongly conditions the obtained model, generating different model predictions in the gradient between potential and realized distributions.  相似文献   

4.
Species distribution models (SDMs) have become integral tools in scientific research and conservation planning. Despite progress in the assessment of various statistical models for use in SDMs, little has been done in way of evaluating appropriate ecological models. In this paper, we evaluate the multiscale filter framework as a suitable theoretical model for predicting freshwater fish distributions in the upper Green River system (Ohio River drainage), USA. The spatial distributions of six fishes with contrasting biogeographies were modeled using boosted regression trees and multiscale landscape data. Species biogeography did not appear to affect predictive performance and all models performed well statistically with receiver operating characteristic area under the curve (AUC) ranging from 0.87 to 0.98. Predictive maps show accurate estimations of ranges for five of six species based on historical collections. The relative influence of each type of environmental feature and spatial scale varied markedly with between species. A hierarchical effect was detected for narrowly distributed species. These species were highly influenced by soil composition at larger spatial scales and land use/land cover (LULC) patterns at more proximal scales. Conversely, LULC pattern was the most influential feature for widely distributed at all spatial scales. Using multiscale data capable of capturing hierarchical landscape influences allowed production of accurate predictive models and provided further insight into factors controlling freshwater fish distributions.  相似文献   

5.
6.
Although long-lived tree species experience considerable environmental variation over their life spans, their geographical distributions reflect sensitivity mainly to mean monthly climatic conditions. We introduce an approach that incorporates a physiologically based growth model to illustrate how a half-dozen tree species differ in their responses to monthly variation in four climatic-related variables: water availability, deviations from an optimum temperature, atmospheric humidity deficits, and the frequency of frost. Rather than use climatic data directly to correlate with a species’ distribution, we assess the relative constraints of each of the four variables as they affect predicted monthly photosynthesis for Douglas-fir, the most widely distributed species in the region. We apply an automated regression-tree analysis to create a suite of rules, which differentially rank the relative importance of the four climatic modifiers for each species, and provide a basis for predicting a species’ presence or absence on 3737 uniformly distributed U.S. Forest Services’ Forest Inventory and Analysis (FIA) field survey plots. Results of this generalized rule-based approach were encouraging, with weighted accuracy, which combines the correct prediction of both presence and absence on FIA survey plots, averaging 87%. A wider sampling of climatic conditions throughout the full range of a species’ distribution should improve the basis for creating rules and the possibility of predicting future shifts in the geographic distribution of species.  相似文献   

7.
The model of random population dynamics in a sampling site returns geometric distribution of longevities of continuous presence (=persistence) and Poisson distribution of the presence–absence transitions. This discrete-time stochastic process describes the presence–absence pattern observed in the beetles surveyed 6 years on Mount Carmel, Israel. Homogeneous pools of species mostly on the Families rank, exhibit the predicted by the model patterns. Conformity to an ergodic hypothesis is the criterion of ecological homogeneity. This criterion assumes the equivalence of short-term behavior of entire pool and long-term behavior of any species from this pool. The pool of all 801 species of Order Coleoptera does not match the model. Thus a taxon of an arbitrary rank may not be considered a priory as a unit of ecological study. Determined from field data parameters of the model are biased and magnitude of the bias depends on longevity of the survey. Parameter of distribution depends also on species tolerance, which is the level adaptation of given species to given environment in given time interval. Random process of species turnover may be considered as a game of species to gain their presence against deteriorative fluctuations of environmental conditions.  相似文献   

8.
Robust predictions of competitive interactions among canopy trees and variation in tree growth along environmental gradients represent key challenges for the management of mixed-species, uneven-aged forests. We analyzed the effects of competition on tree growth along environmental gradients for eight of the most common tree species in southern New England and southeastern New York using forest inventory and analysis (FIA) data, information theoretic decision criteria, and multi-model inference to evaluate models. The suite of models estimated growth of individual trees as a species-specific function of average potential diameter growth, tree diameter at breast height, local environmental conditions, and crowding by neighboring trees. We used ordination based on the relative basal area of species to generate a measure of site conditions in each plot. Two ordination axes were consistent with variation in species abundance along moisture and fertility gradients. Estimated potential growth varied along at least one of these axes for six of the eight species; peak relative abundance of less shade-tolerant species was in all cases displaced away from sites where they showed maximum potential growth. Our crowding functions estimate the strength of competitive effects of neighbors; only one species showed support for the hypothesis that all species of competitors have equivalent effects on growth. The relative weight of evidence (Akaike weights) for the best models varied from a low of 0.207 for Fraxinus americana to 0.747 for Quercus rubra. In such cases, model averaging provides a more robust platform for prediction than that based solely on the best model. We show that predictions based on the selected best models dramatically overestimated differences between species relative to predictions based on the averaged set of models.  相似文献   

9.
The Eastern Arc Mountains (EAMs) of Tanzania and Kenya support some of the most ancient tropical rainforest on Earth. The forests are a global priority for biodiversity conservation and provide vital resources to the Tanzanian population. Here, we make a first attempt to predict the spatial distribution of 40 EAM tree species, using generalised additive models, plot data and environmental predictor maps at sub 1 km resolution. The results of three modelling experiments are presented, investigating predictions obtained by (1) two different procedures for the stepwise selection of predictors, (2) down-weighting absence data, and (3) incorporating an autocovariate term to describe fine-scale spatial aggregation. In response to recent concerns regarding the extrapolation of model predictions beyond the restricted environmental range of training data, we also demonstrate a novel graphical tool for quantifying envelope uncertainty in restricted range niche-based models (envelope uncertainty maps). We find that even for species with very few documented occurrences useful estimates of distribution can be achieved. Initiating selection with a null model is found to be useful for explanatory purposes, while beginning with a full predictor set can over-fit the data. We show that a simple multimodel average of these two best-model predictions yields a superior compromise between generality and precision (parsimony). Down-weighting absences shifts the balance of errors in favour of higher sensitivity, reducing the number of serious mistakes (i.e., falsely predicted absences); however, response functions are more complex, exacerbating uncertainty in larger models. Spatial autocovariates help describe fine-scale patterns of occurrence and significantly improve explained deviance, though if important environmental constraints are omitted then model stability and explanatory power can be compromised. We conclude that the best modelling practice is contingent both on the intentions of the analyst (explanation or prediction) and on the quality of distribution data; generalised additive models have potential to provide valuable information for conservation in the EAMs, but methods must be carefully considered, particularly if occurrence data are scarce. Full results and details of all species models are supplied in an online Appendix.  相似文献   

10.
Abstract:  Demographic data of rare and endangered species are often too sparse to estimate vital rates and population size with sufficient precision for understanding population growth and decline. Yet, the combination of different sources of demographic data into one statistical model holds promise. We applied Bayesian integrated population modeling to demographic data from a colony of the endangered greater horseshoe bats (Rhinolophus ferrumequinum) . Available data were the number of subadults and adults emerging from the colony roost at dusk, the number of newborns from 1991 to 2005, and recapture data of subadults and adults from 2004 and 2005. Survival rates did not differ between sexes, and demographic rates remained constant across time. The greater horseshoe bat is a long-lived species with high survival rates (first year: 0.49 [SD 0.06]; adults: 0.91 [SD 0.02]) and low fecundity (0.74 [SD 0.12]). The yearly average population growth was 4.4% (SD 0.1%) and there were 92 (SD 10) adults in the colony in year 2005. Had we analyzed each data set separately, we would not have been able to estimate fecundity, the estimates of survival would have been less precise, and the estimate of population growth biased. Our results demonstrate that integrated models are suitable for obtaining crucial demographic information from limited data.  相似文献   

11.
We explored the effects of prevalence, latitudinal range and clumping (spatial autocorrelation) of species distribution patterns on the predictive accuracy of eight state-of-the-art modelling techniques: Generalized Linear Models (GLMs), Generalized Boosting Method (GBM), Generalized Additive Models (GAMs), Classification Tree Analysis (CTA), Artificial Neural Network (ANN), Multivariate Adaptive Regression Splines (MARS), Mixture Discriminant Analysis (MDA) and Random Forest (RF). One hundred species of Lepidoptera, selected from the Distribution Atlas of European Butterflies, and three climate variables were used to determine the bioclimatic envelope for each butterfly species. The data set consisting of 2620 grid squares 30′ × 60′ in size all over Europe was randomly split into the calibration and the evaluation data sets. The performance of different models was assessed using the area under the curve (AUC) of a receiver operating characteristic (ROC) plot. Observed differences in modelling accuracy among species were then related to the geographical attributes of the species using GAM. The modelling performance was negatively related to the latitudinal range and prevalence, whereas the effect of spatial autocorrelation on prediction accuracy depended on the modelling technique. These three geographical attributes accounted for 19–61% of the variation in the modelling accuracy. Predictive accuracy of GAM, GLM and MDA was highly influenced by the three geographical attributes, whereas RF, ANN and GBM were moderately, and MARS and CTA only slightly affected. The contrasting effects of geographical distribution of species on predictive performance of different modelling techniques represent one source of uncertainty in species spatial distribution models. This should be taken into account in biogeographical modelling studies and assessments of climate change impacts.  相似文献   

12.
Model based grouping of species across environmental gradients   总被引:1,自引:0,他引:1  
We present a novel approach to the statistical analysis and prediction of multispecies data. The approach allows the simultaneous grouping and quantification of multiple species’ responses to environmental gradients. The underlying statistical model is a finite mixture model, where mixing is performed over the individual species’ responses to environmental gradients. Species with similar responses are grouped with minimal information loss. We term these groups species archetypes. Each species archetype has an associated GLM that can be used to predict distributions with appropriate measures of uncertainty. Initially, we illustrate the concept and method using artificial data and then with application to real data comprising 200 species from the Great Barrier Reef (GBR) lagoon on 13 oceanographic and geological gradients from 12°S to 24°S. The 200 species from the GBR are well represented by 15 species archetypes. The model is interpreted through maps of the probability of presence for a fine scale set of locations throughout the study area. Maps of uncertainty are also produced to provide statistical context. The presence of each species archetype was strongly influenced by oceanographic gradients, principally temperature, oxygen and salinity. The number of species in each group ranged from 4 to 34. The method has potential application to the analysis of multispecies distribution patterns and for multispecies management.  相似文献   

13.
14.
We investigated quantitatively the sensitivity of plant species response curves to sampling characteristics (number of plots, occurrence and frequency of species), along a simulated pH gradient. We defined 54 theoretical unimodal response curves, issued from combinations of six values for optimum (opt = 3, 4, …, 8), three values for tolerance (tol = 0.5, 1.0, and 1.5, sensu ter Braak and Looman [ter Braak, C.J.F., Looman, C.W.N., 1986. Weighted averaging, logistic regression and the Gaussian response model. Vegetatio 65, 3–11]), and three values for maximum probability of presence (pmax = 0.05, 0.20, and 0.50). For each of these 54 theoretical response curves, we built artificial binary data sets (presence/absence) to test the influence of species occurrence, frequency, or number of available plots. With real data extracted from EcoPlant, a phytoecological database for French forests [Gégout, J.-C., Coudun, Ch., Bailly, G., Jabiol, B., 2005. EcoPlant: a forest sites database linking floristic data with soil characteristics and climatic conditions. J. Veg. Sci. 16, 257–260], we compared the ecological response of 50 plant species to soil pH, based first on a small data set (100 randomly sampled plots), and then based on the whole data set available (3810 plots).  相似文献   

15.
High resolution remote sensing data facilitate the use of small-scale habitat features such as trees or hedges in the analysis of species-habitat relationships. Such data potentially enable more accurate species-habitat mapping than lower resolution data. Here, for the first time, we systematically investigated this hypothesis by altering the spatial resolution from 1 m up to 1000 m grain size in species-habitat models of 13 bird species. The study area covered the Nidda river catchment in central Germany, a large heterogeneous landscape of 1620 km2. A high resolution habitat map of the area was converted to coarser spatial and thematic resolutions in seven steps. We investigated how model performance responded to grain size, and we compared the differential effects of spatial resolution and thematic resolution on model performance. Explained deviance (D2) of the bird models generally decreased with coarser spatial resolution of the data, although it did not decrease monotonically in all species. On average across all species, model D2 decreased from 41.5 at 1 m grain size to 15.9 at 1000 m grain size. Ten species were best modelled at 1 m, two species at 3 m and one species at 32 m grain size. Model performance degraded continuously with increasing grain size, both in habitat generalist and habitat specialist bird species, and was systematically lower in habitat generalists. The higher model performance observed at finer grain sizes was most likely caused by the combination of three factors: (1) high spatial accuracy of bird records and (2) a more precise location and delineation of habitat features and, (3) to a lesser degree, by more habitat types differentiated in maps of finer resolution. We conclude that higher spatial and thematic resolution data can be essential for deriving accurate predictions on bird distribution patterns from species-habitat models. Especially for bird species that are sensitive to specific land-use types or to small-scaled habitat features, a grain size of 1-3 m seems most promising.  相似文献   

16.
We propose a novel tool for testing hypotheses concerning the adequacy of environmentally defined factors for local clustering of diseases, through the comparative evaluation of the significance of the most likely clusters detected under maps whose neighborhood structures were modified according to those factors. A multi-objective genetic algorithm scan statistic is employed for finding spatial clusters in a map divided in a finite number of regions, whose adjacency is defined by a graph structure. This cluster finder maximizes two objectives, the spatial scan statistic and the regularity of cluster shape. Instead of specifying locations for the possible clusters a priori, as is currently done for cluster finders based on focused algorithms, we alter the usual adjacency induced by the common geographical boundary between regions. In our approach, the connectivity between regions is reinforced or weakened, according to certain environmental features of interest associated with the map. We build various plausible scenarios, each time modifying the adjacency structure on specific geographic areas in the map, and run the multi-objective genetic algorithm for selecting the best cluster solutions for each one of the selected scenarios. The statistical significances of the most likely clusters are estimated through Monte Carlo simulations. The clusters with the lowest estimated p-values, along with their corresponding maps of enhanced environmental features, are displayed for comparative analysis. Therefore the probability of cluster detection is increased or decreased, according to changes made in the adjacency graph structure, related to the selection of environmental features. The eventual identification of the specific environmental conditions which induce the most significant clusters enables the practitioner to accept or reject different hypotheses concerning the relevance of geographical factors. Numerical simulation studies and an application for malaria clusters in Brazil are presented.  相似文献   

17.
随着遥感影像时、空、谱、辐分辨率和数据处理能力的提升,综合多维影像特征已成为提高土地利用分类精度的关键.目前并非所有特征均有助于分类,且传统分类仍拘泥于单一特征,因此,急需有效的特征优化选择方法.基于光谱指数、穗帽变换、最小噪声分离、高斯滤波、灰度共生矩阵等变换提取了Landsat TM/ETM+/OLI影像的31维特...  相似文献   

18.
Predator–prey interaction in aquatic ecosystem is one of the simplest drivers affecting the species population dynamics. Predation controls are recognized as important aspects of ecosystem husbandry and management. In this paper we investigated how predation control cause an increase in host growth in the abundance of hard clam (Meretrix lusoria) populations subject to mercury (Hg)-stressed birnavirus. Here we linked predator–prey relationships with a bioenergetic matrix population model (MPM) associated with a susceptible–infectious–mortality (SIM) model based on a host–pathogen–predator framework to quantify the predator effects on population dynamics of disease in hard clam populations. Our results indicated that relative high predation rates could promote the hard clam abundances in relation to predators that selectively captured the infected hard clam, by which the disease transmission was suppressed. The results also demonstrated that predator-induced modifications in host behavior could have potential negative or positive effects on host growth depending on relative species density and resource dynamics. The most immediate implication of this study for the management of aquatic ecosystem is that, beyond the potential for causing a growth in abundance, predation might provoke greater predictability in aquatic ecosystem species populations and thereby increase the safety of ecosystem production from stochastic environmental events.  相似文献   

19.
Abstract:  Numerous models for predicting species distribution have been developed for conservation purposes. Most of them make use of environmental data (e.g., climate, topography, land use) at a coarse grid resolution (often kilometres). Such approaches are useful for conservation policy issues including reserve-network selection. The efficiency of predictive models for species distribution is usually tested on the area for which they were developed. Although highly interesting from the point of view of conservation efficiency, transferability of such models to independent areas is still under debate. We tested the transferability of habitat-based predictive distribution models for two regionally threatened butterflies, the green hairstreak ( Callophrys rubi ) and the grayling ( Hipparchia semele ), within and among three nature reserves in northeastern Belgium. We built predictive models based on spatially detailed maps of area-wide distribution and density of ecological resources. We used resources directly related to ecological functions (host plants, nectar sources, shelter, microclimate) rather than environmental surrogate variables. We obtained models that performed well with few resource variables. All models were transferable—although to different degrees—among the independent areas within the same broad geographical region. We argue that habitat models based on essential functional resources could transfer better in space than models that use indirect environmental variables. Because functional variables can easily be interpreted and even be directly affected by terrain managers, these models can be useful tools to guide species-adapted reserve management.  相似文献   

20.
The European Atlas of the Seas offers a snapshot of environmental and socio-economic features that characterize the coastal and marine environment. The latest release (Version 4) addresses the public in general, but also non-specialist experts involved with environmental issues, human activities or policies related to Europe’s coasts and seas. The information content of the Atlas comprises a series of geographical layers, subdivided in “background maps”, “thematic maps” (i.e. maritime Europe, natural setting, sea bottom, sea level rise, security, transport, tourism, energy, wind, fisheries and fish consumption) and “do-it-yourself maps” (dealing with marine knowledge, nature and environment, socio-economics, fisheries, aquaculture, transport, energy, sea bed mining, coastal tourism, Maritime Spatial Planning, integrated maritime surveillance, and international ocean governance). All maps follow consistent cartographic rules and can be extracted for external use. The Atlas database is updated regularly, but historical data remain accessible after the updates, so that time series may be constructed. Tools for map exploration and combination can be used to combine together more layers, providing professional users with analysis and interpretation capabilities, to couple data into graphical indicators. The Atlas aims to supports also policy making, on marine environment, maritime issues and economic sectors, both within and outside the European Institutions (e.g. on Common Fisheries Policy or Maritime Spatial Planning). Further, it expands the same support to near-coastal issues and matters related to land-sea interactions. The web application for accessing Atlas contents offers links to other Marine Information Systems, and is available to a broad audience from computers, tablets and mobile devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号