首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simulation tool has been developed to model the wind fields, turbulence fields, and the dispersion of Chemical, Biological, Radiological and Nuclear (CBRN) substances in urban areas on the building to city blocks scale. A Computational Fluid Dynamics (CFD) approach has been taken that naturally accounts for critical flow and dispersion processes in urban areas, such as channeling, lofting, vertical mixing and turbulence, by solving the steady-state, Reynolds-Averaged Navier–Stokes (RANS) equations. Rapid generation of high quality cityscape volume meshes is attained by a unique voxel-based model generator that directly interfaces with common Geographic Information Systems (GIS) file formats. The flow and turbulence fields are obtained by solving the steady-state RANS equations using a collocated, pressure-based approach formulated for unstructured and polyhedral mesh elements. Turbulence modeling is based upon the Renormalization Group variant of the k–ε model (k–ε RNG). Neutrally buoyant simulations are made by prescribing velocity boundary condition profiles found by a power–law relationship, while turbulence quantities boundary conditions are defined by a prescribed mixing length in conjunction with the assumption of turbulence equilibrium. Dispersion fields are computed by solving an unsteady transport equation of a dilute gas, formulated in a Eulerian framework, using the velocity and turbulence fields found from the steady-state RANS solution. In this paper the model is explained and detailed comparisons of predicted to experimentally obtained velocity, turbulence and dispersion fields are made to neutrally stable wind tunnel and hydraulic flume experiments.  相似文献   

2.
In the present article, the potential of embedded large eddy simulation (ELES) approach to reliably predict pollutant dispersion around a model building in atmospheric boundary layer is assessed. The performance of ELES in comparison with large eddy simulation (LES) is evaluated in several ways. These include a number of qualitative and quantitative comparisons of time-averaged and instantaneous results with wind tunnel measurements supplemented by statistical data analyses using scatter plots and standard evaluation metrics. Results obtained by both LES and ELES approaches show very good agreement with the experiment. However, addition of turbulence to mean flow at Reynolds averaged Navier–Stokes (RANS)–LES interface in ELES approach not only increases the turbulence intensity, it also results in larger values of turbulent kinetic energy (TKE) as well as a shorter reattachment length in the wake region. Accordingly, higher levels of TKE predicted by ELES increase the local intensity of concentration leading to shorter plume shapes as compared with LES. In general, ELES shows better agreement with experiment on the surfaces of model building and also in the downstream wake region. In terms of computational costs, the CPU time required to obtain statistical values in ELES is about 49 % lower than that of LES and the number of iterations per time step is also reduced by 55 % as compared with LES.  相似文献   

3.
This paper describes the QUIC-URB fast response urban wind modeling tool and evaluates it against wind tunnel data for a 7 × 11 cubical building array and wide building street canyon. QUIC-URB is based on the Röckle diagnostic wind modeling strategy that rapidly produces spatially resolved wind fields in urban areas and can be used to drive urban dispersion models. Röckle-type models do not solve transport equations for momentum or energy; rather, they rely heavily on empirical parameterizations and mass conservation. In the model-experiment comparisons, we test two empirical building flow parameterizations within the QUIC-URB model: our implementation of the standard Röckle (SR) algorithms and a set of modified Röckle (MR) algorithms. The MR model attempts to build on the strengths of the SR model and introduces additional physically based, but simple parameterizations that significantly improve the results in most regions of the flow for both test cases. The MR model produces vortices in front of buildings, on rooftops and within street canyons that have velocities that compare much more favorably to the experimental results. We expect that these improvements in the wind field will result in improved dispersion calculations in built environments.  相似文献   

4.
在上海某典型街道峡谷内按一定的空间布点,在一定时段内同时对各布点进行采样并做一氧化碳浓度分析,同时记录车辆种类、车流量、气象条件等,分析街道峡谷内污染物浓度的分布.运用风向频率加权(WDFW)方法,结合大气流动和污染物扩散的CFD模型进行数值模拟计算.结果表明,数值模拟结果和现场观测结果较吻合,建筑物低的一侧污染物浓度远高于建筑物高的一侧污染物浓度,两侧的污染物浓度随着高度的增加而降低.  相似文献   

5.
In this study, a modelling methodology is proposed for RANS simulations of neutral Atmospheric Boundary Layer (ABL) flows on the basis of the standard k-ε model, which allows the adoption of an arbitrary shear stress model. This modelling methodology is first examined in the context of an open flat terrain in an empty domain to ascertain there are no substantial changes in the prescribed profiles. The results show that relatively good homogeneity can be achieved with this modelling methodology for various sets of inflow boundary profiles. In addition, to extend the solutions derived from the standard k-ε model to RNG k-ε model, the RNG k-ε model is in detail assembly and tuned. Finally, the topographic effects on surface wind speeds over a complex terrain are assessed with the combined use of the proposed methodology and the modified RNG model. The numerical results are in good agreement with wind tunnel testing results and long-term field observations. A discussion of the effects of horizontal homogeneity and turbulence models on the simulated wind flows over a complex terrain is also given.  相似文献   

6.
To learn about wind flow and snow drifting around avalanche dams, experiments were done in the Jules Verne Climatic Wind Tunnel. The paper reports the results from numerical wind flow simulations that were done to support the findings from the wind tunnel. Satisfying the model similitude criteria for the wind tunnel configuration was difficult due to the inevitable small geometric scale of the model, while on the contrary the snow drifting conditions in the facilities were full scale. By comparing numerical wind flow results of full scale and model scale dams with the snow pattern observed in the wind tunnel, it was possible to conclude that albeit poor model similitude, the snowdrifts on the windward side of the wind tunnel model are likely to indicate the full scale natural situation.  相似文献   

7.
Studying urban air-transport phenomena is highly complex, because of the heterogenous flow patterns that can arise. The main reason for these is the variable topology of urban areas, however, there is a large number of influencing variables such as meteorological conditions (e.g., wind situation, temperature) and anthropogenic factors such as traffic emissions. During a one-year CO2 measurement campaign in the city of Basel, Switzerland, steep CO2 gradients were measured around a large building. The concentration differences showed a strong dependency on the local flow regimes. Analysis of the field data alone did not provide a complete explanation for the mechanisms underlying the observed phenomena. The key numerical parameters were defined and the influence of turbulent kinetic energy dependency on the time interval for the Reynolds decomposition was studied. A Reynolds-Average Navier-Stokes Computational Fluid Dynamics (CFD) approach was applied in the study area and the CO2 concentrations were simulated for six significant meteorological situations and compared to the measured data. Two flow regimes dependent on the wind situation, which either enhanced or suppressed the concentration of CO2 in the street canyon, were identified. The enhancement of CO2 in the street canyon led to a large difference in CO2 concentration between the backyard- and street-sides of a building forming the one wall of the canyon. The specific characteristics of the flow patterns led to the identification of the processes determining the observed differences in CO2 concentrations. The combined analysis of measurement and modeling showed the importance of reliable field measurements and CFD simulations with a high spatial resolution to assess transport mechanisms in urban areas.  相似文献   

8.
9.
The rural atmospheric boundary layer (ABL) flow was reproduced in a wind tunnel at three different simulation length scales to investigate possible effects of the simulation length scale on flow characteristics. Performance of truncated vortex generators developed for part-depth ABL wind-tunnel simulations was tested in rural terrain exposure against the full-size Counihan vortex generators. A procedure to design the ABL developing above rural type terrain has been described. The 1:395 and 1:236 simulations were created as full-depth simulations, i.e., wind characteristics throughout an entire ABL were reproduced in the wind tunnel. The 1:208 simulation was a part-depth simulation, i.e., only a lower 70% of the ABL was experimentally modelled. The projected scaled-up ABL thicknesses are 395, 354, and 416 m full-scale in the 1:395, 1:236, and 1:208 simulations, respectively. Experimental results show similar trends in all three configurations not depending on the simulation length scale factor. This clearly indicates a possibility to physically, in the wind tunnel, reproduce the same rural atmospheric airflows at different simulation length scales.  相似文献   

10.
An analysis of concentration time series measured in a boundary-layer wind tunnel at the University of Hamburg is presented. The measurements were conducted with a detailed aerodynamic model of the Oklahoma City (OKC) central business district (CBD) at the scale of 1:300 and were part of the Joint Urban 2003 (JU2003) project. Concentration statistics, as well as concentration probability density (PDF) and exceedance probability (EDF) functions were computed for street- and roof-level sites for three different wind directions. Taking into account the different length scales and wind speeds in the wind-tunnel (WT) and full-scale experiments, dimensionless concentrations and a dimensionless time scale are computed for the comparison with data from the JU2003 full-scale tracer experiments, conducted in OKC in 2003. Using such dimensionless time, the WT time series cover a ~20 times longer time span than the JU2003 full-scale time series, which are analysed in detail in an accompanying, first part of this paper. The WT time series are thus divided into 20 consecutive blocks of equal length and the statistical significance of parameters based on relatively short records is assessed by studying the variability of the concentration statistics and probability functions for the different blocks. In particular at sites closer to the plume edge, the results for the individual blocks vary significantly and at such sites statistics from short records are not very representative. While the location of three sampling sites in the WT closely matched the sites during the full-scale experiments, the prevailing wind directions during the JU2003 releases were not exactly matched. The comparison between full-scale and WT concentration parameters should thus primarily be interpreted in a qualitative rather than direct quantitative sense. Given the differences in mean wind directions and concerns about the representativeness of full-scale concentration statistics, the WT and full-scale results compared well. The 98 percentile concentrations for almost all full-scale releases analyzed are within the scatter of the percentiles observed in the block analysis of the WT time series. Furthermore, the concentration percentiles appear linearly correlated with the fluctuation intensities and the linear relationships determined in the wind tunnel agree well with full-scale results.  相似文献   

11.
On the heating environment in street canyon   总被引:1,自引:1,他引:0  
This study investigates the impact of building aspect ratio (building-height-to-street-canyon-width-ratio), wind speed and surface and air-temperature difference (Δθs−a) on the heating environment within street canyon. The Reynolds-averaged Navier-Stokes (RANS) and energy transport equations were solved with Renormalization group (RNG) theory version of k-e{\varepsilon} turbulence model. The validation process demonstrated that the model could be trusted for simulating air-temperature and velocity trends. The temperature and velocity patterns were discussed in idealized street canyons of different aspect ratios (0.5–2.0) with varying ambient wind speeds (0.5–1.5 m/s) and Δθs−a (2–8 K). Results show that air-temperatures are directly proportional to bulk Richardson number (R b ) for all but ground heating situation. Conversely, air-temperatures increase significantly across the street canyon with a decrease in ambient wind speed; however, the impact of Δθs−a was negligible. Clearly, ambient wind speed decreases significantly as it passes over higher AR street canyons. Notably, air-temperatures were the highest when the windward wall was heated and the least during ground heating. Conversely, air-temperatures were lower along the windward side but higher within the street canyon when the windward wall was heated.  相似文献   

12.
There are many industrial sites where open aggregate conical piles exist to store granular materials, like coal, industrial residuals, or other minerals. Usually these storage piles are placed in open areas, making them susceptible to wind erosion, which can create health, environmental, and/or economical concerns. It is common to minimize the dust emission through the placement of windbreaks in the vicinity of the storage piles, which reduces the wind speed in the vicinity of the pile’s surface. In this work, some experimental results from a wind tunnel study on the erosion of a conical sand pile, exposed or protected by a fence with porosities of 0, 70, and 83%, are shown. For the sheltered cases, the windbreak was placed at several distances from the pile’s leading edge, ranging from H to 4H, where H is the initial height of the non-eroded pile. The evolution of the shape of the sand pile is shown, at different instances in time, and the pile deformation quantified, using a novel experimental setup developed for wind erosion studies. This information might be regarded as a useful dataset for the benchmark of computational models aiming to produce the transient simulation of the aeolian erosion of stockpiles. The CFD results are comprised of the modeling of several experimental scenarios. The computational results for the surface wind velocity show a good correlation with the initial deformation of the pile. Based on the results, the isocontours of (u s /u r ) presented might be regarded as a good basis for the estimation of the pile shear velocity.  相似文献   

13.
In order to properly size the mechanical ventilation system of a tunnel, it is essential to estimate the wind-driven pressure difference that might rise between its two portals. In this respect, we explore here the pressure distribution over a tunnel portal under the influence of an incident atmospheric boundary layer and, in particular, its dependency on wind direction and on tunnel geometry. Reduced scale models of generic configurations of a tunnel portal are studied in an atmospheric wind tunnel. Pressure distributions over the front section of different open cavities are measured with surface taps, which allows us to infer the influence of the tunnel aspect ratio and wind direction on a pressure coefficient \(C_{P}\), defined as a spatially and time averaged non-dimensional pressure. Experiments reveal that the magnitude of the coefficient \(C_{P}\), as a function of the wind direction, is significantly influenced by the portal height-to-width ratio and almost insensitive to its length. The experimental data set is completed by hot-wire anemometry measurements providing vertical distribution of velocity statistics. The same configurations are simulated by numerically solving the Reynolds-averaged Navier–Stokes equations, adopting the standard \(k - \varepsilon\) turbulence model. Despite some discrepancies between numerical and experimental estimates of some flow parameters (namely the turbulent kinetic energy field), the numerical estimates of the pressure coefficients \(C_{P}\) show very good agreement with experimental data. The latter is also compared to the predictions of an analytical model, based on the estimate of a spatially averaged velocity within an infinitely long street canyon. The results of the model, which takes into account varying canyon aspect ratios, are in reasonable agreement with experimental data for all cases studied. Notably, its predictions are significantly better than those provided by the simple analytical relations usually adopted as a reference in tunnel ventilation studies.  相似文献   

14.
The application of computational fluid dynamics (CFD), particularly Large Eddy Simulation, for the modelling of buoyant turbulent plumes, has been demonstrated to be very accurate, but computationally expensive. Here a more basic, and therefore more generally practicable, approach is presented. Commercial CFD software is used to model such plumes using Reynolds-Averaged Navier-Stokes (RANS) turbulence models. A careful comparison is made between the numerical predictions and well-established results regarding the bulk properties of plumes. During this process, we are able to observe the well-known approximate Gaussian nature of the plume and achieve quantitative agreement with empirical plume spread coefficients. The use of numerical modelling allows for the investigation of the flow field and turbulence in those regions of the plume of most interest—the plume edge and near source regions. A comprehensive sensitivity study is conducted to identify the limits of applicability of this modelling approach. It is shown that the standard modelling approach of Morton, Taylor and Turner, which introduced the well-known entrainment assumption, pertains in a region well above the source region. At the plume edge, the levels of turbulence are contrasted with the value of the entrainment parameter. Finally, the effects of forcing the plumes with additional momentum at the source are considered, including the case of a pure jet. We show how these forced plumes eventually lose their momentum excess and tend to the behaviour of a pure, buoyant plume.  相似文献   

15.
Wind-tunnel simulations were employed to evaluate the wind environment around a tested residential area located near industrial complexes. The scaled-down geomorphological model of the test area was placed in the test section of a boundary layer wind tunnel. Particle image velocimetry (PIV) measurements were made in five vertical planes and one horizontal plane around the test area for two prevailing wind directions. The results showed that the wind speed decreased in the near surface layer and the velocity fluctuations increased in the upper region due to the presence of hills and high-rise buildings around the test area. Regions of flow separation and low-speed flow were found inside the test area for both the wind directions. The result suggests that the high-rise buildings should be well arranged with respect to the main wind directions to increase the natural ventilation inside the residential complex at the initial design stage.  相似文献   

16.
Wind erosion processes affect soil surfaces across all land uses worldwide. Understanding the spatial and temporal scales of wind erosion is a challenging undertaking because these processes are diverse and highly variable. Wind tunnels provide a useful tool as they can be used to simulate erosion at small spatial scales. Portable wind tunnels are particularly valued because erosion can be simulated on undisturbed soil surfaces in the field. There has been a long history of use of large portable wind tunnels, with consensus that these wind erosion simulation tools can meet real world aerodynamic criteria. However, one consequence of striving to meet aerodynamic reality is that the size of the tunnels has increased, making them logistically difficult to work with in the field and resulting in a tendency to homogenise naturally complex soil surfaces. This homogenisation is at odds with an increasing awareness of the importance that small scale processes have in wind erosion. To address these logistical and surface homogenisation issues we present here the development and testing of a micro wind tunnel (MWT) designed to simulate wind erosion processes at high spatial resolution. The MWT is a duct-type design—0.05 m tall 0.1 m wide and with a 1.0 m working section. The tunnel uses a centrifugal motor to suck air through a flow‐conditioning section, over the working section and then through a sediment collection trap. Simulated wind velocities range from 5 to 18 m s?1, with high reproducibility. Wind speeds are laterally uniform and values of u * at the tunnel bed (calculated by measuring the pressure gradients within the MWT) are comparable with those of larger tunnels in which logarithmic profiles can be developed. Saltation sediment can be added. The tunnel can be deployed by a single person and operated on slopes ranging from 0 to 10°. Evidence is presented here that the MWT provides new and useful understanding of the erodibility of rangelands, claypans and ore stockpiles.  相似文献   

17.
This work describes and evaluates a pressure solver that has been incorporated into a fast response three-dimensional building-resolving diagnostic wind modeling system. The solver computes the three-dimensional pressure field around buildings and on exterior walls in terms of a coefficient of pressure by solving a simplified pressure Poisson equation (that neglects turbulence stresses in the Navier-Stokes) for incompressible flow. The input to the solver is the three-dimensional mean wind field obtained from a fast response empirical-diagnostic urban wind model. The present study is an evaluation of the pressure solver using wind-tunnel data for flow normal to and at a 45° angle to an isolated cubical building. Results for the normal incident wind angle case indicate that the model satisfactorily reproduces the general spatial patterns and the magnitude of the pressure difference around much of the cube. Details of the flow field that are not satisfactorily predicted include the spatial distribution of pressure on the roof and the lower half of the front side of the building and the magnitude along the sidewalls where pressures are over predicted. The results for the 45° case show reasonable agreement between the model and experiments on the front and the back walls, but over predict pressures on the leading edge of the rooftop. Regions with poor pressure predictions appear to be a result of unsatisfactory mean wind modeling.  相似文献   

18.
In the Namib Desert seed distribution is greatly influenced by wind patterns. Existing literature regarding wind patterns over dunes focuses on two-dimensional simulations of flow over simplified dune structures. The three-dimensional geometries of the sand dunes suggests far more complex flow features exist, which are not captured by two-dimensional simulations. Computational fluid dynamics (CFD) was used to reproduce the three-dimensional near surface wind patterns around a dune with the aim to learn more about seed distribution. Field work included terrain mapping, wind speed, direction and temperature metering. The CFD results show the expected two-dimensional flow features of high pressure at the dune toe, low pressure at the crest and flow acceleration up windward slope. Also observed are some three-dimensional flow features such as a spiral vortex near the crest and transverse flow due to crest-line curvature of the dune. It was also observed how the wall shear stress differs due to the three-dimensional shape of the dune. The wall shear stress suggests that seed accumulation is more likely to occur behind trailing (down-wind) crest edges. Particle tracking showed how seeds tend to move over the dune crest and recirculate towards the crest on the lee-side. The study showed that adding the third dimension makes the simulations more complex, adds to computational requirements and increases simulation time but also provides vital flow information which is not possible with two-dimensional simulations.  相似文献   

19.
The peak values observed in a measured concentration time series of a dispersing gaseous pollutant released continuously from a point source in urban environments, and the hazard level associated with them, demonstrate the necessity of predicting the upper tail of concentration distributions. For the prediction of concentration distributions statistical models are preferably employed which provide information about the probability of occurrence. In this paper a concentration database pertaining to a field experiment is used for the selection of the statistical distribution. The inverses of the gamma cumulative distribution function (cdf) for 75th–99th percentiles of concentration are found to be more consistent with the experimental data than those of the log-normal distribution. The experimental values have been derived from measured high frequency time series by sorting first the concentrations and then finding the concentration which corresponds to each probability. Then the concentration mean and variance that are predicted with Computational Fluid Dynamics-Reynolds Averaged Navier–Stokes (RANS) methodology are used to construct the gamma distribution. The proposed model (“RANS-gamma”) is included in the framework of a computational code (ADREA-HF) suitable for simulating the dispersion of airborne pollutants over complex geometries. The methodology is validated by comparing the inverses of the model cdfs with the observed ones from two wind tunnel experiments. The evaluation is performed in the form of validation metrics such as the fractional bias, the normalized mean square error and the factor-of-two percentage. From the above comparisons it is concluded that the overall model performance for the present cases is satisfactory.  相似文献   

20.
Ben Ramoul  L.  Korichi  A.  Popa  C.  Zaidi  H.  Polidori  G. 《Environmental Fluid Mechanics》2019,19(2):379-400
Environmental Fluid Mechanics - The flow characteristics and pollutant dispersion around building are investigated numerically using three RANS turbulence closure models, i.e. Standard...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号