首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
The dissipation of three PAHs, i.e., 500 mg phenanthrene kg(-1) soil, 350 mg anthracene kg(-1) soil and 150 mg benzo(a)pyrene kg(-1) soil, was investigated in soil from Acolman (México) added with cow manure or vermicompost while production of CO(2) and inorganic N was monitored. At day 0, recovery of added phenanthrene was 95%, anthracene 96% and benzo(a)pyrene 100% in sterilized soil and concentrations did not change significantly in sterilized soil over time. Application of organic material did not affect the concentration of phenanthrene and anthracene, which decreased sharply in the unsterilized soil in the first weeks of the incubation. Less than 3% of the added phenanthrene was detected after 100 days and less than 8.5% of the added anthracene (mean of the two experiments). The decrease in concentration of benzo(a)pyrene (BaP) was not fast as that of phenathrene and anthracene, and 22% was extractable from soil still after 100days. It was concluded that addition of farm yard manure (FYM) and vermicompost only had an effect on the initial dissipation of phenanthrene, anthracene and benzo(a)pyrene in soil of Acolman.  相似文献   

2.
Nitrogen mineralization in PAHs contaminated soil in presence of Eisenia fetida amended with biosolid or vermicompost was investigated. Sterilized and unsterilized soil was contaminated with PAHs, added with E. fetida and biosolid or vermicompost and incubated aerobically for 70 days, while dynamics of inorganic N were monitored. Addition of E. fetida to sterilized soil increased concentration of NH(4)(+) 100> mg N kg(-1), while concentrations in unsterilized remained <60 mg N kg(-1) except for soil amended with biosolid plus PAHs where it increased to >80 mg kg(-1). Addition of PAHs had no significant effect on concentration of NH(4)(+) compared to the unamended soil, except in the soil added with biosolid. Addition of E. fetida to sterilized soil increased concentration of NO(2)(-) 15> mg N kg(-1) while concentrations in unsterilized soil remained <7.5 mg N kg(-1) except for soil amended with biosolid where it increased to >20 mg kg(-1). Addition of PAHs had no significant effect on concentration of NO(2)(-) compared to the unamended soil. Addition of biosolid and vermicompost increased concentration of NO(3)(-), while addition of E. fetida decreased concentration of NO(3)(-) in biosolid amended soil. It was found that NH(4)(+) and NO(2)(-) oxidizers were present in the gut of E. fetida, but their activity was not sufficient enough to inhibit a temporarily increase in concentrations of NH(4)(+) and NO(2)(-). Contamination with PAHs induced immobilization of N in biosolid or vermicompost amended soil, as did feeding of E. fetida on biosolid or vermicompost.  相似文献   

3.
The removal of phenanthrene, anthracene and benzo(a)pyrene added at three different concentrations was investigated with or without earthworms (Eisenia fetida) within 11 weeks. Average anthracene removal by the autochthonous micro-organisms was 23%, 77% for phenanthrene and 13% for benzo(a)pyrene, while it was 51% for anthracene, 47% for benzo(a)pyrene and 100% for phenanthrene in soil with earthworms. At 50 and 100mg phenanthrene kg(-1)E. fetida survival was 91% and 83%, but at 150 mg kg(-1) all died within 15 days. Survival of E. fetida in soil amended with anthracene < or = 1000 mg kg(-1) and benzo(a)pyrene < or = 150 mg kg(-1) was higher than 80% and without weight loss compared to the untreated soil. Only small amounts of PAHs were detected in the earthworms. It was concluded that E. fetida has the potential to remove large amounts of PAHs from soil, but more work is necessary to elucidate the mechanisms involved.  相似文献   

4.
A microcosm study was conducted to address the influences of air-soil partition and sequestration on the fate of polycyclic aromatic hydrocarbons (PAHs) in soil. Sterilized and unsterilized soils with soil organic carbon (SOC) content ranging from 0.23 to 7.06% were incubated in a chamber with six PAHs supplied through air. After 100 d of incubation when the system approached pseudo-steady state, the PAHs concentrations in the unsterilized soils still correlated with SOC significantly, while the association did not exist for those sterilized. The lower degradation rate in the soil with higher SOC was likely the major reason for the association between SOC and PAHs concentrations, while the decreased surface porosity likely suppressed such correlation for the sterilized samples. The results indicated that the sequestration was likely the major mechanism for the accumulation of PAHs in soils, while both of the soil porosity and PAHs properties had observed influences.  相似文献   

5.
Bioavailability and degradation of phenanthrene in compost amended soils   总被引:1,自引:0,他引:1  
Bioavailability in soil of organic xenobiotics such as phenanthrene is limited by mechanisms of diffusion of the xenobiotics within soil micropores and organic matter. The agricultural utilization of compost may reduce the risk connected to organic xenobiotic contamination by means of: (i) a reduction of the bioavailable fraction through an increased adsorption and (ii) an enhanced degradation of the remaining bioavailable fraction through an inoculum of degrading microorganisms. Aim of this work is to test this hypothesis by assessing the effects of compost amendment on the bioavailability and degradation of phenanthrene in soil. Experiments were carried out in both sterilized and non-sterilized conditions, and chemical and microbiological analyses were carried out in order to determine the extent of degradation and bioavailability and to monitor the evolution of the soil micro flora in time. Bioavailability was assessed in sterilized microcosms, in order to assess the physical effects of compost on aging processes without the influence of microbial degradation. Results showed that bioavailability is significantly reduced in soils amended with compost, although no differences were found at the 2 doses of compost studied. In non-sterilized soils the amount of phenanthrene degraded was always higher in the amended soils than in the non-amended one. Microbiological analyses confirmed the presence of a higher number of phenanthrene degraders in the amended soils and in samples of compost alone. These results suggest that compost induces the degradation in soils of easily degradable compounds such as phenanthrene, when the proper bacteria are in the compost; more resistant xenobiotics may instead be trapped by the compost organic matter, thus becoming less available.  相似文献   

6.
The biodegradation of polycyclic aromatic hydrocarbons (PAHs) in aqueous deoxyribonucleic acid (DNA) solution from contaminated soil washing was investigated. Initial data with a model effluent consisting of anthracene, phenanthrene, pyrene and benzo[a]pyrene that were individually dissolved in 1% aqueous DNA solution confirmed their positive degradation by Sphingomonas sp. at around 10(8)CFU mL(-1) initial cell loading. For anthracene and phenanthrene, complete removal was achieved within 1h treatment. Degradation of pyrene and benzo[a]pyrene took a relatively longer time of a few days and weeks, respectively. DNA-dissolved PAHs were also degraded relatively faster than PAH crystals in aqueous medium to suggest that the binding of the PAHs in the polymer does not pose serious constraint to bacterial uptake. The DNA was stable against the PAH-degrading bacteria. Parallel experiments with actual DNA solutions obtained during pyrene extraction from an artificially spiked soil also showed similar results. Close to 100% pyrene degradation was achieved after 1d treatment. With its chemical stability, the cell-treated DNA was re-used up to four cycles without a considerable decline in extraction performance.  相似文献   

7.
Anaerobic biodegradation of polycyclic aromatic hydrocarbon in soil   总被引:20,自引:0,他引:20  
Chang BV  Shiung LC  Yuan SY 《Chemosphere》2002,48(7):717-724
Known concentrations of phenanthrene, pyrene, anthracene, fluorene and acenapthene were added to soil samples to investigate the anaerobic degradation potential of polycyclic aromatic hydrocarbon (PAH). Consortia-treated river sediments taken from known sites of long-term pollution were added as inoculum. Mixtures of soil, consortia, and PAH (individually or combined) were amended with nutrients and batch incubated. High-to-low degradation rates for both soil types were phenanthrene > pyrene > anthracene > fluorene > acenaphthene. Degradation rates were faster in Taida soil than in Guishan soil. Faster individual PAH degradation rates were also observed in cultures containing a mixture of PAH substrates compared to the presence of a single substrate. Optimal incubation conditions were noted as pH 8.0 and 30 degrees C. Degradation was enhanced for PAH by the addition of acetate, lactate, or pyruvate. The addition of municipal sewage or oil refinery sludge to the soil samples stimulated PAH degradation. Biodegradation was also measured under three anaerobic conditions; results show the high-to-low order of biodegradation rates to be sulfate-reducing conditions > methanogenic conditions > nitrate-reducing conditions. The results show that sulfate-reducing bacteria, methanogen, and eubacteria are involved in the PAH degradation; sulfate-reducing bacteria constitute a major component of the PAH-adapted consortia.  相似文献   

8.
Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture   总被引:39,自引:0,他引:39  
Yuan SY  Wei SH  Chang BV 《Chemosphere》2000,41(9):1463-1468
We investigated the potential biodegradation of polycyclic aromatic hydrocarbons (PAHs) by an aerobic mixed culture utilizing phenanthrene as its carbon source. Following a 3-5 h post-treatment lag phase, complete degradation of 5 mg/l phenanthrene occurred within 28 h (optimal conditions determined as 30 degrees C and pH 7.0). Phenanthrene degradation was enhanced by the individual addition of yeast extract, acetate, glucose or pyruvate. Results show that the higher the phenanthrene concentration, the slower the degradation rate. While the mixed culture was also capable of efficiently degrading pyrene and acenaphthene, it failed to degrade anthracene and fluorene. In samples containing a mixture of the five PAHs, treatment with the aerobic culture increased degradation rates for fluorene and anthracene and decreased degradation rates for acenaphthene, phenanthrene and pyrene. Finally, it was observed that when nonionic surfactants were present at levels above critical micelle concentrations (CMCs), phenanthrene degradation was completely inhibited by the addition of Brij 30 and Brij 35, and delayed by the addition of Triton X100 and Triton N101.  相似文献   

9.
A study has been conducted to enhance degradation of a mixture of polycyclic aromatic hydrocarbons (PAHs) by combining biodegradation with hydrogen peroxide oxidation in a former manufactured gas plant (MGP) soil. An active bacterial consortium enriched from the MGP surface soil (0-2 m) biodegraded more than 90% of PAHs including 2-, 3-, and 4-ring hydrocarbons in a model soil. The consortium was also able to transform about 50% of 4- and 5-ring hydrocarbons in the MGP soil. As a chemical oxidant, Fenton's reagent (H2O2 + Fe2+) was very efficient in the destruction of a mixture of PAHs (i.e., naphthalene (NAP), fluorene (FLU), phenanthrene (PHE), anthracene (ANT), pyrene (PYR), chrysene (CHR), and benzo(a)pyrene (BaP)) in the model soil; noticeably, 84.5% and 96.7% of initial PYR and BaP were degraded, respectively. In the MGP soil, the same treatment destroyed more than 80% of 2- and 3-ring hydrocarbons and 20-40% of 4- and 5-ring compounds. However, the low pH requirement (pH 2-3) for optimum Fenton reaction made the process incompatible with biological treatment and posed potential hazards to the soil ecosystem where the reagent was used. In order to overcome such limitation, a modified Fenton-type reaction was performed at near neutral pH by using ferric ions and chelating agents such as catechol and gallic acid. By the combined treatment of the modified Fenton reaction and biodegradation, more than 98% of 2- or 3-ring hydrocarbons and between 70% and 85% of 4- or 5-ring compounds were degraded in the MGP soil, while maintaining its pH about 6-6.5.  相似文献   

10.
Combined UV-biological degradation of PAHs   总被引:6,自引:0,他引:6  
The UV-photolysis of PAHs was tested in silicone oil and tetradecane. In most cases, the degradation of a pollutant provided within a mixture was lower than when provided alone due to competitive effects. With the exception of anthracene, the larger pollutants (4- and 5-rings) were always degraded first, proving that UV-treatment preferentially acts on large PAHs and thereby provides a good complement to microbial degradation. UV-photolysis was also found to be suitable for treatment of soil extract from contaminated soils. The feasibility of UV-biological treatment was demonstrated for the removal of a mixture of phenanthrene and pyrene in silicone oil. UV-irradiation of the silicone oil led to 83% pyrene removal but no phenanthrene photodegradation. Subsequent treatment of the oil in a two-phases partitioning bioreactor (TPPB) system inoculated with Pseudomonas sp. was followed by complete phenanthrene biodegradation but no further pyrene removal. Totally, the combined process allowed 92% removal of the PAH mixture. Further work should focus on characterizing the photoproducts formed and studying the influence of the solvent on the photodegradation process.  相似文献   

11.
Polycyclic aromatic hydrocarbons (PAHs) cause a high environmental impact when released into the environment. The objective of this study was to evaluate the capacity of decontamination of polluted soils with PAHs using the sequence extraction-electrochemical treatment: extraction of PAHs from the soil with surfactant followed by electrochemical degradation of the liquid collected. Several PAHs (anthracene, benzo[a]pyrene, and phenanthrene) have been used as model compounds since such PAHs are found in high concentrations in contaminated environmental samples. Due to their hydrophobic nature, soil extraction has been limited. In this work, the use of six surfactants, Brij 35, Merpol, Tergitol, Tween 20, Tween 80 and Tyloxapol, has been evaluated on the PAH extraction from a model soil such as kaolin. Furthermore, the electrochemical degradation of PAHs with the surfactant that gave the best result was investigated working with neat solutions. The electrochemical treatment of these solutions was carried out in two electrochemical cells with different working volumes, 0.4 and 1.5l, and electrode material (graphite or titanium). Near complete degradation was reached for all the experiments in both cells.  相似文献   

12.
In this study we examine the effects of polycyclic aromatic hydrocarbons (PAHs) on the ability of the hyperaccumulator plant Alyssum lesbiacum to phytoextract nickel from co-contaminated soil. Planted and unplanted mesocosms containing the contaminated soils were repeatedly amended with sorbitan trioleate, salicylic acid and histidine in various combinations to enhance the degradation of two PAHs (phenanthrene and chrysene) and increase nickel phytoextraction. Plant growth was negatively affected by PAHs; however, there was no significant effect on the phytoextraction of Ni per unit biomass of shoot. Exogenous histidine did not increase nickel phytoextraction, but the histidine-extractable fraction of soil nickel showed a high correlation with phytoextractable nickel. These results indicate that Alyssum lesbiacum might be effective in phytoextracting nickel from marginally PAH-contaminated soils. In addition, we provide evidence for the broader applicability of histidine for quantifying and predicting Ni phytoavailability in soils.  相似文献   

13.
Sánchez L  Romero E  Peña A 《Chemosphere》2005,59(7):969-976
Photodegradation studies of the organophosphorous insecticide methidathion in thin layers of wet soil samples have been carried out under solar irradiation. Soil samples consisted of an agricultural soil added with two amendments: a municipal biosolid and the cationic surfactant TDTMA (tetradecyl trimethyl ammonium bromide). Dark controls of the different soil treatments were also considered. Soil and biosolid samples were previously autoclaved to eliminate biotic degradation. In this study we investigated the role of these amendments in methidathion photodegradation which is a rapid (<7 days) and indirect process. Although scarce differences were found between non-amended and amended samples, methidathion from soil exposed under sunlight is degraded more quickly than in dark conditions. Photodegradation products (methidathion oxon GS 13007 and GS 12956) were not detected.  相似文献   

14.
Guieysse B  Viklund G 《Chemosphere》2005,59(3):369-376
A method based on UV-irradiation in organic solvent followed by transfer of the remaining pollutants into silicone oil for subsequent biodegradation in a biphasic system inoculated with a phenanthrene degrading Pseudomonas sp. was tested for the treatment of various mixtures of PAHs. Acetone was first selected as the most suitable solvent compared to methanol, acetonitrile and silicone oil for the removal of pyrene and phenanthrene. The sequential treatment was then applied to the treatment of a mixture of fluorene, phenanthrene, anthracene, fluoranthrene, pyrene, benzo(a)anthracene and benzo(a)pyrene in acetone. These compounds were photodegraded in the following order of initial removal rates (mg l(-1) d(-1)): benzo(a)pyrene (7.8) > anthracene (5.0) > benzo(a)anthracene (2.5) > fluoranthrene (1.8) > pyrene (1.5) > phenanthrene (1.2) > fluorene (0.2). UV-treatment allowed complete removal of, anthracene, benzo(a)anthracene and benzo(a)pyrene and removals of 63% of pyrene and 37% of fluorene after 434 h or irradiation. The subsequent biological treatment removed the remaining phenanthrene and fluorene by 100% and 90%, respectively, after 790 h of cultivation. Although less efficient due to the presence of interfering compounds, the UV-biological treatment of a soil extract allowed a 63% removal of the seven PAHs named above. Microbial growth did not occur when the pollutants were directly supplied to the microorganism showing that biphasic systems reduced the toxicity effects cause by mixtures of PAHs at high concentrations. This study demonstrates the potential of selective UV treatment of high molecular weight PAHs followed by biological treatment of the low molecular weight species in biphasic systems.  相似文献   

15.
Clay loam soil from agricultural fields of alluvial (AL) soil (typic udifluvent) and coastal saline (CS) soil (typic endoaquept) were investigated for the degradation and effect of pencycuron application at field rate (FR), 2-times FR (2FR) and 10-times FR (10FR) with and without decomposed cow manure (DCM) on soil microbial variables under laboratory conditions. Pencycuron degraded faster in CS soil and in soil amended with DCM. Pencycuron spiking at FR and 2FR resulted in a short-lived (in case of 10FR slightly longer) and transitory toxic effect on soil microbial biomass-C (MBC), ergosterol content and fluorescein diacetate hydrolyzing activity (FDHA). Amendment of DCM did not seem to have any counteractive effect of the toxicity of pencycuron on the microbial variables. The ecophysiological status of the soil microbial communities as expressed by microbial metabolic quotient (qCO2) and microbial respiration quotient (Q(R)) changed, but for a short period, indicating pencycuron induced disturbance. The duration of this disturbance was slightly longer at 10FR. Pencycuron was more toxic to the metabolically activated soil microbial populations, specifically the fungi. It is concluded that side effects of pencycuron at 10FR on the microbial variables studied were only short-lived and probably of little ecological significance.  相似文献   

16.
In this study, airborne particulates were collected at three sites, two in a downtown area and the other in a suburban area of Kanazawa, Japan in each season for 7 years. Two polycyclic aromatic hydrocarbons (PAHs), pyrene (Py) and benzo[a]pyrene (BaP) and four nitropolycyclic aromatic hydrocarbons (NPAHs), 1-nitropyrene (NP) and 1,3-, 1,6-, and 1,8-dinitropyrenes (DNP) were determined by high-performance liquid chromatography with fluorescence and chemiluminescence detection. At the downtown sites, the mean concentration of each DNP was about two orders of magnitude lower than that of 1-NP and more than three orders of magnitude lower than those of Py and BaP. This tendency reflected the composition of PAHs and NPAHs in diesel-engine exhaust particulates. Concentrations of these PAHs and NPAHs were higher at the downtown sites than at the suburban site, suggesting the dilution of these compounds during the transportation from the downtown to the suburban area. The concentration ratios of NPAHs to PAHs were larger at the downtown sites than at the suburban site. Studies using UV light and sunlight showed that degradation of NPAHs was faster than that of PAHs. Thus, the lower concentrations of NPAHs in the suburban sites may be due to their being photodegraded faster than PAHs during the atmospheric transportation from the downtown area to the suburban area.  相似文献   

17.
Chen L  Ran Y  Xing B  Mai B  He J  Wei X  Fu J  Sheng G 《Chemosphere》2005,60(7):879-890
We investigated contents, distribution and possible sources of PAHs and organochlorine pesticides (Ops) in 43 surface and subsurface soils around the urban Guangzhou where variable kinds of vegetables are grown. The results indicate that the contents of PAHs (16 US EPA priority PAHs) range from 42 to 3077 microg/kg and the pollution extent is classified as a moderate level in comparison with other investigations and soil quality standards. The ratios of methylphenanthrenes to phenanthrene(MP/P), anthracene to anthracene plus phenanthrene (An/178), benz[a]anthracene to benz[a]anthracene plus chrysene (BaA/228), indeno[1,2,3-cd]pyrene to indeno[1,2,3-cd]pyrene plus benzo[ghi]perylene (In/In+BP) suggest that the sources of PAHs in the soil samples are mixed with a dominant contribution from petroleum and combustion of fossil fuel. The correlation analysis shows that the PAHs contents are significantly related to total organic carbon contents (TOC) (R2=0.75) and black carbon contents (BC) (R2=0.62) in the soil samples. Dichlorodiphenyltrichloroethane and metabolites (DDTs) and hexachlorocyclohexanes and metabolites (HCHs) account largely for the contaminants of OPs. The concentrations of DDTs range from 3.58 to 831 microg/kg and the ratios for DDT/(DDD+DDE) are higher than 2 in some soil samples, suggesting that DDT contamination still exists and may be caused by its persistence in soils and/or impurity in the pesticide dicofol. The concentrations of HCHs are 0.19-42.3 microg/kg.  相似文献   

18.
The degradative characteristics of butachlor (N-Butoxymethyl-2-chloro-2',6'-diethyla- cetanilide) were studied under controlled laboratory conditions in clay loam alluvial (AL) soil (Typic udifluvent) and coastal saline (CS) soil (Typic endoaquept) from rice cultivated fields. The application rates included field rate (FR), 2-times FR (2FR) and 10-times FR (10FR). The incubation study was carried out at 30 degrees C with and without decomposed cow manure (DCM) at 60% of maximum water holding capacity (WHC) and waterlogged soil condition. The half-life values depended on the soil types and initial concentrations of butachlor. Butachlor degraded faster in AL soil and in soil amended with DCM under waterlogged condition. Microbial degradation is the major avenue of butachlor degradation from soils.  相似文献   

19.
Two birch clones originating from metal-contaminated sites were exposed for 3 months to soils (sand-peat ratio 1:1 or 4:1) spiked with a mixture of polyaromatic hydrocarbons (PAHs; anthracene, fluoranthene, phenanthrene, pyrene). PAH degradation differed between the two birch clones and also by the soil type. The statistically most significant elimination (p ≤ 0.01), i.e. 88% of total PAHs, was observed in the more sandy soil planted with birch, the clearest positive effect being found with Betula pubescens clone on phenanthrene. PAHs and soil composition had rather small effects on birch protein complement. Three proteins with clonal differences were identified: ferritin-like protein, auxin-induced protein and peroxidase. Differences in planted and non-planted soils were detected in bacterial communities by 16S rRNA T-RFLP, and the overall bacterial community structures were diverse. Even though both represent complex systems, trees and rhizoidal microbes in combination can provide interesting possibilities for bioremediation of PAH-polluted soils.  相似文献   

20.
To examine the bioremediation potential of Mortierella sp. strain W8 in endosulfan contaminated soil, the fungus was inoculated into sterilized and unsterilized soil spiked with endosulfan. Wheat bran and cane molasses were used as substrates to understand the influence of different organic materials on the degradation of endosulfan in soil. Strain W8 degraded α- and β-endosulfan in both sterilized and unsterilized soil. In unsterilized soil with wheat bran+W8, α- and β- endosulfan were degraded by approximately 80% and 50%, respectively after 28 d incubation against the initial endosulfan concentration (3 mg kg(-1) dw). The corresponding values for α- and β-endosulfan degradation with wheat bran only were 50% and 3%. Endosulfan diol metabolite was detected after 14 d incubation in wheat bran+W8 whereas it was not found with wheat bran only. Production of endosulfan sulfate, the main metabolite of endosulfan, was suppressed with wheat bran+W8 treatment compared with wheat bran only. It was demonstrated that wheat bran is a more suitable substrate for strain W8 than cane molasses. Wheat bran+W8 is a superior fungus and substrate mix for bioremediation in soil contaminated with endosulfan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号