首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Singh J  Singh DK 《Chemosphere》2005,60(1):32-42
Impacts of diazinon, imidacloprid and lindane treatments on dehydrogenase and alkaline phosphomonoesterase enzyme activities were determined in groundnut (Arachis hypogaea L.) field for three consecutive years (1997-1999). Diazinon was applied as both seed and soil treatments but imidacloprid and lindane were used for seed treatments only at recommended rates. Experiments were conducted at Agricultural Research Station Durgapura, Jaipur, Rajasthan, India. Diazinon residues were persist up till 60 days in both the cases. Average half-lives (t(1/2)) of diazinon were found 29.3 and 34.8 days, respectively, for seed and soil treatments. Diazinon seed treatment had no significant effect on dehydrogenase and alkaline phosphomonoesterase enzymes activities. In diazinon soil treatment, there were a significant increase in dehydrogenase and decrease in alkaline phosphomonoesterase activities after 24 h of treatment, which continued till 30 days. In seed treatments, imidacloprid and lindane were present in soil up to 90 and 120 days with average half-lives (t(1/2)) of 40.9 and 53.3 days, respectively. Within 90 days, imidacloprid residues were declined up to 73.17% to 82.49% while decline in lindane residues ranged from 78.19% to 79.86% within 120 days. In imidacloprid seed treated field, both dehydrogenase and phosphomonoesterase activities were increased between 15 and 60 days after sowing. However, a significant decreases in both dehydrogenase and phosphomonoesterase enzyme activities were observed between 15 and 90 days after lindane seed treatment.  相似文献   

2.
Impacts of diazinon (O,O-diethyl O-2-isopropyl-6-methylpyrimidin-4-yl phosphorothioate), imidacloprid [1-(6-chloro-3-pyridylmethyl)-N-nitroimidazolidin-2-ylideneamine] and lindane (1,2,3,4,5.6-hexachlorocyclohexane) treatments on ammonium, nitrate, and nitrite nitrogen and nitrate reductase enzyme activities were determined in groundnut (Arachis hypogaea L.) field for three consecutive years (1997 to 1999). Diazinon was applied for both seed- and soil-treatments but imidacloprid and lindane were used for seed treatments only at recommended rates. Diazinon residues persisted for 60 days in both the cases. Average half-lives (t1/2) of diazinon were found 29.3 and 34.8 days respectively in seed and soil treatments. In diazinon seed treatment, NH4(+), NO3(-), and NO2(-) nitrogen and nitrate reductase activity were not affected. Whereas, diazinon soil treatment indicated significant increase in NH4(+)-N in a 1-day sample, which continued until 90 days. Some declines in NO3(-)N were found from 15 to 60 days. Along with this decline, significant increases in NO2(-)N and nitrate reductase activity were found between 1 and 30 days. Imidacloprid and lindane persisted for 90 and 120 days with average half-lives (t1/2) of 40.9 and 53.3 days, respectively. Within 90 days, imidacloprid residues lost by 73.17% to 82.49% while such losses for lindane residues were found 78.19% to 79.86 % within 120 days. In imidacloprid seed-treated field, stimulation of NO3(-)N and the decline in NH4+NO2(-)-N and nitrate reductase enzyme activity were observed between 15 to 90 days. However, lindane seed treatment indicated significant increases in NH4(+)-N, NO2(-)-N and nitrate reductase activity and some adverse effects on NO3(-)N between 15 and 90 days.  相似文献   

3.

Impacts of diazinon (O,O-diethyl O-2-isopropyl-6-methylpyrimidin-4-yl phosphorothioate), imidacloprid [1-(6-chloro-3-pyridylmethyl)-N-nitroimidazolidin-2-ylideneamine] and lindane (1,2,3,4,5.6-hexachlorocyclohexane) treatments on ammonium, nitrate, and nitrite nitrogen and nitrate reductase enzyme activities were determined in groundnut (Arachis hypogaea L.) field for three consecutive years (1997 to 1999). Diazinon was applied for both seed- and soil-treatments but imidacloprid and lindane were used for seed treatments only at recommended rates. Diazinon residues persisted for 60 days in both the cases. Average half-lives (t1/2) of diazinon were found 29.3 and 34.8 days respectively in seed and soil treatments. In diazinon seed treatment, NH4 +, NO3 ?, and NO2 ? nitrogen and nitrate reductase activity were not affected. Whereas, diazinon soil treatment indicated significant increase in NH4 +-N in a 1-day sample, which continued until 90 days. Some declines in NO3 ?N were found from 15 to 60 days. Along with this decline, significant increases in NO2 ?N and nitrate reductase activity were found between 1 and 30 days. Imidacloprid and lindane persisted for 90 and 120 days with average half-lives (t1/2) of 40.9 and 53.3 days, respectively. Within 90 days, imidacloprid residues lost by 73.17% to 82.49% while such losses for lindane residues were found 78.19% to 79.86 % within 120 days. In imidacloprid seed-treated field, stimulation of NO3 ?N and the decline in NH4 +NO2 ?-N and nitrate reductase enzyme activity were observed between 15 to 90 days. However, lindane seed treatment indicated significant increases in NH4 +-N, NO2 ?-N and nitrate reductase activity and some adverse effects on NO3 ?N between 15 and 90 days.  相似文献   

4.
Pandey S  Singh DK 《Chemosphere》2004,55(2):197-205
Short-term inhibitory effect on the total bacterial population was observed after chlorpyrifos and quinalphos applications in the groundnut fields, which recovered within 60 days after seed treatment and by 45 days of soil treatment. The fungal population was significantly enhanced after chlorpyrifos treatment whereas quinalphos inhibited the fungal population during the initial days of treatment but no effect was observed after 60 days of treatment. The residues of chlorpyrifos and quinalphos in the treated soil were not persistent and their half-lives ranged from 7.0 to 9.2 days and 13.2 to 20.6 days, respectively.  相似文献   

5.
Imidacloprid was applied as seed treatment (Gaucho 70 WS, 5 and 10 g ai kg(-1) seed) and foliar spray (Confidor 200 SL, 20 and 40 g ai ha(-1)) at 50% pod formation stage on mustard (Brassica campestris Linn.) to control mustard aphid, Lipaphis erysimi Kalt. It was detectable upto 82 and 96 days in plants after sowing from lower and higher doses of seed treatment. However, it dissipated faster and became nondetectable after 7 and 15 days of foliar treatments from lower and higher rates of application, respectively. The dissipation models yielded the rate constants of 0.0209 and 0.0230 and 0.0736 and 0.0779 day(-1) from seed and foliar treatment. The corresponding half-lives of 14.40 and 13.07 and 4.09 and 3.86 days were recorded. This suggested that the dissipation was independent of initial doses and followed a first order rate kinetics. The projected TMRC of imidacloprid from seed (0.136 and 0.225 mg person(-1) day(-1)) and foliar (0.069 and 0.1497 mg person(-1) day(-1)) treatments were found lower than the MPI (3.135 mg person(-1) day(-1)). At harvest mustard grains did not contain imidacloprid residues. The absence of imidacloprid in 0-10 and 10-20 cm soil layers indicated no leaching of insecticide. Therefore, imidacloprid treatments could be taken as safe for crop protection, consumption of leaves and environmental contamination point of view.  相似文献   

6.
An experiment has been conducted under laboratory conditions to investigate the effect of phorate (an organophosphate insecticide) and carbofuran (a carbamate insecticide) at their recommended field rates (1.5 and 1.0 kga.i.ha-1, respectively) on the growth and multiplication of microorganisms as well as rate of dissipation and persistence of the insecticidal residues including their metabolites in laterite (typic orchaqualf) and alluvial (typic fluvaquent) soils of West Bengal. Application of phorate and carbofuran in general, induced growth and development of bacteria, actinomycetes, fungi, N2-fixing bacteria and phosphate solubilizing microorganisms in both the soils and the stimulation was more pronounced with phorate as compared to carbofuran. Application of phorate recorded highest stimulation of fungi in laterite and actinomycetes in alluvial soil. Carbofuran on the other hand, augmented fungi and N2-fixing bacteria in laterite and actinomycetes in alluvial soil. Bacterial population was inhibited due to the application of carbofuran in alluvial soil. Phorate sulfoxide and phorate sulfone, the two metabolites of phorate and 3-hydroxycarbofuran and 3-ketocarbofuran, the two metabolites of carbofuran isolated were less persistent in both the soils. Phorate persisted in laterite and alluvial soils up to 45 and 60 days, respectively depicting the half-life (T1/2) 9.7 and 11.5 days, respectively while the T1/2 of carbofuran for the said soils were 16.9 and 8.8 days, respectively. No metabolite of carbofuran was detected in soils after 30 days of incubation while phorate sulfone persisted in alluvial soil even after 60 days of application of the insecticide.  相似文献   

7.
The effects of metsulfuron-methyl, a sulfonylurea herbicide, on the wheat soil microorganisms were evaluated by the methods of microbial inoculation culture, and the activities of three enzymes were measured using the colorimetric method. The tolerant microorganisms that can resist 500 microg x g(-1) metsulfuron-methyl in the counting culture medium were studied specially. Metsulfuron-methyl distinctly inhibited the common aerobic heterotriphic bacteria, but the effects on common fungi and common actinomycete were not evident. In the meantime, the number of tolerant fungi increased greatly in the rhizosphere after the application of metsulfuron-methyl in contrast to the significant decrease of the amount of tolerant actinomycete. It indicates that fungi might turn into the dominant microbial type and actinomycete is the sensitive factor in the soil polluted by sulfonylurea residues. The population of aromatic compounds-decomposing bacteria, aerobic azotobacter, and nitrite bacteria all increased in the earlier period, but the aerobic azotobacter decreased rapidly in number 30 days later, and the amount of nitrite bacteria also showed a temporary decrease with time 15 days later. However, the denitrifying bacteria just began to increase significantly after the crops had grown for 50 days. The amount of sulfur-oxidizing bacteria gradually decreased with the growth of crops, and so were the sulfate-reducing bacteria after metsulfuron-methyl application. To all types of microorganisms, there were more microbes in rhizosphere samples than those in nonrhizosphere except aerobic azotobacter. It means the growth of wheat root system can stimulate the growth of most microorganisms. The activities of hydrogen peroxidase and polyphenol oxidase in soil samples after metsulfuron-methyl application were notably lower than those in the control, and the difference of the activities between the samples of rhizosphere and nonrhizosphere was evident. On the contrary, the activity of dehydrogenase was not inhibited by the application of metsulfuron-methyl, and the rhizosphere effect was not obvious either.  相似文献   

8.
The effects of 32 pesticides at two concentrations on acetylene reduction (non-symbiotic nitrogen fixation), nitrogen fixers, bacteria and fungi in an organic soil were assessed. None of the pesticide treatments suppressed C2H2 reduction as compared to controls. No significant inhibition of the population of non-symbiotic nitrogen fixers occurred. However, stimulatory effects were observed with treatments of fensulfothion, fonofos, oxamyl, DDR, TeloneR and Telone CR. Bacterial and fungal populations showed temporary declines but all recovered within 7 days to levels similar to or higher than those in the controls.  相似文献   

9.

The effects of metsulfuron-methyl, a sulfonylurea herbicide, on the wheat soil microorganisms were evaluated by the methods of microbial inoculation culture, and the activities of three enzymes were measured using the colorimetric method. The tolerant microorganisms that can resist 500 μ g·g?1 metsulfuron-methyl in the counting culture medium were studied specially. Metsulfuron-methyl distinctly inhibited the common aerobic heterotriphic bacteria, but the effects on common fungi and common actinomycete were not evident. In the meantime, the number of tolerant fungi increased greatly in the rhizosphere after the application of metsulfuron-methyl in contrast to the significant decrease of the amount of tolerant actinomycete. It indicates that fungi might turn into the dominant microbial type and actinomycete is the sensitive factor in the soil polluted by sulfonylurea residues. The population of aromatic compounds–decomposing bacteria, aerobic azotobacter, and nitrite bacteria all increased in the earlier period, but the aerobic azotobacter decreased rapidly in number 30 days later, and the amount of nitrite bacteria also showed a temporary decrease with time 15 days later. However, the denitrifying bacteria just began to increase significantly after the crops had grown for 50 days. The amount of sulfur-oxidizing bacteria gradually decreased with the growth of crops, and so were the sulfate-reducing bacteria after metsulfuron-methyl application. To all types of microorganisms, there were more microbes in rhizosphere samples than those in nonrhizosphere except aerobic azotobacter. It means the growth of wheat root system can stimulate the growth of most microorganisms. The activities of hydrogen peroxidase and polyphenol oxidase in soil samples after metsulfuron-methyl application were notably lower than those in the control, and the difference of the activities between the samples of rhizosphere and nonrhizosphere was evident. On the contrary, the activity of dehydrogenase was not inhibited by the application of metsulfuron-methyl, and the rhizosphere effect was not obvious either.  相似文献   

10.
The blood serum of cacao farmers and their domestic water sources were analyzed for insecticide residues in selected cacao growing communities of Southwestern Nigeria. The farmers were grouped into five exposure periods based on their years of involvement in insecticide application, viz, <5 years, 5-9 years, 10-14 years, 15-19 years and >20 years. The residue analyses revealed that 42 out of the 76 farmers had residues of diazinon, endosulfan, propoxur and lindane in their blood; and 47.6% out of these farmers belonged in the >20 years exposure duration period. About 34% of the farmers had diazinon with a mean concentration of 0.067 mg kg(-1), 29% endosulfan (mean=0.033 mg kg(-1)), 23% propoxur (mean=0.095 mg kg(-1)), and 17% lindane (mean=0.080 mg kg(-1)) in their blood. The residues of lindane, endosulfan and propoxur in all the exposure duration categories were found to be far below the no observable adverse effect level (NOAEL) while diazinon residues detected in the blood serum of the farmers in all the exposure duration categories exceeded the NOAEL of 0.02 mg kg(-1) for the insecticide. The study also revealed that the sources of drinking water had been contaminated with dazinon and propoxur in some of the farmers' localities; and the concentrations of the insecticides exceeded the acceptable daily intake (ADI). It is concluded that cacao farmers in Southwestern Nigeria may have been occupationally exposed due to insecticide application for mirid control in their cacao plantations; and the exposure at times is of such magnitude as to be hazardous to the farmers and their respective communities.  相似文献   

11.
Pandey S  Singh DK 《Chemosphere》2006,63(5):869-880
Chlorpyrifos (O,O-diethyl O-3,5,6-trichloro-2 pyridyl phosphorothioate) 20 EC and Quinalphos (O,O-diethyl O-quinoxalin-2-yl phosphorothioate) 25 EC, were applied in groundnut (Arachis hypogaea L.) field as seed treatment at 25 ml/kg and soil treatment at 4 l/ha in 1998 and 1999. The residues of these insecticides were monitored during the entire crop season and their effect on the soil enzymes dehydrogenase, phosphomonoesterase and arginine deaminase were studied. Ninety nine percent of chlorpyrifos residues were dissipated within 60 days from seed treated soil and 98% dissipation was observed in soil treated field for the same days. Its half lives in seed treated soil were 8 days and 7 days and in soil treated field were 9.2 days in and 7.5 days in 1998 and 1999 respectively. Dissipation of quinalphos in comparison to chlorpyrifos was slow both in seed treated and soil treated field. Eighty seven percentage to 92% dissipation of quinalphos residues were observed from seed treated soil and 98% residues were dissipated from soil treated field within 75 days. Its half lives in seed treated soil were 20 days and 18 days and in soil treated field, its half lives were 13 days and 17 days 1998 and 1999 respectively. Inhibition in dehydrogenase activity followed by recovery was observed both in seed and soil treatments with chlorpyrifos. An inhibition of 17.2% was estimated after 60 days of seed treatment in comparison to control. Dehydrogenase activity was significantly reduced to 63% after 15 days of quinalphos seed treatment in comparison to control in 1998. Similar trends were observed in 1999. A significant inhibition in dehydrogenase activity was observed after soil treatment both in 1998 and 1999. Phosphomonoesterase activities were significantly inhibited upto 25.2% as compared to the control, on the 15th day of chlorpyrifos seed treatment in 1998 and similarly, after one day of treatment in 1999. Quinalphos inhibited the phosphomonoesterase activity till the end of the experimental period in the soil treated fields, whereas recovered within 30-60 days of treatment in the seed treated fields. Arginine deaminase activity was significantly stimulated within one day after chlorpyrifos seed and soil treatments in both years. The activity was almost threefold higher on the 30th and the 15th day of soil treatment in 1998 and 1999, respectively. A temporary inhibition of arginine deaminase activity was observed after quinalphos treatment. It was observed that in most of cases insecticides have temporary inhibitory effect on soil enzymes. However, inhibition was smaller in seed treated soil than in direct soil treatment.  相似文献   

12.
Abstract

The effects of 32 pesticides at two concentrations on acetylene reduction (non‐symbiotic nitrogen fixation), nitrogen fixers, bacteria and fungi in an organic soil were assessed. None of the pesticide treatments suppressed C H reduction as compared to controls. No significant inhibition of the population of non‐symbiotic nitrogen fixers occurred. However, stimulatory effects were observed with treatments of fensulfothion, fonofos, oxamyl, DDR , TeloneR and Telone CR . Bacterial and fungal populations showed temporary declines but all recovered within 7 days to levels similar to or higher than those in the controls.  相似文献   

13.
Abstract

A laboratory study was conducted to examine the effects of five insecticides on microbial and enzymatic activities important to fertility in sandy soil. Cyfluthrin significantly increased bacterial populations after 2 wks. Imidacloprid showed an inhibitory effect on fungal numbers after 2 wks incubation while the others did not affect fungal population. No inhibitory effect was observed on nitrification of soil indigenous nitrogen. All treatments stimulated S‐oxidation after 4 wks. With the exception of cyfluthrin and imidacloprid after 2 wks, denitrification in sandy soil indicated that all treatment inhibited denitrification throughout the experiment. No inhibitory effects on biomass‐c were observed during 2‐wk periods. An inhibitory effect was observed on amylase after 1 wk while significant recovery was observed after 3 wks. With the exception of HgCl2, no effect was observed on reducing sugar formation for 2 wks with all treatments. Formazan formation resulting from dehydrogenase activity was significantly greater with tebupirimphos and Aztec for 1 wk. All treatments supressed phosphatase activity for 1 wk, while none of the treatments suppressed phosphatase activity after 2 wks. Amitraz, tebupirimphos and Aztec inhibited urease activity for 1 wk. With the exception of tebupirimphos, no treatments affected N2‐fixation in soil. Although short‐lived inhibitory effects on activities of microbes and enzymes were caused by the insecticides, the soil indigenous microbes can tolerate the chemicals used for control of soil pests.  相似文献   

14.
An experiment was conducted in microplots (4 m x 4 m) with two insecticides, phorate and carbofuran at rates of 1.5 and 1.0 kga.i.ha(-1) respectively, to investigate its effect on the population and distribution of bacteria, actinomycetes and fungi as well as the persistence of the insecticidal residues in rhizosphere soils of rice (Oryza sativa L., variety IR-50). Application of the insecticides stimulated the population of bacteria, actinomycetes and fungi in the rhizosphere soils, and the stimulation was more pronounced with phorate as compared to carbofuran. Both the insecticides did not have marked effect on the numbers of Streptomyces and Nocardia in the rhizosphere soils. However, the growth of Bacillus, Escherichia, Flavobacterium, Micromonospora, Penicillium, Aspergillus and Trichoderma with phorate and that of Bacillus, Corynebacterium, Flavobacterium, Aspergillus and Phytophthora with carbofuran were increased. On the other hand, the numbers of Staphylococcus, Micrococcus, Fusarium, Humicola and Rhizopus under phorate and Pseudomonas, Staphylococcus, Micrococcus, Klebsiella, Fusarium, Humicola and Rhizopus under carbofuran were inhibited. Both the insecticides persisted in the rhizosphere soil for a short period of time and the rate of dissipation of carbofuran was higher than that of phorate in the soil depicting the half-life (T1/2) 9.1 and 10.4 days, respectively.  相似文献   

15.
Enhanced biodegradation of carbofuran (2, 3-dihydro-2, 2 dimethyl-7-benzofuranyl methyl carbamate) is an economically significant, but poorly understood, microbial phenomenon in soil. A series of experiments was conducted to examine short term changes in soil bacterial populations stimulated by carbofuran application at field rates. In the field experiment, commercially formulated carbofuran and butylate (S-ethyl diisobutyl carbamothioate) were applied at 5.6 kg ai ha-1 and 8.4 kg ai ha-1, respectively, on a soil (Putnam silt loam) exhibiting enhanced degradation of carbofuran. In laboratory studies, technical grade carbofuran (20 mg kg-1 soil) was applied to samples of the field soil. Bacterial populations were estimated using non-selective (tryptic soy agar) and selective media containing carbofuran or butylate. Largest population increases in pesticide-treated soil were observed between 7 and 15 days after treatment (DAT) compared to populations in non-treated soil. Significant increases (P less than 0.05) in total bacterial populations and presumed carbofuran-degraders due to carbofuran application were associated with increased populations of Pseudomonas spp. and Flavobacterium spp. Application of carbofuran appeared to provide a competitive advantage to these species over actinomycetes persisting beyond 20 DAT. Growth responses of bacteria to carbofuran in the Putnam soil were compared to those in a native prairie soil (Mexico silt loam), which exhibited a much slower rate of carbofuran degradation. Bacterial population response to carbofuran was measurable, but small and short-lived. Perpetuation of the enhanced degradation phenomenon may lie in a persistent pesticide-induced competitive advantage given to a very small segment of the microbial population. This advantage may not be detectable after 20 days using conventional plating techniques.  相似文献   

16.
The effects of pesticides (a herbicide and a fungicide) on the microbial community structure and their activity were analyzed in soil from four alpine pasture grasslands in Slovakia. Specifically, the effects of the herbicide, Gesagard (prometryn active ingredient), and fungicide, Fundazol 50 WP (benomyl active ingredient), on the microbial respiration activity (CO2 production), the numbers of selective microbial physiological groups (CFU.g?1) and the structure (relative abundance) of soil microbial communities [(phospholipid fatty acid (PLFA)] were analyzed under controlled laboratory conditions. All treatments including the treatments with pesticides increased (statistically significantly) the production of CO2 in all fields during 21 days of incubation and posed a statistically insignificant negative influence on the numbers of the observed physiological groups of microorganisms. The significantly negative influence was evaluated only in the numbers of two physiological groups; spores of bacteria utilizing organic nitrogen and bacteria, and their spores utilizing inorganic nitrogen. A shift in the microbial composition was evident when the PLFA patterns of samples from different sites and treatments were compared by the Principal Component Analysis (PCA). According to the second component PCA 2 (15.95 %) the locations were grouped into two clusters. The first one involved the Donovaly and Dubakovo sites and the second one contained the Velka Fatra and Mala Fatra locations. The PLFA composition of the soils showed important changes after the treatment with pesticides according to PCA 1 (66.06 %). Other treatments had not had a significant effect on the soil microbial community with the exception of the population of fungi. The lower relative abundance (significant effect) of Gram-positive bacteria, actinomycetes and general group of bacteria were determined in samples treated by the herbicide Gesagard. The application of fungicide Fundazol decreased (statistically significantly) the relative abundance of actinomycetes and general group of bacteria and paradoxically increased the population of fungi.  相似文献   

17.
One hundred days after field-application of fonofos as bands under the onion seed, 39 to 59% of that material was present in 3 moderately humified organic soils of pH varying from 5.4 to 6.7. In a low humified organic soil, only 21 to 24% of the applied fonofos remained. Thus humus enhanced the persistence of fonofos and curtailed the stimulating effect of fonofos on soil microbial populations. An assessment of low damage caused by onion maggot was found in a poorly humified soil with an even higher natural infestation than in a moderately humified soil. The effects of fonofos in other soils and of the low rate of carbofuran applied to four different types of soils on the numbers of fungi, bacteria, and actinomycetes were difficult to assess.  相似文献   

18.
In the present study, a new fungal strain capable of imidacloprid degradation was isolated from agricultural wastewater drain. The fungal strain of YESM3 was identified as Aspergillus terreus based on ITS1-5.8S rDNA-ITS2 gene sequence by PCR amplification of a 500 bp sequence. Screening of A. terreus YESM3 to the insecticide imidacloprid tolerance was achieved by growing fungus in Czapek Dox agar for 6 days at 28°C. High values (1.13 and 0.94 cm cm?1) of tolerance index (TI) were recorded at 25 and 50 mg L?1 of imidacloprid, respectively in the presence and absence of sucrose. However, at 400 mg L?1 the fungus did not grow. Effects of the imidacloprid concentration, pH, and inoculum size on the biodegradation percentage were tested using Box–Behnken statistical design and the biodegradation was monitored by HPLC analysis at different time intervals. Box–Behnken results indicated that optimal conditions for biodegradation were at pH 4 and two fungal discs (10 mm diameter) in the presence of 61.2 mg L?1 of imidacloprid. A. terreus YESM3 strain was capable of degrading 85% of imidacloprid 25 mg L?1 in Czapek Dox broth medium at pH 4 and 28°C for 6 days under static conditions. In addition, after 20 days of inoculation, biodegradation recorded 96.23% of 25 mg L?1 imidacloprid. Degradation kinetics showed that the imidacloprid followed the first order kinetics with half-life (t50) of 1.532 day. Intermediate product identified as 6-chloronicotinic acid (6CNA) as one of the major metabolites during degradation of imidacloprid by using HPLC. Thus, A. terreus YESM3 showed a potential to reduce pollution by pesticides and toxicity in the effected environment. However, further studies should be conducted to understand the biodegradation mechanism of this pesticide in liquid media.  相似文献   

19.
The objectives of this study were to determine the persistence of phosalone (S-6-chloro-2,3-dihydro-2-oxobenzoxazol-3-ylmethyl O, O-diethyl phosphorodithioate) and diazinon (O,O-diethyl O-2-isopropyl-6-methylpyrimidin-4-yl phosphorothioate) residues in fresh and baled alfalfa under field conditions. Plots of alfalfa were sprayed with each insecticide. Fresh alfalfa was sampled up to 20 days after treatment, and dried alfalfa was sampled up to 25 weeks after baling. Samples were analyzed for residues using high performance liquid chromatography (HPLC) equipped with a UV detector. The half-lives of diazinon and phosalone in fresh alfalfa were 1.8 and 3.3 days, respectively. In baled alfalfa the half-life of diazinon and phosalone were 2.8 and 16.7 weeks, respectively. No diazinon residues were detected in baled alfalfa, sampled after week 9, although the concentration of phosalone found at week 25 was 5.51 mg/kg.  相似文献   

20.
The use of biopurification systems can mitigate the effects of pesticide contamination on farms. The primary aim of this study was to evaluate the effect of pesticide dissipation on microbial communities in a pilot biopurification system. The pesticide dissipation of atrazine, chlorpyrifos and iprodione (35 mg kg?1 active ingredient [a.i.]) and biological activity were determined for 40 days. The microbial communities (bacteria, actinomycetes and fungi) were analyzed using denaturing gradient gel electrophoresis (DGGE). In general, pesticide dissipation was the highest by day 5 and reached 95%. The pesticides did not affect biological activity during the experiment. The structure of the actinomycete and bacterial communities in the rhizosphere was more stable during the evaluation than that in the communities in the control without pesticides. The rhizosphere fungal communities, detected using DGGE, showed small and transitory shifts with time. To conclude, rhizosphere microbial communities were not affected during pesticide dissipation in a pilot biopurification system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号