首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Movement rate, oxygen consumption, and respiratory tree ammonium concentration were measured in situ in the holothurians Pearsonothuria graeffei and Holothuria edulis in the Agan-an Marine Reserve, Sibulan, Philippines (9°20′30″N, 123°18′31″E). Measurements were made both day and night for both species during April–July 2005. P. graeffei had significantly higher movement rate during the day than at night (1.14 and 0.27 m h−1, respectively; three-way ANOVA, P < 0.05) while H. edulis had higher movement rate at night compared to the day (0.83 and 0.07 m h−1, respectively), spending the daylight hours sheltering under coral. More than 80% of H. edulis had movement rate of zero during the day. Oxygen consumption of P. graeffei was significantly higher during the day than at night (1.61 and 0.83 μmol O2 g−1 h−1, respectively; two-way ANCOVA, P < 0.05), but the reduction at night was not as pronounced as the reduction in movement. H. edulis had a 75% reduction in oxygen consumption during the day compared to night (0.51 and 1.96 μmol O2 g−1 h−1, respectively), matching this species’ reduced movement rates during the day. Ammonium concentration in water withdrawn from the respiratory trees of P. graeffei during the day (12.0 μM) was three times higher than in respiratory tree water sampled at night (4.3 μM) and 15 times higher than ambient seawater (0.8 μM; three-way ANOVA, P < 0.05). Ammonium concentration in the respiratory tree water of H. edulis was six times higher at night (14.6 μM) than during the day (2.2 μM) and 16 times higher than that of ambient seawater (0.9 μM). Even though H. edulis and P. graeffei are found within the same coral reef environment, they may affect different substrates and reef organisms due to their different habitats and distinct but opposite diel cycles.  相似文献   

2.
Energy budgets were calculated for individuals of the sea anemone Anthopleura elegantissima (Brandt), collected in 1981 and 1982 from Bodega Harbor, California, USA. Rates of ammonium excretion were measured in high-and low-intertidal, symbiotic and aposymbiotic sea anemones within 24 h of collection. Among symbiotic and aposymbiotic individuals, no differences in excretion rate were found on the basis of intertidal height. However, rates of ammonium excretion in aposymbiotic anemones (2.14 mol NH + 4 g-1 h-1) were significantly higher than in symbiotic ones (0.288 mol NH + 4 g-1 h-1). Rates of excretion were used with estimated rates of oxygen uptake to calculate nitrogen quotients (NQ). NQ and RQ values from the literature were used to calculate an oxyenthalpic equivalent [501 kJ (mol O2)-1 for R+U], and mass proportions of protein (54%), carbohydrate (44%) and lipid (2%) catabolized during routine metabolism in this species 24 h after feeding. Integrated energy budgets of these experimental anemones were calculated from data on ingestion, absorption and growth, and estimates of translocated energy from the symbiotic algae. Contribution of zooxanthellae to animal respiration based on translocation=90% and RQ=0.97 are 41 and 79% in high-and low-intertidal anemones, respectively. Calculated scope for growth is greater than directly measured growth in both high-and low-intertidal individuals. The deficit, estimated as 30% of assimilated energy in high-intertidal anemones, is attributed to unmeasured costs (specific dynamic effect) or production (mucus). Low-intertidal anemones lost mass during the experiment, implying that the magnitude of the deficit was greater in these anemones than in upper intertidal individuals. Anemones from both shore levels lost zooxanthellae during the experiment, which contributed to energy loss since the contribution of the zooxanthellae is greater in low-intertidal anemones. Scope for growth is preserved in high-intertidal anemones (29% of assimilated energy) because metabolic demands are lower due to aerial exposure, and prey capture rate is higher compared to lowshore anemones. Although possibly underestimated, lower scope for growth in low-shore anemones may result from continuous feeding and digestion processes that are less efficient than those of periodically feeding high-intertidal anemones.  相似文献   

3.
The ability of endosymbioses between anthozoans and dinoflagellate algae (zooxanthellae) to retain excretory nitrogen and take up ammonium from seawater has been well documented. However, the quantitative importance of these processes to the nitrogen budget of such symbioses is poorly understood. When starved symbiotic Anemonia viridis were incubated in a flow-through system in seawater supplemented with 20 μM ammonium for 91 d under a light regime of 12 h light at 150 μmol photons m−2 s−1 and 12 h darkness, they showed a mean net growth of 0.197% of their initial weight per day. Control anemones in unsupplemented seawater with an ammonium concentration of <1 μM lost weight by a mean of 0.263% of their initial weight per day. Attempts to construct a nitrogen budget showed that, over a 14 d period, ≃40% of the ammonium taken up could be accounted for by growth of zooxanthellae. It was assumed that the remainder was translocated from zooxanthellae to host. However, since the budget does not balance, only 60% of the growth of host tissue was accounted for by this translocation. The value for host excretory nitrogen which was recycled to the symbionts equalled that taken in by ammonium uptake from the supplemented seawater, indicating the importance of nitrogen retention to the symbiotic association. Received: 23 December 1997 / Accepted: 12 September 1998  相似文献   

4.
Colonies of the temperate coral Astrangia danae occur naturally with and without zooxanthellae. Basal nitrogen excretion rates of nonsymbiotic colonies increased with increasing feeding frequency [average excretion rate was 635 ng-at N (mg-at tissue-N)-1 h-1]. Reduced excretion rates of symbiotic colonies were attributed to N uptake by the zooxanthellae. Nitrogen uptake rates of the zooxanthellae averaged 8 ng-at N (106 cells)-1 h-1 in the dark and 21 ng-at N (106 cells)-1 h-1 at 200 Ein m-2 s-1. At these rates the zooxanthellae could provide 54% of the daily basal N requirement of the coral if all of the recycled N was translocated. Basal respiration rates were 172 nmol O2 cm-2 h-1 for starved colonies and 447 nmol O2 cm-2 h-1 for colonies fed three times per week. There were no significant differences between respiration rates of symbiotic and nonsymbiotic colonies. N excretion and respiration rates of fed (symbiotic and nonsymbiotic) colonies increased greatly soon after feeding. N absorption efficiencies decreased with increasing feeding frequency. A N mass balance, constructed for hypothetical situations of nonsymbiotic and symbiotic (3×106 zooxanthellae cm-2) colonies, starved and fed 15 g-at N cm-2wk-1, showed that the presence of symbionts could double the N growth rate of feeding colonies, and reduce the turnover-time of starved ones, but could not provide all of the N requirements of starved colonies. Rates of secondary production, estimated from rates of photosynthesis and respiration were similar to those estimated for reef corals.  相似文献   

5.
The region of Madang, Papua New Guinea, has the highest reported species diversity of both anemonefishes (nine species) and their host anemones (ten species). To determine which factors may allow so many anemonefish species to coexist at this location, we studied their patterns of distribution, abundance, and recruitment. Population surveys at three replicate reef sites within four zones situated at varying distances from the mainland (nearshore, mid-lagoon, outer barrier, and offshore) indicated that each species of host anemone and anemonefish lived within a particular range of zones. Each species of anemonefish lived primarily with one species of host. Anemonefish species that lived with the same host species usually had different distribution patterns among zones (e.g., Amphiprion percula occupied Heteractis magnifica in nearshore zones, while A. perideraion occupied H. magnifica in offshore zones). Monitoring of natural populations showed that there were few changes (losses or recruitment) in the number or species of fishes associated with each individual anemone over periods ranging from 3 to 9 months. Recruitment was monitored on anemones with and without residents (resident fishes were removed) within each of three zones (nearshore, mid-lagoon, outer barrier). Significantly more anemonefishes recruited to anemones without resident fishes than to anemones with resident fishes. Each anemonefish species recruited to particular host species and zones. The distribution and abundance of the recruits of each fish species among zones were positively correlated with the distribution and abundance of resident fishes in the benthic habitat. This suggests that the spatial patterns of recruitment among zones strongly determined the distribution and abundance patterns of the benthic populations, and they were not the result of post-recruitment mortality or movement. Coexistence of the nine anemonefish species on the limited anemone resource was considered possible because of niche differentiation (i.e., differences in host and habitat utilization among zones), and the ability of two small species (i.e., Amphiprion sandaracinos and A. leucokranos) to cohabit individual anemones with other anemonefish species. Received: 29 July 1999 / Accepted: 1 September 2000  相似文献   

6.
We report an extraordinary depth range for Leptoseris fragilis (Milne Edwards and Haime), a reef building coral of the Red Sea living in cytosymbiosis with zooxanthellae. The coral harbours an as yet unknown pigment system. We suggest that the heterotrophic host — the coral — provides its photoautotrophic symbionts with additional light. The supplementary light is provided by host pigments which transform light of short wavelengths into suitable wavelengths for photosynthesis, thus amplifying and increasing the transfer of photoassimilates from the zooxanthellae to the host.  相似文献   

7.
The biology of symbiotic scleractinians is profoundly influenced by their intracellular zooxanthellae, and many studies have focused on the mechanistic basis of this influence. This has usually been accomplished by examining the metabolism of zooxanthellae under physical conditions measured in the open reef and assumed to be similar to conditions in hospite. Recent advances in the measurement of conditions near and within coral tissue suggests that this assumption may result in substantial errors. To address this possibility, the role of water flow in determining oxygen saturation adjacent to the tissue of Dichocoenia stokesii was investigated, and the effect of these measured oxygen saturations on the respiration and photosynthesis of zooxanthellae isolated from the same species was quantified. Using a microelectrode (700 μm diam), we measured oxygen saturations above (≤4 mm) the tissue in two flow speeds over 24 h periods in a flume receiving sunlight at in situ levels. The results were used as a proxy for ecologically relevant intracellular oxygen saturations, which were applied to zooxanthellae in vitro to assess their effect on symbiont metabolism. Microenvironment oxygen saturations (% air saturation) ranged from 74–159% in slow flow (2.7 cm s−1) to 88–110% in faster flow (7.5 cm s−1) over day–night cycles. Therefore, the metabolic rates of zooxanthellae were measured at 50 to 54% (hypoxia), 98 to 102% (normoxia) and 146 to 150% (hyperoxia) oxygen saturation. Oxygen saturation significantly affected the metabolism of zooxanthellae, with gross photosynthesis increasing 1.2-fold and dark respiration increasing 2-fold under hyperoxia compared to hypoxia. These results suggest that the metabolism of zooxanthellae in hospite is affected markedly by their microenvironment which, in turn, is influenced by flow-mediated mass transfer. Received: 13 July 1998 / Accepted: 30 April 1999  相似文献   

8.
Mucus released by scleractinian corals can act as an important energy and nutrient carrier in coral reef ecosystems, and a distinct isotopic signature would allow following the fate of this material. This study investigates the natural C and N stable isotopic signatures of mucus released by four scleractinian coral genera (Acropora, Fungia, Pocillopora and Stylophora) in comparison with those of suspended particulate organic matter (POM) in seawater of a Northern Red Sea fringing coral reef near Aqaba, Jordan. The natural δ13C and δ15N signatures of coral mucus differed significantly from seawater POM for the majority of seasonal comparisons, but were inappropriate for explicit tracing of mucus in the coral reef food web. Thus, a labeling technique using stable isotope tracers (13C and 15N) was developed that produced δ13C values of up to 122 ± 5‰ (mean ± SE) and δ15N of up to 2,100 ± 151‰ in mucus exuded by Fungia corals. 13C and 15N-enriched compounds were rapidly (within 3 h) and light-dependently transferred from the endosymbiotic zooxanthellae to the mucus-producing coral host. The traceability of 15N-labeled mucus was examined by evaluating its uptake and potential utilization by epizoic acoelomorph Waminoa worms naturally occurring on a range of scleractinian coral taxa. This tracer experiment resulted in uptake of coral mucus by the coral-associated acoelomorphs and further demonstrated the possibility to trace stable isotope-labeled coral mucus by revealing a new trophic pathway in coral reef ecosystems.  相似文献   

9.
During commercial handling of Nephropsnorvegicus (L.) there are a number of situations when the prawns may be exposed to very high ambient ammonia levels. These experiments evaluated the effects of increased levels of ambient total ammonia (TA = NH3 + NH4 +) on␣blood ammonia, ammonia efflux rates and on the cardio-ventilatory performance of N. norvegicus. When prawns were taken from <1 to 2000 μmol TA l−1 medium, blood TA concentrations increased rapidly for the first 2 h but tended to drop thereafter. Original blood TA levels were restored 6 h after the prawns were transferred back from seawater containing 2000 to <1 μmol TA l−1. Sudden exposure to 500, 1000, 2000 or 4000 μmol TA l−1 medium induced blood TA concentrations to increase respectively to 50, 30, 33 and 36% of external concentrations (normally, internal TA values are much higher than external levels). Immediately after transfer back to seawater with low ammonia concentration ( <1 μmol TA l−1), excretion rates were higher than those of control prawns, and the absolute amounts of TA excreted were considerably higher than those calculated to have accumulated in the haemolymph. Heart rate (HR) and scaphognathite rate (SR) were not altered when prawns were subjected to sudden alterations in ambient ammonia ( <1 to 2000 to <1 μmol TA l−1). When water ammonia concentrations were altered more gradually, both rates increased, but only at 4000 μmol TA l−1. These results show that N. norvegicus is able to remove ammonia from the haemolymph and/or transform ammonia into some other substance when subjected to increased levels of ambient ammonia. Possible mechanisms involved (e.g. active transport across the gills; storage in some other tissue; glutamate synthe sis) are discussed. Received: 20 May 1996 / Accepted: 1 July 1996  相似文献   

10.
The stable isotope ratio 12C/13C was used to investigate the source of carbon in free-living barnacles and in coral-inhabiting barnacles from the Red Sea. The δ13C of most of the barnacles collected on the open shore ranges between −17.5 and −19.7‰, indicating relative enrichment of light carbon originating from the open-sea phytoplankton. Those collected in closed habitats showed heavier isotopic composition. The δ13C of the coral-inhabiting barnacles ranges from −14.1 to −16.7‰, suggesting that the carbon contribution of open-sea plankton to these barnacles is less important than it is to free-living barnacles. We hypothesize that coral organic matter and zooxanthellae expelled by the host coral contribute carbon to the barnacle, and that a mixture of this relatively heavy carbon with carbon from other sources is responsible for the high values of δ13C in coral barnacles. Received: 28 February 1997 / Accepted: 16 September 1997  相似文献   

11.
Seasonal variations and the effect of reproductive development on resource acquisition by two intertidal fucoid species, the iteroparous Fucus serratus L. and the semelparous Himanthalia elongata (L.) S. F. Gray were examined. The oxygen-exchange characteristics of vegetative apical tissue of both non-fertile and fertile plants and receptacle tissue were compared at monthly intervals throughout reproductive development. Respiratory rates in non-fertile F. serratus varied seasonally between 1.5 and 8.0 μmol g−1 fresh wt h−1; in fertile plants the receptacle had a significantly lower respiratory rate than the vegetative tissue. The respiratory rate of the vegetative button of fertile H. elongata displayed less seasonal variation and was lower than that of the receptacle, which varied from a maximum of 9.5 μmol g−1 fresh wt h−1 at receptacle initiation in October to a minimum of 2.0 μmol g−1 fresh wt h−1 in February. The maximum photosynthetic rate (P max) of non-fertile plants of both species did not vary in a distinct seasonal manner (∼60 μmol g−1 fresh wt h−1 for F. serratus and ∼12 μmol g−1 fresh wt h−1 for H. elongata). In fertile plants, the P max of the receptacle tissue was (∼50% lower in F. serratus, and at its peak three times higher in H. elongata, than that of vegetative tissue. The stable carbon-isotope ratio (δ13C) did not differ between different tissue types in F. serratus, but values did vary seasonally, being less negative in the summer than in the winter (−13.5‰ compared to −18‰). The receptacle tissue of H. elongata also displayed a distinct seasonal variation in δ13C values (−12‰ in summer, −16‰ in winter), whilst the δ13C of the vegetative button did not vary seasonally. The rate of uptake of inorganic nitrogen by the vegetative thallus was lower in H. elongata than in F. serratus. The receptacle tissue of F. serratus had lower uptake rates than the vegetative tissue, whilst the uptake rate by H. elongata receptacle tissue was higher than that of the vegetative button. Received: 14 March 1997 / Accepted: 22 April 1997  相似文献   

12.
Surface tissue of the reef coral Pocillopora capitata contained approximately 34% lipid on a dry weight basis. Of this, 75% was storage lipid (wax ester and triglyceride) and 25% structural (phospholipid, galactolipid, etc.). Based on chlorophyll a: lipid ratios of intact coral and isolated zooxanthellae, it was determined that over 90% of the storage lipid resided in the host tissue. One half of the structural lipids was found in the host and the other in the symbiotic algae. Gentle fractionation of coral tissue indicated that zooxanthellae possessed less than 14% of the total coral protein. Coral tips and isolated zooxanthellae were incubated with sodium acetate-1-14C in light and dark to obtain lipogenic rates and proportions of fatty acids and lipid classes synthesized. The rate of lipid synthesis from acetate-1-14C by intact coral was stimulated three-fold in the light (1200 lux), which indicated that the majority of coral lipogenesis occurred in the zooxanthellae. Intact coral triglycerides contained ca. 68% of the 14C-activity and wax esters ca. 21%. Zooxanthellae isolated by the Water Pik technique synthesized negligible amounts of wax ester, which implied that wax ester synthesis was a property of the animal tissue. Isolated zooxanthellae and intact coral synthesized identical triglyceride fatty acids from acetate-1-14C. This study provides evidence for a carbon cycle between host and symbiont whereby the zooxanthellae take up host-derived carbon (probably in the form of acetate), synthesize fatty acids using their photosynthetically derived energy, and return the lipid to the host where it appears as wax ester and triglyceride.  相似文献   

13.
Loss of zooxanthellae (dinoflagellate Symbiodinium) from corals will sometimes lead to mass mortality of corals. To detect and quantify Symbiodinium released from corals, we developed a zooxanthellae “trap” and a quantitative PCR (qPCR) system with Symbiodinium clades A–F-specific primer sets. The trap was attached to a branch or the surface of several wild stony corals, and the water samples within the traps, including released Symbiodinium, were subjected to qPCR. All tested corals released clade C Symbiodinium at estimates of ~5,900 cells h−1 cm−2 of coral surface. Although all tested Pocillopora eydouxi harboured both clades C and D, some of these colonies released only clade C or released a lesser amount of clade D than that in the tissues. Our Symbiodinium quantification system revealed that wild hermatypic corals constantly release Symbiodinium to the environment. Our result suggests that some corals may discharge certain clades of Symbiodinium alternatively.  相似文献   

14.
The effects of several environmental variables on net nitrate uptake by the scleractinian coral Diploria strigosa were investigated under controlled flow conditions. D. strigosa exhibited nitrate uptake rates ranging from 1 to 5 nmol cm−2 h−1 at ambient concentrations of 0.1–0.3 μM that are typical of oligotrophic reefs such as Bermuda. Net uptake ceased at approximately 0.045 μM. The uptake was positively correlated with concentration up to a saturation concentration of approximately 3 μM. The uptake was also positively correlated with water velocity at 1 μM, but not at 6 μM, suggesting diffusional limitation at low concentrations and kinetic limitation at higher concentrations. Nitrate uptake by D. strigosa was not affected by light intensity or time of day, but was almost completely inhibited by 48 h exposure to ammonium levels found on many reefs.  相似文献   

15.
Field studies were conducted in Johnson Key Basin, Florida Bay, USA from September 2002 through September 2004 to examine physiological, ecological, and behavioral characteristics of the gulf toadfish, Opsanus beta (Goode and Bean in Proc US Natl Mes 3:333–345, 1880), in relation to nitrogen metabolism, habitat usage, and spawning. Fish collected 5 cm above sediments in experimental shelters (epibenthic) were compared with those collected by throw traps which were found on or burrowing within sediments. The relationship between microhabitat ammonia and urea excretion, as determined by the enzymatic activity of glutamine synthetase (GS), was examined. The hypothesis tested was that O. beta occupying epibenthic nests were less ureotelic with lower GS activities than non-nesting individuals on/in sediments, due to a decreased environmental ammonia burden. Porewater total ammonia (T Amm) concentrations at a sediment depth of 5 cm, i.e., the approximate depth of burrowing toadfish, ranged from 0 to 106.5 μmol N l−1 while the pH ranged from 7.48 to 9.14. There was a weak but significant correlation between environmental ammonia (NH3) concentration and hepatic GS activity for epibenthic toadfish (P < 0.001, r 2 = 0.10), but not for burrowing toadfish. Mean urea-N and T Amm concentrations within shelters occupied by toadfish (n = 281) were 9.8 ± 0.83 μmol N l−1 and 13.0 ± 0.7 μmol N l−1, respectively. As predicted, hepatic GS activity was significantly lower in epibenthic toadfish captured in shelters (4.40 ± 0.24 μmol min−1 g−1; n = 281) as compared to individuals on/in sediments (6.61 ± 0.47 μmol min−1 g−1; n = 128). Glutamine synthetase activity generally peaked in March (spawning season) and was lowest in July. Gender differences in hepatic and branchial GS activity were also found during the spawning season, which is attributable to the fact that males brood and guard offspring in their epibenthic nests while females often rest on or burrow into the sediments. Finally, hepatic and branchial GS appeared to have different patterns of enzymatic activity suggesting functional differences in gene expression.  相似文献   

16.
An assessment of exposure to mercury in Changchun city has been undertaken. We estimated Hg exposure to members of the general population based on currently available information and our research. We also studied the Hg concentrations in scalp hair of adults. Adults have an estimated intake of all Hg species via all routes of 6.780 μg day−1 (excluding dental amalgam), which equates to an absorbed dose of 1.718 μg day−1. Fish consumption was the most important exposure route (12% of intake, 43% of absorbed dose). Furthermore, air, cereals and vegetables were important exposure routes, and these exposure were estimated for absorbed dosed at 0.296, 0.209 and 0.318 μg day−1, respectively. The mean Hg concentration in hair was 0.448 μg g−1 (range 0.092–10.463 μg g−1). Hg concentration in the hair of males was 0.422 μg g−1 (0.105–2.665 μg g−1), and was 0.474 μg g−1(0.092–10.463 μg g1) in the hair of females. Neither place of residence nor age had any significant effect on hair Hg concentrations.  相似文献   

17.
W. Admiraal 《Marine Biology》1977,41(4):307-315
A carbon-14 assimilation method was used to determine action spectra and photosynthesis versus irradiance (P versus I) curves of natural populations of phytoplankton and zooxanthellae from a coral reef fringing Lizard Island in the Australian Barrier Reef. The action spectra were related to the phytoplankton species composition. The curves showed shade adaptation in phytoplankton from deeper waters and in the zooxanthellae. Rates of photosynthesis of zooxanthellae were shown to be highly but variably dependent on their host organisms. Photosynthetic production by zooxanthellae was about 0.9 gC m-2 day-1, which is about three times higher than phytoplankton production in the waters close to the reef.  相似文献   

18.
The sea anemone Anthopleura elegantissima hosts two phylogenetically different symbiotic microalgae, a dinoflagellate Symbiodinium (zooxanthellae, ZX) and a chlorophyte (zoochlorellae, ZC). The photosynthetic productivity (P), respiration (R), and contribution of algal carbon translocated to the host (CZAR) in response to a year’s seasonal ambient changes of natural light and temperature are documented for both ZX- and ZC-bearing anemones. Light and temperature both affect photosynthesis, respiration, and CZAR, as well as various algal parameters; while there are evident seasonal differences, for the most part the relative effects on P, R, and CZAR by the two environmental variables cannot be determined. Net photosynthesis (Pn) of both ZX and ZC was significantly higher during spring and summer. During these seasons, the Pn of ZX was always greater than that of ZC. Regardless of algal symbiont, anemone respiration (R) was significantly higher during the spring and summer. The annual net carbon fixation rate of anemones with ZX and ZC was 325 and 276 mg C anemone−1 year−1, respectively, which translates to annual net community productivity rates of 92 and 60 g C m−1 year−1 for anemones with ZX or ZC, respectively. CZAR did not show a clear relationship with season; however the CZAR for ZX was always significantly greater than for ZC. Lower ZX growth rates, coupled with higher photosynthetic rates and higher CZAR estimates, compared to ZC, suggest that if A. elegantissima is simply carbon limited, ZX-bearing anemones should be the dominant symbiont in the field. However ZC-bearing anemones persist in low light and reduced temperature microhabitats, therefore more than the translocation of carbon from ZC must be involved. Given that global climate change will increase water temperatures, the potential for latitudinal range shifts of both ZC and ZX (S. californium and muscatinei) might be used as biological indicators of thermal shifts in the littoral zone of the Pacific Northwest.  相似文献   

19.
Plants growing in waterlogged environments are subjected to low oxygen levels around submerged tissues. While internal oxygen transport has been postulated as an important factor governing flooding tolerance, respiration rates and abilities to take up oxygen under hypoxic conditions have been largely ignored in plant studies. In this study, physiological characteristics related to internal oxygen transport, respiration, and oxygen affinity were studied in low intertidal marsh species (Spartina alterniflora and S. anglica) and middle to high intertidal species (S. densiflora, S. patens, S. foliosa, a S. alterniflora × S. foliosa hybrid, S. spartinae, and Distichlis spicata). These marsh plants were compared to the inland species S. pectinata and the crop species rice (Oryza sativa), corn (Zea mays), and oat (Avena sativa). Plants were grown in a greenhouse under simulated estuarine conditions. The low marsh species S. anglica was found to transport oxygen internally at rates up to 2.2 μmol O2 g fresh root weight−1 h−1. In contrast, marsh species from higher zones and crop species were found to transport significantly less oxygen internally, although rice plants were able to transport 1.4 μmol g−1 h−1. Under hypoxic conditions, low marsh species were better able to remove dissolved oxygen from the medium compared to higher marsh species and crops. The oxygen concentration at which respiration rates declined due to limited oxygen (P crit) was significantly lower in low marsh species compared to inland and crop species; P crit ranged from <4 μM O2 in the low marsh species S. anglica up to 20 μM in the inland species corn. Flooding-sensitive crop species had significantly higher aerobic respiration rates compared to flooding-tolerant species in this study. Crop species took up 3.6–6.7 μmol O2 g−1 h−1 while all but one marsh species took up <3.5 μmol O2 g−1 h−1. We conclude that oxygen transport, aerobic demand, and oxygen affinity all play important and interrelated roles in flood tolerance and salt marsh zonation.  相似文献   

20.
We used microscopy, reflectance spectroscopy, pigment analysis, and photosynthesis-irradiance curves measured with variable fluorescence techniques to characterise the endolithic communities of phototrophic microorganisms in the skeleton of three massive corals from a shallow reef flat. Microscopic observations and reflectance spectra showed the presence of up to four distinct bands of photosynthetic microorganisms at different depths within the coral skeleton. Endolithic communities closer to the coral surface exhibited higher photosynthetic electron transport rates and a green zone dominated by Ostreobium quekettii nearest the surface had the greatest chlorophyll pigment concentration. However, Ostreobium was also present and photosynthetically active in the colourless band between the coral tissue and the green band. The spectral properties and pigment density of the endolithic bands were also found to closely correlate to photosynthetic rates as assessed by fluorometry. All endolithic communities were extremely shade-adapted, and photosynthesis was saturated at irradiances <7 μmol photons m−2s−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号