首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
To clarify the behavior of 14C in terrestrial ecosystems, 14C abundance in soil respiration was evaluated in an urban forest with a new method involving a closed chamber technique and 14C measurement by accelerator mass spectrometry (AMS). Soil respiration had a higher Delta14C than the contemporary atmosphere. This indicates that a significant portion of soil respiration is derived from the decomposition of soil organic matter enriched in 14C by atmospheric nuclear weapons tests, with a notable time lag between atmospheric 14C addition and re-emission from soil. On the other hand, delta14C in soil respiration demonstrated that 14C abundance ratio itself in soil-respired CO2 is not always high compared with that in atmospheric CO2 because of the isotope fractionation during plant photosynthesis and microbial decomposition of soil organic matter. The Delta14C in soil respiration was slightly lower in August than in March, suggesting a relatively high contribution of plant root respiration and decomposition of newly accumulated and/or 14C-depleted soil organic matter to the total soil respiration in August.  相似文献   

2.
Nuclear power plants release 14C during routine operation mainly as airborne gaseous effluents. Because of the long half-life (5730 years) and biological importance of this radionuclide (it is incorporated in plant tissue by photosynthesis), several countries have monitoring programs in order to quantify and control these emissions. This paper compares the activity of 14C in soils taken within 1 km from a Brazilian nuclear power plant with soils taken within a reference area located 50 km away from the reactor site. Analyses of total carbon, δ13C and 137Cs were also performed in order to understand the local soil dynamics. Except for one of the profiles, the isotopic composition of soil organic carbon reflected the actual forest vegetation present in both areas. The 137Cs data show that the soils from the base of hills are probably allocthonous.  相似文献   

3.
Carbon-14 ((14)C) is one of the most important radionuclides from the perspective of dose estimation due to the nuclear fuel cycle. Ten years of monitoring data on (14)C in airborne emissions, in atmospheric CO(2) and in rice grain collected around the Tokai reprocessing plant (TRP) showed an insignificant radiological effect of the TRP-derived (14)C on the public, but suggested a minor contribution of the TRP-derived (14)C to atmospheric (14)C concentrations, and an influence on (14)C concentrations in rice grain at harvest. This paper also summarizes a modelling exercise (the so-called rice scenario of the IAEA's EMRAS program) in which (14)C concentrations in air and rice predicted with various models using information on (14)C discharge rates, meteorological conditions and so on were compared with observed concentrations. The modelling results showed that simple Gaussian plume models with different assumptions predict monthly averaged (14)C concentrations in air well, even for near-field receptors, and also that specific activity and dynamic models were equally good for the prediction of inter-annual changes in (14)C concentrations in rice grain. The scenario, however, offered little opportunity for comparing the predictive capabilities of these two types of models because the scenario involved a near-chronic release to the atmosphere. A scenario based on an episodic release and short-term, time-dependent observations is needed to establish the overall confidence in the predictions of environmental (14)C models.  相似文献   

4.
To realize the dynamical behavior of 14C among exchangeable carbon reservoirs in terrestrial environment, a method for in situ determination of 14CO2 flux at soil-atmosphere interface and a high flow rate CO2 sampler were developed. This method allowed us to collect integrated quantity of CO2 for determining 14C activity over an extended time period under environmental conditions with minimal site disturbance. The 14CO2 flux from ground surface was estimated to be 1.59 x 10(-5) Bq m (-2) S (-1) in a forest floor with the method. The specific activities of 14C in environmental materials such as some biological and air samples were also determined in the vicinity of the place, where the flux measurement was made, to discuss the behavior of 14C in the forest ecosystem. The results indicated that fresh pine needles had a similar 14C specific activity to the atmospheric CO2 at the same height due to its fairly rapid equilibrium, 14C specific activity in the atmospheric CO2 has a concentration gradient near the ground surface and, at least in this site, CO2 with high 14C specific activity was generated by decomposition of soil organic matter which may be accumulated in soil as a result of former nuclear weapons tests.  相似文献   

5.
To study the Pu concentration and isotope ratio distributions present in China, the 239+240Pu total activities and 240Pu/239Pu atom ratios in core soil samples from Hubei Province in central China were investigated using Accelerator Mass Spectrometry (AMS). The activities ranged from 0.019 to 0.502 mBq g−1 and the 239+240Pu inventories of 45 and ∼55 Bq m−2 agree well with that expected from global fallout. The 240Pu/239Pu atom ratios in the soil ranged from 0.172 to 0.220. The ratios are similar to typical global fallout values. Hence, any close-in fallout contribution from the Chinese nuclear weapons tests, mainly conducted in the 1970s, must have either been negligible or had a similar 240Pu/239Pu ratio to that of global fallout. The top 10 cm layer of the soil contributes ∼90% of the total inventory and the maximum concentrations appeared in the 2-4 cm or 4-6 cm layers. It is suggested that climatic conditions and organic content are the two main factors that affect the vertical migration of plutonium in soil.  相似文献   

6.
To better understand the role of soil organic matter in terrestrial carbon cycle, carbon isotope compositions in soil samples from a temperate-zone forest were measured for bulk, acid-insoluble and base-insoluble organic matter fractions separated by a chemical fractionation method. The measurements also made it possible to estimate indirectly radiocarbon ((14)C) abundances of acid- and base-soluble organic matter fractions, through a mass balance of carbon among the fractions. The depth profiles of (14)C abundances showed that (1) bomb-derived (14)C has penetrated the first 16cm mineral soil at least; (2) Delta(14)C values of acid-soluble organic matter fraction are considerably higher than those of other fractions; and (3) a significant amount of the bomb-derived (14)C has been preserved as the base-soluble organic matter around litter-mineral soil boundary. In contrast, no or little bomb-derived (14)C was observed for the base-insoluble fraction in all sampling depths, indicating that this recalcitrant fraction, accounting for approximately 15% of total carbon in this temperate-zone forest soil, plays a role as a long-term sink in the carbon cycle. These results suggest that bulk soil organic matter cannot provide a representative indicator as a source or a sink of carbon in soil, particularly on annual to decadal timescales.  相似文献   

7.
通过测定4种长三角地区常见的滨岸草本植物(百慕大、白花三叶草、高羊茅与白茅)所在样地中不同形态的土壤碳库含量及土壤有机碳稳定同位素丰度来探索该区域土壤碳库及碳稳定同位素分布特征,并利用稳定同位素混合模型,研究滨岸草地生态系统对土壤碳库的贡献。结果表明:(1)土壤中总碳、有机碳、溶解性有机碳含量随着深度的增加而逐渐降低。总碳、有机碳、溶解性有机碳在4种植物样带的表层土壤中,平均含量分别为2211、1144、5395 mg·kg-1;而深层土壤中则仅为1557、707、1947 mg·kg-1,远低于表层土壤中的含量。且土壤总碳、有机碳及溶解性有机碳两两之间存在极显著的正线性相关;(2)土壤有机碳稳定同位素在垂直方向上表现出C3植物δ13C值随深度增大而增大、C4植物δ13C值随深度增大而减小两种特征。两类植物的平均土壤有机稳定碳同位素δ13C值分别由表层土壤中的-2524‰、-2233‰变化为深层土壤中的-2435‰、-2327‰;(3)借助稳定同位素混合模型计算后发现:不同植物对土壤有机碳的贡献率及有机碳累积速率完全不同。其中百慕大贡献率为1219%、累积速率为6279 g·m-2·a-1;白花三叶草贡献率1434%、累积速率为7534 g·m-2·a-1;高羊茅贡献率为3595%、累积速率为18184 g·m-2·a-1;白茅贡献率为1851%、累积速率为9770 g·m-2·a-1。  相似文献   

8.
A dynamic compartment model was investigated to describe 14C accumulation in rice plants exposed to atmospheric 14C with temporally changing concentrations. In the model, rice plants were regarded to consist of three compartments: the ear and the mobile and immobile carbon pools of the shoot. Photosynthetically fixed carbon moves into the ear and the mobile carbon pool, and these two compartments release a part of this carbon into the atmosphere by respiration. Carbon accumulated in the mobile carbon pool is redistributed to the ear, while carbon transferred into the immobile carbon pool from the mobile one is accumulated there until harvest. The model was examined by cultivation experiments using the stable isotope, 13C, in which the ratios of carbon photosynthetically fixed at nine times during plant growth to the total carbon at the time of harvest were determined. The model estimates of the ratios were in relatively good agreement with the experimental observations, which implies that the newly developed compartment model is applicable to estimate properly the radiation dose to the neighboring population due to an accidental release of 14C from nuclear facilities.  相似文献   

9.
长江三角洲地区土壤有机碳库研究   总被引:1,自引:0,他引:1  
土壤碳库变化对于全球温室效应、全球碳循环有重大的影响。基于新近完成的1:250 000多目标地球化学调查及相关研究成果,运用地理信息系统软件ARCGIS 9.2、统计软件SPSS13.0,对长江三角洲地区0~20、0~100、0~180 cm深度土壤有机碳密度及储量作出实测统计。结果表明:长江三角洲地区0~20 cm土壤有机碳库储量为238.65 Tg,有机碳密度为3.28±0.92 kg/m2,各类型土壤有机碳密度均值介于2.63~3.57 kg/m2;0~100 cm土壤有机碳库储量为822.76 Tg,有机碳密度为11.30±3.48 kg/m2,各类型土壤有机碳密度均值介于9.35~11.94 kg/m2;0~180 cm土壤有机碳库储量为1 245.72 Tg,有机碳密度为17.11±7.04 kg/m2,各类型土壤有机碳密度均值介于14.27~18.00 kg/m2。与第二次土壤普查比较,全区0~20、0~100cm土壤有机碳密度均值都表现为上升趋势,有机碳库储量增加,土壤表现为碳汇功能。提供了新的土壤碳库实测统计信息,为研究中国区域土壤碳固定潜力、深入全面理解区域碳循环提供基准数据。  相似文献   

10.
Biogeochemical C and N cycles in urban soils   总被引:8,自引:0,他引:8  
The percentage of urban population is projected to increase drastically. In 2030, 50.7 to 86.7% of the total population in Africa and Northern America may live in urban areas, respectively. The effects of the attendant increases in urban land uses on biogeochemical C and N cycles are, however, largely unknown. Biogeochemical cycles in urban ecosystems are altered directly and indirectly by human activities. Direct effects include changes in the biological, chemical and physical soil properties and processes in urban soils. Indirect effects of urban environments on biogeochemical cycles may be attributed to the introductions of exotic plant and animal species and atmospheric deposition of pollutants. Urbanization may also affect the regional and global atmospheric climate by the urban heat island and pollution island effect. On the other hand, urban soils have the potential to store large amounts of soil organic carbon (SOC) and, thus, contribute to mitigating increases in atmospheric CO(2) concentrations. However, the amount of SOC stored in urban soils is highly variable in space and time, and depends among others on soil parent material and land use. The SOC pool in 0.3-m depth may range between 16 and 232 Mg ha(-1), and between 15 and 285 Mg ha(-1) in 1-m depth. Thus, depending on the soil replaced or disturbed, urban soils may have higher or lower SOC pools, but very little is known. This review provides an overview of the biogeochemical cycling of C and N in urban soils, with a focus on the effects of urban land use and management on soil organic matter (SOM). In view of the increase in atmospheric CO(2) and reactive N concentrations as a result of urbanization, urban land use planning must also include strategies to sequester C in soil, and also enhance the N sink in urban soils and vegetation. This will strengthen soil ecological functions such as retention of nutrients, hazardous compounds and water, and also improve urban ecosystem services by promoting soil fertility.  相似文献   

11.
Migration of 137Cs and 90Sr in undisturbed soil was studied in large lysimeters three and four years after contamination, as part of a larger European project studying radionuclide soil–plant interactions. The lysimeters were installed in greenhouses with climate control and contaminated with radionuclides in an aerosol mixture, simulating fallout from a nuclear accident. The soil types studied were loam, silt loam, sandy loam and loamy sand. The soils were sampled to 30–40 cm depth in 1997 and 1998. The total deposition of 137Cs ranged from 24 to 45 MBq/m2, and of 90Sr from 23 to 52 MBq/m2. It was shown that migration of 137Cs was fastest in sandy loam, and of 90Sr fastest in sandy loam and loam. The slowest migration of both nuclides was found in loamy sand. Retention within the upper 5 cm was 60% for both 137Cs and 90Sr in sandy loam, while in loamy sand it was 97 and 96%, respectively. In 1998, migration rates, calculated as radionuclide weighted median depth (migration centre) divided by time since deposition were 1.1 cm/year for both 137Cs and 90Sr in sandy loam, 0.8 and 1.0 cm/year, respectively, in loam, 0.6 and 0.8 cm/year in silt loam, and 0.4 and 0.6 cm/year for 137Cs and 90Sr, respectively, in loamy sand. A distinction is made between short-term migration, caused by events soon after deposition and less affected by soil type, and long-term migration, more affected by e.g. soil texture. Three to four years after deposition, effects of short-term migration is still dominant in the studied soils.  相似文献   

12.
宝天曼自然保护区土壤有机碳异质性及其影响因素   总被引:2,自引:0,他引:2  
自然界中,土壤碳库对于维持生态系统碳平衡起决定性作用,而土壤有机碳又是碳库中不可或缺的一员,研究土壤有机碳对于全球生态系统碳平衡具有十分重大的意义。因此,基于宝天曼土壤有机碳实测数据并运用半方差函数、克里格插值分析山地土壤有机碳垂直性特征及空间分异程度,利用地理探测器对影响土壤有机碳分布的环境因子进行相关分析,结果表明:(1)宝天曼土壤有机碳介于0.31~7.7 g/kg,属于较低水平,最高值(7.70 g/kg)出现在北坡987 m处;(2)不同土层深度的半方差函数模型不同,0~20和40~60 cm对高斯模型拟合效果更明显、20~40 cm对球状模型拟合效果较好,而线性模型对于60~80和80~100 cm土层深度拟合效果较佳,克里格插值表明0~20和20~40 cm空间分异特征相似,呈西南向东北增加的趋势,而40~60 cm土壤有机碳空间分异呈现东北高、西南低;(3)宝天曼不同土层深度受单个环境因子影响程度不同,解释力介于0.127~0.407,其中NDVI对0~20 cm土壤有机碳解释力最显著(0.407)、高程对40~60 cm土壤有机碳解释力最高(0.373),交互探测结果表明NDVI与坡度解释力最高、高程与其他因子交互探测后解释力显著增大,表明宝天曼土壤有机碳受多种环境因子共同影响,而非单一因素起决定性作用。  相似文献   

13.
在鄱阳湖多宝沙山沿沙化梯度测定了17种常见植物叶片及土壤有机碳(C)、全氮(N)、全磷(P)含量,以阐明沙山常见植物种与土壤C〖DK〗∶N、C〖DK〗∶P分布特征及对沙化的响应,为沙山植被恢复提供基础数据。结果表明:(1)植物叶片C〖DK〗∶N、C〖DK〗∶P分布范围为185~1273、1698~5071,平均值分别为431、3418;土壤0~10、10~30、30~50 cm层C〖DK〗∶N变化范围分别为98~463、24~465和37~450; 相应土层C〖DK〗∶P范围分别为198~759、30~905和47~765。(2)植物C〖DK〗∶N、C〖DK〗∶P对沙化的响应模式一致,均表现出在重度沙化区数值最小;土壤C〖DK〗∶N随沙化程度增加表现出降低趋势,而C〖DK〗∶P则表现出增加趋势,二者对沙化的响应不一致。(3)植物C〖DK〗∶N、C〖DK〗∶P变化主要取决于叶片的N、P含量;土壤C〖DK〗∶N的变化受控于土壤N含量;C〖DK〗∶P变化则决定于土壤有机C含量  相似文献   

14.
The vertical distribution of 137Cs activity in peat soil profiles and 137Cs activity concentration in plants of various species was studied in samples collected at two sites on a raised bog in central Sweden. One site (open bog) was in an area with no trees and only a few sparsely growing plant species, while the other (low pine) was less than 100 m from the open bog site and had slowly growing Scots pine, a field layer dominated by some ericaceous plants and ground well-covered by plants. The plant samples were collected in 2004–2007 and were compared with samples collected in 1989 from the same open bog and low pine sites. Ground deposition of 137Cs in 2005 was similar at both sites, 23?000 Bq m−2. In the open bog peat profile it seems to be an upward transport of caesium since a clear peak of 137Cs activity was found in the uppermost 1–4 cm of Sphagnum layers, whereas at the low pine site 137Cs was mainly found in deeper (10–12 cm) layers. The migration rate was 0.57 cm yr−1 at the open bog site and the migration centre of 137Cs was at a depth of 10.7, while the rate at the low pine site was 0.78 cm yr−1 and the migration centre was at 14.9 cm. Heather (Calluna vulgaris) was the plant species with the highest 137Cs activity concentrations at both sites, 43.5 k Bq−1 DM in 1989 decreasing to 20.4 in 2004–2007 on open bog and 22.3 k Bq kg−1 DM in 1989 decreasing to 11.2 k Bq−1 DM by the period 2004–2007 on the low pine site. 137Cs transfer factors in plants varied between 0.88 and 1.35 on the open bog and between 0.48 and 0.69 m2 kg−1 DM at the low pine site.  相似文献   

15.
为了解城市河岸带不同植被类型下土壤的反硝化速率及其影响因子,在上海市城市河岸带的长风绿地选择了熊掌木、硕苞蔷薇和矮生百慕大草3种植被类型,于2012年3月(春初)、5月(春季)、7月(夏季)、11月(秋季)测定了其下不同深度(2~5 cm、12~15 cm、22~25 cm和32~35 cm)土壤的反硝化速率和土壤的粒度、含水率、SOC、NH4+和NO3-含量等基本理化性质。结果表明:长风绿地3种植被类型下土壤理化性质和反硝化速率具有一定的差异性,但均表现为2~5 cm深度土壤反硝化速率显著高于其他深度;熊掌木和硕苞蔷薇2~5 cm深度土壤反硝化速率均为春初显著高于其他季节,而草地2~5 cm深度反硝化速率在春夏季显著高于春初和秋季;其他深度土壤均不存在显著的季节性差异;植被类型、深度和季节对反硝化速率的单一和综合影响效应(除植被类型*深度外)均显著;反硝化速率与土壤的SOC、NH4+和NO3-含量呈极显著正相关(p<001),而与土壤含水率和气温没有显著相关关系  相似文献   

16.
Radiocarbon variations in the atmospheric CO(2) with attenuating amplitudes and decreasing mean values with typical maxima in summer and minima in winter have been observed since 1967 in two localities of Slovakia, in Bratislava and Zlkovce, situated about 60 km NE from Bratislava, only 5 km from the Bohunice Nuclear Power Plant (NPP). The (14)C record in Bratislava has been influenced mainly by fossil CO(2) emissions, in contrast to the Zlkovce record which has been more variable, as it has clearly been affected by operation of the Bohunice NPP. However, during specific meteorological conditions with NE transport of air masses to Bratislava, the effect of the Bohunice NPP has been visible in Bratislava as well. Maximum (14)C concentrations (up to 120% above a natural background) were observed around A1 NPP which used CO(2) with admixture of air as a cooling agent. The (14)C concentrations around four pressurized light water reactors were up to 30% above the background. The Delta(14)C values in the heavily polluted atmosphere of Bratislava were up to 10% and at Zlkovce up to 5% lower than the European clean air represented by the Jungfraujoch Delta(14)C data. Later the Delta(14)C values were similar at both sites, and from 2003 they were close to the European clean air levels. The observed Delta(14)C behaviour in the atmosphere provides a unique evidence of decreased fossil fuel CO(2) emissions in the region, as well as the long-term effect of the Bohunice NPP on the Bratislava and Zlkovce stations. The estimated annual radiation doses to the local public due to digestion of radiocarbon contaminated food have been estimated to be around 3 microSv.  相似文献   

17.
Atmospheric air samples were taken within 3 km from power plants encompassing five different distances and wind directions. Samples were taken between 2002 and 2005 aiming to evaluate the environmental 14C enrichment due to the operation of Brazilian nuclear power plants. The sampling system consisted of a pump connected to a trapping column filled with a 3 M NaOH solution. The trapped CO2 was analyzed for 14C by using a single stage accelerator mass spectrometry (SSAMS).  相似文献   

18.
Acetate biodegradation at a high pH and a high calcium concentration was examined to clarify the effect of bacterial activity on the migration of organic 14C compounds in cementitious repositories.Tamagawa river sediment or Teganuma pond sediment was anaerobically cultured with 5 mM acetate and 10 mM nitrate at pH 9.5-12 at 30 °C. After 20 and 90 days, the acetate concentration of the culture medium was analyzed and found to have decreased below 5 mM at pH ≤ 11. On the other hand, it did not decrease when either sediment was incubated in the absence of nitrate. These results suggest that nitrate-reducing bacteria can biodegrade acetate under more alkaline conditions than the reported pH range in which nitrate-reducing bacteria can exhibit activity.Acetate biodegradation was also examined at a high calcium concentration. Sediments were anaerobically cultured at pH 9.5 with 5 mM acetate and 10 mM nitrate in solution, equilibrated with ordinary Portland cement hydrate, in which the Ca concentration was 14.6 mM. No decrease in acetate concentration after incubation of the sediments was observed, nor was it lower than in the absence of cementitious composition, suggesting that kinetics of acetate biodegradation by anaerobic microorganisms is lowered by a high Ca concentration.  相似文献   

19.
The contamination and depth distribution of 137Cs in soil due to the fallout from atmospheric weapons' tests were measured at 29 sites in the 9th and 10th administrative regions in Chile located in the 40 degrees latitude in the southern hemisphere. The depth distribution in most of the sites follows no systematic pattern in the upper few centimetres, but below this depth an exponential decline could be deduced. The calculated relaxation depth appears to be a good indicator for estimating the long-term 137Cs distribution in these soil profiles. It ranges from 4.4 +/- 1.9 cm in Palehumults to 8.4 +/- 4.4 and 9.7 +/- 5.1 cm in Hapludands and Psamments, respectively. For these soil types the value for the relaxation depth tends to increase with decreasing clay content and increasing volume of coarse pores. 137Cs activity densities at the selected sites ranged from 450 to 5410 Bq m(-2) and correlate significantly (r = 0.791) with the mean annual rainfall rate of the sampling sites. 137Cs concentration ratios of prairie plants/soil were found to be in the range 0.008-2.3 and could be related to relaxation depths in undisturbed soils.  相似文献   

20.
Radioactive markers are useful in dating lead deposition patterns from industrialization in peat archive. Peat cores were collected in an ombrotrophic peat bog in the Great Hinggan Mountains in Northeast China in September 2008 and dated using 210Pb and 137Cs radiometric techniques. The mosses in both cores were examined systematically for dry bulk density, water and ash content. Lead also was measured using atomic emission spectroscopy with inductively coupled plasma (ICP-AES). Both patterned peat profiles were preserved well without evident anthropogenic disturbance. Unsupported 210Pb and 137Cs decreased with the depth in both of the two sample cores. The 210Pb chronologies were established using the constant rate of supply model (CRS) and are in good agreement with the 137Cs time marker. Recent atmospheric 210Pb flux in Great Hinggan Mountains peat bog was estimated to be 337 Bq m−2 y−1, which is consistent with published data for the region. Lead deposition rate in this region was also derived from these two peat cores and ranged from 24.6 to 55.8 mg m−2 y−1 with a range of Pb concentration of 14-262 μg g−1. The Pb deposition patterns were consistent with increasing industrialization over the last 135-170 y, with a peak of production and coal burning in the last 50 y in Northeast China. This work presents a first estimation of atmospheric Pb deposition rate in peatlands in China and suggests an increasing trend of environmental pollution due to anthropogenic contaminants in the atmosphere. More attention should be paid to current local pollution problems, and society should take actions to seek a balance between economic development and environmental protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号