首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 517 毫秒
1.
纵向风速对隧道内烟气发展影响的实验研究   总被引:1,自引:1,他引:0  
通过在鹰嘴岩隧道内的现场模拟火灾试验,对不同纵向通风速率下隧道内烟气发展过程进行了研究。结果表明,纵向风速和火源大小均对烟气层沉降有重要影响。相比之下,纵向风速对烟气层沉降的影响更大;火源位置较高时,烟气层热膨胀力较大,在距离火源一定距离外仍可产生上游方向的烟气逆流;一定坡度的隧道在某种条件下可以产生"弱烟囱效应",导致烟气向下游方向的流速增加。在隧道设计中可以考虑利用这一点来增加排烟效率。  相似文献   

2.
为探究隧道横通道通风对隧道火灾烟气蔓延的影响规律,使用火灾动力学模拟软件FDS,对不同火源位置的横通道临界风速、主隧道温度分布以及烟气层高度进行研究。研究结果表明:在一定火源功率范围内,隧道横通道临界风速与火源功率的1/3次方成正比且火源距横通道越远,临界风速越小;当火源位于交叉口,横通道使用临界风速通风时,隧道内烟气温度明显降低,烟气迅速沉降到2 m以下;当火源距离交叉口10,20 m,横通道通风会加快火源下游烟气沉降,烟气沉降速度随横通道通风速率的增大而增大;当火源位于交叉口时,烟气沉降由横通道通风对烟气的降温作用和涡旋作用共同主导,当火源位于距离交叉口10,20 m时,烟气沉降主要由涡旋作用主导。  相似文献   

3.
为研究隧道坡度对射流风机临界风速的影响,通过理论分析与数值模拟,采用全尺寸隧道模型和5种不同火源功率,考虑0%,±1%,±3%,±5%,±7% 9种不同隧道坡度,研究隧道坡度对射流风机临界风速的影响规律。结果表明:坡度对射流风机临界风速有较大影响。在射流风机与火源纵向间距不小于100 m情况下,即其临界风速与火源纵向间距无关;当上坡时,其临界风速与火源功率的1/3次方成正比,坡度越大,临界风速越小;当下坡时,其临界风速与火源功率的1/3次方成正比,坡度(绝对值)越大,临界风速越大;对数据结果进行拟合,得到上坡与下坡时的射流风机临界风速模型,并与模拟结果取得了较好的一致性。  相似文献   

4.
纵向通风是隧道烟气控制的常用手段之一,若风速足够大,烟气会保证向一个方向蔓延,达到纵向排烟的目的,但同时过大的风速可能会破坏烟气层结构,造成烟气层紊乱,危害到地面附近疏散的人群。因此隧道排烟的策略应是在保证烟气层维持一定时间分层的前提下合理排烟。在实际中,很多隧道都是存在坡度的,这就可能产生烟囱效应,导致倾斜隧道内烟气的扩散速度会与水平隧道不同,进而影响到纵向通风排烟策略。本文采用比例模型的实验方法,对不同坡度及纵向通风风速条件下隧道内火灾烟气流动规律进行了研究。结果表明,隧道坡度越大冷空气卷吸越强烈,烟气降温越快,烟气沉降速度也越快。同时初步得到了本实验条件下的烟气分层化临界风速,并与理论分析结果吻合得较好,为研究烟气的运动情况和人员疏散方案提供重要参考依据。  相似文献   

5.
公路隧道发生火灾时易造成严重后果,纵向通风作为火场排烟降温的常用措施会改变燃烧的火源功率及相关火灾参数,影响公路隧道通风排烟的设计。利用按照弗洛德相似性原理自行设计建造的公路隧道火灾烟气输运特性研究试验台,研究了不同纵向通风风速下燃料火源功率、火焰形状和烟气层高度、距火源2 m人眼高度处一氧化碳体积分数、隧道横截面竖向温度及隧道纵向人眼高度处温度的变化规律。结果表明,所研究的火灾参数与纵向通风之间呈现非线性变化关系,火源功率在纵向通风作用下出现"双驼峰"现象,随风速增大,火源功率、火焰主体长度与亮度的变化规律相似,平均燃烧速度与一氧化碳体积分数、温度变化规律一致。  相似文献   

6.
城市交通隧道坡度对火灾烟气扩散影响研究   总被引:2,自引:1,他引:1  
利用大涡模拟方法研究城市交通隧道火灾自然通风下烟气的扩散规律,重点研究隧道的坡度对烟气羽流的影响。研究坡度在0-5%范围内的隧道内烟气层横向以及纵向温度场分布以及火源拱顶处最高温度随时间的变化规律,并与坡度为零的隧道火灾的烟气模拟结果进行比较。研究表明:5%坡度对烟气纵向分布影响较大,尤其在火源下游的上坡方向,烟气层沉降快。坡度使烟气最高温度点火源下游偏移,但最高温度值变化不大。研究结果对于研究城市交通隧道的消防设计以及人员疏散提供参考。  相似文献   

7.
为探明螺旋隧道火灾特性,防止人员高温伤害,基于Froude准则,搭建比例1∶67的小尺寸螺旋隧道实验模型,采用模型实验方法研究不同坡度和不同风速下螺旋隧道火灾温度分布规律及烟气蔓延特性。研究结果表明:低坡度条件下,螺旋隧道内高温区以火源为中点呈对称分布状态;随着坡度的增加,隧道内高温区逐渐向下游延伸,火源处拱顶下方温度呈现先增大后降低再升高的变化规律;无论是自然风还是机械纵向通风,新鲜冷空气的吹入对隧道温度的降低起到主导作用,且风速越大,温降幅度越大;随着隧道坡度和自然风速的增加,火羽流由竖直狭长型转变为燃烧不稳定的大截面火焰,同时坡度增加抑制了火灾烟气逆流,促进了烟气向火源下游的蔓延速度,大大提高了排烟的有效性,减少人员伤害。  相似文献   

8.
为研究含坡度隧道不同火源位置情况下车厢火灾烟气蔓延特性,采用CFD数值模拟方法,建立全尺寸地铁隧道与列车数值模型,研究车厢不同火源位置情况下火灾烟气纵向温度分布规律,探讨倾斜隧道车厢火源位置对烟气蔓延的影响。研究结果表明:当火灾烟气蔓延处于纵向通风惯性力与热浮力竞争作用控制阶段时,火源位于车厢上游方向时火灾烟气向车厢方向蔓延距离小于火源位于车厢下游方向情况,且随坡度增大,火源位于车厢上游方向烟气逆流长度不断减小,位于下游方向烟气逆流长度不断增大;当纵向通风风速达到2 m/s时,火源位于车厢上下游方向2种情况下,列车车厢方向均无烟气蔓延(逆流长度为0),此时火灾烟气蔓延将主要由纵向通风控制,隧道坡度无显著影响。  相似文献   

9.
通过数值模拟对地下互通立交隧道的典型结构-分岔隧道处烟气的扩散特性进行了研究。分析了火源位于分岔路段上游时,下游支路隧道坡度及火源功率对主、支路隧道烟气质量流量分配及烟气温度分布的影响。结果表明:火源功率一定时,随下游支路隧道坡度增大,火灾中产生的烟气会更多地流向火源下游,并流入支路隧道,上游主隧道内的烟气温度降低;火源功率除影响产烟量及隧道内的温度分布外,对主、支路隧道的烟气质量分配影响较小。  相似文献   

10.
隧道坡度对临界风速影响的数值研究   总被引:2,自引:0,他引:2  
临界风速即隧道火灾过程中能有效控制烟气于火源下风方向而不发生逆流的最小纵向通风风速,是隧道火灾烟气控制的关键所在.根据国内外的研究结果,临界风速与火灾规模、隧道规模以及断面形状等因素有关.在坡度隧道中,由于坡度的作用,使得坡度隧道临界风速与水平隧道有着一定的差别.利用火灾动力学模拟软件(FDS)对隧道坡度在0°~10°变化时上坡隧道与下坡隧道所对应的隧道临界风速进行数值模拟分析,研究分析了隧道坡度对隧道临界风速的影响规律.  相似文献   

11.
为探索隧道与横通道交叉角对火灾烟气蔓延的影响机制,采用FDS数值模拟,研究横通道与隧道不同交叉角情况下火灾烟气温度、浓度、烟气层高度等的变化规律,建立开启火源下风向横通道时隧道内烟气最高温度修正公式,提出烟气纵向蔓延恢复长度的概念,并探讨其影响规律。 结果表明:隧道和横通道交叉角越小,隧道内同一位置烟气层高度越高,当交叉角由90°降低到30°时,烟气层高度最大增加32%;烟气纵向蔓延恢复长度与交叉角及通风速率呈正相关,而与火源功率几乎无关。研究结果对隧道通风排烟系统设计及相关标准的制定具有参考意义。  相似文献   

12.
煤矿发生火灾后会生成大量有毒气体并产生火风压,烟气在火灾动力的影响下出现状态紊乱,研究煤矿火灾烟气流动传播过程对控制火情有着重要意义。基于国内外研究现状,对燃烧及风流特点进行分析,建立了煤矿火灾烟气流动数学模型,并利用CFD软件进行仿真。研究表明:无通风工况下的烟气为对称流动;随着风速增加,出口处温度降低,烟气向风流入口处的流速减小。  相似文献   

13.
为了探究风速对高层建筑火灾时环境中温度、烟气浓度、CO浓度分布状态的影响,以央视北配楼火灾为模型背景,应用火灾动力学软件FDS,对火灾进行模拟与分析。通过讨论不同风速下火源温度中心、烟气浓度中心、CO浓度中心离着火面距离与高度之间的关系,得到风速一定时各中心的位置与高度之间的变化规律,以及该变化规律与风速之间的关系,风速小于3m/s时各中心位置随风速变化较明显;风速越大,温度、烟气浓度、CO浓度越高,当风速小于2m/s时各值增量随风速增加明显;与其他因素相比,温度对防火间距的影响最大。  相似文献   

14.
为了研究不同火源条件下变压器火灾动力学过程,利用全尺寸变压器火灾试验,验证了隐蔽、立体、多尺度的变压器火灾数值模拟的有效性,模拟5,10,15,18 MW火源功率下变压器室内火灾烟气蔓延、温度分布变化。研究结果表明:火源功率对烟气蔓延速度和温度分布影响较大,当火源功率在18 MW以内时,变压器油燃烧时间在30 s内,产生的热均不会使变压器室内壁面和顶棚处的烟气温度超过300 ℃,没有达到混凝土的耐火极限。  相似文献   

15.
为研究不同风速与火源功率共同作用下矿井火灾蔓延规律的变化,以安源煤矿378工作面为研究对象,建立FDS矿井巷道火灾全尺寸模型,设置火源功率分别为3,6 MW,风速分别为0.25,1.25,2.25,3.25 m/s的8种工况。研究结果表明:相同风速下,巷道内温度及相同位置CO浓度值随火源功率增大而升高,巷道内能见度随火源功率增大而降低,且火源功率越大,能见度降到零的火灾区域越大;相同火源功率下,巷道内温度及相同位置CO浓度值随着风速增加而升高,能见度随风速增加而降低;火灾蔓延速率与风速成正比,风速的增大加速下风向火灾的发展,但会减缓上风向火势的蔓延。  相似文献   

16.
为了分析不同通风条件对柴油池火燃烧特性及引燃特性的影响,进行205 mm带水垫层柴油池火的引燃实验,通过对池火燃料的质量损失速率、火焰高度、温度及热辐射等的监测,分析通风环境中柴油池火的热传递规律。结果表明:当风速为0.5 m/s时,火灾进入旺盛阶段的时间提前,火焰平均温度最高;当风速为1 m/s时,风速的增加导致油池火的质量损失速率增加,位于主火源下风向的待引燃火源获得的热辐射通量增大,火灾旺盛阶段火焰的平均温度降低,火焰高度降低,下风向相邻油盘引燃的时间提前;1 m/s情况下,205 mm带水垫层柴油池火的安全间距需增加到1D以上;通风环境对池火发展及蔓延的影响是显著的,应适当加大下风向可燃物的安全间距,合理选择通风排烟风速,优化火灾应急救援策略。  相似文献   

17.
为研究巷道火灾密闭过程中烟气的温度变化规律及流动特性,通过缩尺寸实验台和FDS数值模拟软件对12.65,18.97,25.30 kW不同火源功率及25%,50%,75%,100%不同密闭比例条件下的巷道火灾进行模拟实验。结果表明:密闭比例的增加会使火焰倾角减小,当巷道完全密闭后,火焰形状近似垂直,顶板热辐射和温度增加;巷道在50%和75%密闭比例之间存在1个突变值,当超过此突变值后,顶板温度会急剧升高,同时燃烧会更快进入衰减阶段,且火源功率越大衰减越早;密闭比例的增加会导致烟气逆流长度上升,增加纵向通风速度可有效地抑制烟气逆流现象,当实际巷道火源功率为4 MW时,纵向通风风速设定为3.8 m/s能使烟气逆流得到较好的控制。  相似文献   

18.
研究了燃烧风洞内不同纵向风速、不同火源功率条件下,隧道近火源区顶部温度沿纵向分布情况。结果表明,纵向风对不同尺寸火源条件下的顶部温度的影响呈不同特征。对较小尺寸火源,隧道顶部温升随风速增加而减小至稳定值;而对较大尺寸火源,顶部温升随风速增加先增加后减小。对于矩形火源,当纵向风较小(0.5~1.5m/s)时,长边平行于纵向风时顶部最高温升大于长边垂直于纵向风的情况;而当纵向风较大(≥2 m/s)时,两种油盘放置方式的顶部最高温升一致。纵向风作用下,顶部最高温升位置向下游呈现"两次移动"特征,即随着纵向风速增加该位置先向下游移动,当风速达到某一值时,隧道拱顶的加热机制由对流和辐射共同主控转变为辐射单独主控,最高温升位置突变回到上游后再次逐渐向下游移动。  相似文献   

19.
为了研究矿井发生火灾后高温烟流的蔓延规律及影响因素,利用COMSOL软件对火区进行数值模拟,建立巷道三维模型,得到火区风流速度与温度分布。通过改变边界条件,分析火风压作用下,火区烟气在不同控制风速、巷道条件作用下蔓延规律,得出不同因素与临界风速的关系,为选取合理的火灾控制风速提供理论依据。研究结果表明:火源温度一定时,巷道入口风速越低,火源下风侧高温烟流越靠近巷道顶部,随着风速增大,向巷道下部蔓延;风速较低时,在火区火风压的作用下,会产生烟流逆退现象,随着风速的增大,逆流层长度和厚度随之减小;巷道入口通风条件不变时,火区温度越高越容易产生烟流的逆退,影响范围越大;巷道高度越高、上行风坡度越小,越易发生逆退现象;不同影响因素与巷道平均温度不成正比关系,其中下行风坡度5~15°时巷道平均温度较高且易于发生烟流滚退现象,影响范围较大;火源温度、巷道条件与临界风速的数据拟合结果对预测巷道的临界风速有较好的参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号