首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reproductive activity and production of the calanoid copepods Calanus helgolandicus and Calanoides carinatus were measured during a summer upwelling event off the coast of NW Spain. The upwelling pattern affected the distribution and fecundity of both species in the study area. The demographic composition of both populations and the stage of gonad maturation (e.g. the high abundance of fertilised females with mature ova) indicated active reproduction. C. carinatus, a highly fecund species associated with the African upwelling zones and considered as an upwelling specialist, showed low production rates (overall means of 15 eggs female–1 day–1 and 3% body C day–1), despite the fact that the food conditions (high phytoplankton biomass dominated by diatoms) seemed to be optimal for this species. By contrast, C. helgolandicus, a temperate species that shows a strong link between spring phytoplankton blooms and reproduction time, seems to be flexible enough to take full advantage of shorter-term, enhanced feeding conditions associated with the pulsed nature of the summer coastal upwelling. Both the egg and carbon-specific production rates attained by this species (overall means of 26 eggs female–1 day–1 and 12% body C day–1) were similar to values reported for a spring bloom situation. This high production would imply a long spring–summer recruitment event of C. helgolandicus in these waters. For both species the stage of gonad maturation was significantly correlated with their egg production rates and likely influenced by the food conditions; a species-specific nutritional requirement for final oogenesis is suggested. The carbon condition factor (carbon weight/prosome volume) of C. carinatus females was higher than that of C. helgolandicus, suggesting differential use of the carbon ingested; C. helgolandicus seems to use all ingested carbon to produce eggs at a high rates, whereas C. carinatus seems to store part of the ingested carbon as lipid reserves to ensure female survival and to support production during subsequent unfavourable food conditions.Communicated by S.A. Poulet, Roscoff  相似文献   

2.
Calanus sinicus is a large calanoid copepod and a dominant species in the coastal waters of Japan. During a research cruise in Sagami Bay on 18 June 1996, we found C. sinicus performing an unusual diel vertical migration (DVM), a behavior that has not been reported in previous studies on this species. This study examined the DVM of C. sinicus under different light environments and revealed the copepods characteristic response to light. Field and laboratory results show that the DVM of C. sinicus is flexible and also confirmed its sensitivity and its rapid response to changing light environments. It is suggested that C. sinicus reacts to changes in absolute light intensity. This feature may be common in oceanic copepod species. The copepods quick reaction to light variation provides decreased predation risks and increased feeding opportunities, which make them a dominant survivor in coastal water habitats.Communicated by T. Ikeda, Hakodate  相似文献   

3.
We conducted grazing experiments with the three marine cladoceran genera Penilia, Podon and Evadne, with Penilia avirostris feeding on plankton communities from Blanes Bay (NW Mediterranean, Spain), covering a wide range of food concentrations (0.02–8.8 mm3 l–1, plankton assemblages grown in mesocosms at different nutrient levels), and with Podon intermedius and Evadne nordmanni feeding on the plankton community found in summer in Hopavågen Fjord (NE Atlantic, Norway, 0.4 mm3 l–1). P. avirostris and P. intermedius showed bell-shaped grazing spectra. Both species reached highest grazing coefficients at similar food sizes, i.e. when the food organisms ranged between 15 and 70 µm and between 7.5 and 70 µm at their longest linear extensions, respectively. E. nordmanni preferred organisms of around 125 µm, but also showed high grazing coefficients for particles of around 10 µm, while grazing coefficients for intermediate food sizes were low. Lower size limits were >2.5 µm, for all cladocerans. P. avirostris showed upper food size limits of 100 µm length (longest linear extension) and of 37.5 µm particle width. Upper size limits for P. intermedius were 135 µm long and 60 µm wide; those for E. nordmanni were 210 µm long and 60 µm wide. Effective food concentration (EFC) followed a domed curve with increasing nutrient enrichment for P. avirostris; maximum values were at intermediate enrichment levels. The EFC was significantly higher for P. intermedius than for E. nordmanni. With increasing food concentrations, the clearance rates of P. avirostris showed a curvilinear response, with a narrow modal range; ingestion rates indicated a rectilinear functional response. Mean clearance rates of P. avirostris, P. intermedius and E. nordmanni were 25.5, 18.0 and 19.3 ml ind.–1 day–1, respectively. Ingestion rates at similar food concentrations (0.4 mm3 l–1) were 0.6, 0.8 and 0.9 g C ind.–1 day–1.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

4.
Allozyme variation of 10 populations of Linckia laevigata at 8 polymorphic loci and 13 populations of Tridacna crocea at 6 polymorphic loci were analyzed to compare genetic variability and genetic affinities among reefs in Palawan, Philippines. Two to five populations were sampled from each of four regions: the shelf reefs in (1) northern Palawan and (2) southern Palawan and the offshore reefs in (3) the Kalayaan island group (KIG) in the South China Sea and (4) the Tubbataha shoals in the Sulu Sea. Heterozygosity was highest in populations of L. laevigata from the south shelf of Palawan and populations of T. crocea from the Tubbataha shoals of the Sulu Sea. The lowest heterozygosity estimates were from the reefs of the KIG in the South China Sea, for both species. Overall F ST values for both species were significant, with an estimated average number of effective migrants per generation (N EM) of 4.85 (~5 individuals) for L. laevigata and 3.54 (~4 individuals) for T. crocea. Within-region comparisons showed NEM ranging from 6.29 to 92.34 for L. laevigata and from 3.40 to 6.30 for T. crocea. The higher gene flow among L. laevigata populations relative to T. crocea is consistent with the greater dispersal potential of the former species. Finer scale genetic structuring was evident in T. crocea populations. For both species, the Tubbataha reefs in the Sulu Sea have higher genetic affinity with the populations from the southern shelf of Palawan, while the reefs in the KIG had higher affinity with the northern Palawan shelf reefs. The north and south shelf populations have the least genetic affinity. Genetic patchiness among reefs within regions suggests the importance of small-scale physical factors that affect recruitment success in structuring populations in small island and shoal reef systems in Palawan.  相似文献   

5.
We performed field and laboratory studies to investigate how large adult Leptasterias polaris detect and locate their major prey, large infaunal bivalves, in the sediment bottom community. A field survey using SCUBA diving showed that 95% of the locations where L. polaris dug into the sediment bottom were over bivalves and this success rate was much greater than if digging was done at random (22%). Furthermore, when sea stars were provided with a low density of randomly distributed prey in a laboratory arena, they dug exclusively in locations where a clam had been buried. These observations indicated that L. polaris locates infaunal prey prior to investing energy into digging. Studies in a laboratory flow tank showed that L. polaris readily detected and moved towards its preferred prey Ensis directus whereas its responses to less preferred prey Mya truncata and Spisula polynyma were much weaker. The degree to which it oriented towards these three common prey seemed to reflect potential energy intake relative to foraging costs (which likely increase with the depth of the different prey) and risks from interactions with other carnivores (which are greatest when feeding on large prey). This is the first study to clearly demonstrate that sea stars use prey odours to locate infaunal prey.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00227-004-1497-1Communicated by R.J. Thompson, St. Johns  相似文献   

6.
Feeding behaviors of the gastropods Batillaria zonalis, a suspension and deposit feeder, and Cerithideopsilla cingulata, an obligate deposit feeder, were studied to examine their effect on dynamics of suspended materials, total nitrogen (TN) and total organic carbon (TOC) in sediments. Suspension feeding in B. zonalis was observed in detail visually, as it had been previously unreported. An experimental system where B. zonalis and C. cingulata were cultured for 10 weeks, using previously frozen microalgae Nannochloropsis oculata as food, was then constructed. During feeding observations, the suspension-feeding B. zonalis formed a mucus food cord to entangle particulate materials, which were subsequently ingested. The feeding mode of B. zonalis is hence categorized as ctenidial filter feeding. For the culture experiments, decreases in suspended materials were seen only in the B. zonalis cultures, while the control (no gastropods) and C. cingulata cultures remained nearly unchanged. Sediment TN and TOC showed no significant differences between B. zonalis (with mean TN at 0.0345% and mean TOC at 0.261%) and control cultures (with TN at 0.0389% and TOC at 0.331%), but the sediments in C. cingulata cultures had lower levels (with TN at 0.0204% and TOC at 0.156%). The C/N ratios were similar for both B. zonalis (7.55) and C. cingulata (7.68) cultures, and both were lower than the control cultures (8.55). The filtration rate for B. zonalis was lower than that previously observed in bivalves inhabiting the same intertidal flat (e.g. Cyclina sinensis, Grafrarium tumidum and Barbatia virescens). However, Batillaria zonalis occurs at higher abundances than these bivalves. Therefore, it is expected that this species has a large affect upon the transport of suspended materials to the sediments. The addition of TN and TOC to sediments in B. zonalis cultures was probably caused by biodeposition, but deposit feeding by B. zonalis may have restrained the accumulation of those components. The impact of deposit feeding in Cerithideopsilla cingulata cultures was most probably stronger than sedimentation and biodeposition, because of the lower sediment TN and TOC. Bioturbation by both B. zonalis and C. cingulata yields the same effect on sediment quality, as indicated by the low C/N in the culture sediment of both treatments, despite difference in feeding modes. This paper demonstrates, for the first time, the importance of gastropods in bioturbation and removal of suspended materials in subtropical tidal flat habitats.Communicated by T. Ikeda, Hakodate  相似文献   

7.
The 71 species of horseshoe bat (genus Rhinolophus) use echolocation calls with long constant-frequency (CF) components to detect and localize fluttering insects which they seize in aerial captures or glean from foliage. Here we describe ground-gleaning as an additional prey-capture strategy for horseshoe bats. This study presents the first record and experimental evidence for ground-gleaning in the little-studied Blasius horseshoe bat (Rhinolophus blasii). The gleaning bouts in a flight tent included landing, quadrupedal walking and take-off from the ground. The bats emitted echolocation calls continuously during all phases of prey capture. Both spontaneously and in a choice experiment, all six individuals attacked only fluttering insects and never motionless prey. These data suggest that R. blasii performs ground-gleaning largely by relying on the same prey-detection strategy and echolocation behaviour that it and other horseshoe bats use for aerial hawking.We also studied the Mediterranean horseshoe bat (R. euryale) in the flight tent. All four individuals never gleaned prey from the ground, though they appeared to be well able to detect fluttering moths on the ground. It is not known yet whether ground-gleaning plays a role in Mehelys horseshoe bat (R. mehelyi). In a performance test, we measured the ability of these three European species of middle-sized horseshoe bats (R. euryale, R. mehelyi and R. blasii) to take-off from the ground. All were able to take flight even in a confined space; i.e. the willingness to ground-glean in R. blasii is not related to a superior take-off performance. In contrast to ground-gleaning bats of other phylogenetic lineages, R. blasii appears not to be a specialist, but rather shows a remarkable behavioural flexibility in prey-capture strategies and abilities. We suggest that the key innovation of CF echolocation paired with behavioural flexibility in foraging strategies might explain the evolutionary success of Rhinolophus as the second largest genus of bat.Communicated by T. Czeschlik  相似文献   

8.
The spanner crab (Ranina ranina) is a widespread and abundant brachyuran in offshore sand substrata of the Indo-Pacific region. Little is known of this species biology, population dynamics and ecology, despite it being the target of commercial fishing operations in many areas. Previous studies of R. ranina growth using length-frequency analysis of samples collected with commercial fishing gear have derived widely divergent estimates of growth parameters. The estimated time taken to reach 100 mm rostral carapace length (minimum legally exploited size in Queensland, Australia) in those studies has ranged from 1.75 to 8.83 years for females and from 1.08 to 3.58 years for males. Our data show that the commercial fishing apparatus used in those studies is size selective and catches only adult crabs. The resulting size bias in samples collected using that apparatus precludes the application of length-frequency-based techniques to estimate growth parameters from those samples. We devised a new dredge to collect samples of juvenile R. ranina and to calculate juvenile growth rates from modal progression in those samples. We combined those data with estimated mean maximum lengths (L) of 121.7 mm for females and 155.9 mm for males from commercial catch data to model other von Bertalanffy growth parameters using bootstrap methods. Those modelled parameters (K=0.29, T0=–0.24 for females; K=0.23, T0=–0.25 for males) indicate that R. ranina grows more slowly than most previous estimates suggest, with females requiring an average of 6.35 years and males 4.31 years to reach 100 mm rostral carapace length. This slow growth is consistent with the slow metabolism of R. ranina, and indicates that this species would be likely to recover slowly from overexploitation.Communicated by G.F. Humphrey, Sydney  相似文献   

9.
The colonial ascidian Distaplia cylindrica occurs both as scattered individual colonies or in gardens of colonies in fine-grained soft substrata below 20 m depths off Anvers Island along the Antarctic Peninsula. Individual colonies, shaped as tall rod-like cylinders and anchored in the sediments by a bulbous base, may measure up to 7 m in height. D. cylindrica represent a considerable source of materials and energy for prospective predators, as well as potential surface area for fouling organisms. Nonetheless, qualitative in situ observations provided no evidence of predation by sympatric predators such as abundant sea stars, nor obvious biofouling of colony surfaces. Mean energy content of whole-colony tissue of D. cylindrica was relatively high for an ascidian (14.7 kJ g–1 dry wt), with most of this energy attributable to protein (12.7 kJ g–1 dry wt). The sympatric omnivorous sea star Odontaster validus consistently rejected pieces of D. cylindrica colonies in laboratory feeding assays, while readily ingesting similarly sized alginate food pellets. Feeding deterrence was determined to be attributable to defensive chemistry, as colonies of D. cylindrica are nutritionally attractive and lack physical protection (conspicuous skeletal elements or a tough outer tunic), and O. validus display significant feeding-deterrent responses to alginate food pellets containing tissue-level concentrations of organic extracts. In addition, high acidity measured on outer colony surfaces (pH 1.5) as well as homogenized whole-colony tissues (pH 2.5) are indicative of surface sequestration of inorganic acids. Agar food pellets prepared at tissue levels of acidity resulted in significant feeding deterrence in sea stars. Thus, both inorganic acids and secondary metabolites contribute to chemical feeding defenses. D. cylindrica also possesses potent antifoulant secondary metabolites. Tissue-level concentrations of hydrophilic and lipophilic extracts caused significant mortality in a sympatric pennate diatom. Chemical feeding deterrents and antifoulants are likely to contribute to the abundance of D. cylindrica and, in turn, play a role in regulating energy transfer and community structure in benthic marine environments surrounding Antarctica.Communicated by P.W. Sammarco, Chauvin  相似文献   

10.
Growth and feeding activities of the tintinnid ciliate Favella taraikaensis fed the toxic dinoflagellate Alexandrium tamarense were examined in laboratory experiments. Both growth and ingestion rates of F. taraikaensis as a function of the A. tamarense concentration were fitted to a rectangular hyperbolic equation. The maximum growth and ingestion rates of F. taraikaensis were 1.0 day–1 and 2.8 cells ind. h–1 (carbon specific ingestion rates: 3.5 day–1), respectively, which are both included in the range of previous data reported for Favella spp. feeding on other algae. The gross growth efficiency (GGE) of F. taraikaensis ranged from 0.26 to 0.49 (mean value 0.40) at the concentration of 10–800 cells ml–1, which is within the range of previous data on Favella spp. Also, the growth and ingestion rates and GGE of F. taraikaensis on A. tamarense were not significantly different from the values on another non-toxic dinoflagellate (Heterocapsa triquetra) at two different prey concentrations. This indicates that the toxicity of A. tamarense probably did not influence the feeding and growth activities of F. taraikaensis at concentrations of less than ca. 800 cells ml–1. To evaluate the grazing by F. taraikaensis on A. tamarense blooms in the field, the population dynamics of A. tamarense were simulated based on the growth and ingestion parameters of F. taraikaensis. As a result, the grazing impact by F. taraikaensis was considered to potentially regulate the development of A. tamarense blooms. If the toxicity of A. tamarense does not influence the growth and feeding activities of F. taraikaensis, the occurrence of such grazer plankton are considered to be important for predicting the course of A. tamarense bloom dynamics under natural conditions.Communicated by T. Ikeda, Hakodate  相似文献   

11.
Sand shrimp, Crangon septemspinosa Say, are important to the trophic dynamics of coastal systems in the northwestern Atlantic. To evaluate predatory impacts of sand shrimp, daily energy requirements (J ind.–1 day–1) were calculated for this species from laboratory estimates of energy losses due to routine (RR), active (RA), and feeding (RSDA) oxygen consumption rates (J ind.–1 h–1), coupled with measurements of diel motile activity. Shrimp used in this study were collected biweekly from the Niantic River, Connecticut (41°33N; 72°19W) during late spring and summer of 2000 and 2001. The rates of shrimp energy loss due to RR and RA increased exponentially with increasing temperature, with the magnitude of increase greater between 6°C and 10°C (Q10=3.01) than between 10°C and 14°C (Q10=2.85). Rates of RR doubled with a twofold increase in shrimp mass, and RSDA was 0.130 J h–1+RR, irrespective of shrimp body size. Shrimp motile activity was significantly greater during dark periods relative to light periods, indicating nocturnal behavior. Nocturnal activity also increased significantly at higher temperatures, and at 20°C shifted from a unimodal to a bimodal pattern. Laboratory estimates of daily metabolic expenditures (1.7–307.4 J ind.–1 day–1 for 0.05 and 1.5 g wet weight shrimp, respectively, between 0°C and 20°C) were combined with results from previous investigations to construct a bioenergetic model and make inferences regarding the trophic positioning of C. septemspinosa. Bioenergetic model estimates indicated that juvenile and adult shrimp could meet daily energy demands via opportunistic omnivory, selectively preying upon items of high energy content (e.g. invertebrate and fish tissue) and compensating for limited prey availability by ingesting readily accessible lower energy food (e.g. detritus and plant material).Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by J.P. Grassle, New Brunswick  相似文献   

12.
Changes in the protein, lipid, glycogen, cholesterol and energy contents, total amino acid and fatty acid profiles of Octopus vulgaris and O. defilippi tissues (gonad, digestive gland and muscle) during sexual maturation (spermatogenesis and oogenesis) were investigated. Both species showed an increase of amino acids and protein content in the gonad throughout sexual maturation (namely in oogenesis), but allocation of these nitrogen compounds from the digestive gland and muscle was not evident. The major essential amino acids in the three tissues were leucine, lysine and arginine. The major non-essential amino acids were glutamic acid, aspartic acid and alanine. With respect to carbon compounds, a significant increasing trend (P<0.05) in the lipid and fatty acid contents in the three tissues was observed, and, consequently, there was also little evidence of accumulated lipid storage reserves being used for egg production. It seems that for egg production both Octopus species use energy directly from food, rather than from stored products. This direct acquisition model contrasts with the previous model for Octopus vulgaris proposed by ODor and Wells (1978: J Exp Biol 77:15–31). Most of saturated fatty acid content of the three tissues was presented as 16:0 and 18:0, monounsaturated fatty acid content as 18:1 and 20:1 and polyunsaturated fatty acid content as arachidonic acid (20:4n-6), eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3). Though cholesterol is an important precursor of steroid hormones, this sterol content exhibited variations that do not seem to be related with the maturation process. Moreover, significant differences (P<0.05) were obtained between genders, suggesting that perhaps there is a greater physiological demand for cholesterol during spermatogenesis than oogenesis. If the component sterols of octopus are of a dietary origin, considerable variation in the cholesterol content between species might be expected on the basis of the sterol composition of their prey. The glycogen reserves increased significantly in the gonad and decreased significantly (P<0.05) in the digestive gland and muscle of O. vulgaris (these trends were not evident in O. defilippi). Glycogen may play an important role in the maturation process and embryogenesis of these organisms, because carbohydrates are precursors of metabolic intermediates in the production of energy. It was evident that sexual maturation had a significant effect upon the gonad energy content, but the non-significant energy variation (P>0.05) in the digestive gland and muscle revealed no evidence that storage reserves are transferred from tissue to tissue. The biochemical composition of digestive gland and muscle may not be influenced by sexual maturation, but rather by other biotic factors, such as feeding activity, food availability, spawning and brooding.Communicated by S.A. Poulet, Roscoff  相似文献   

13.
We investigated the impact of copepods on the seston community in a mesocosm set-up, and assessed how the changes in food quantity, quality and size affected the condition of the grazers, by measuring the RNA:DNA ratios in different developmental stages of Calanus finmarchicus. Manipulated copepod densities did not affect the particulate carbon concentration in the mesocosms. On the other hand, chlorophyll a content increased with higher copepod densities, and increasing densities had a positive effect on seston food quality in the mesocosms, measured as C:N ratios and 3:6 fatty acid ratios. These food quality indicators were significantly correlated to the nutritional status of C. finmarchicus. In contrast to our expectations, these results suggest a lower copepod growth potential on higher quality food. However, in concordance with earlier studies, we found that when copepods were in high densities the large particles (>1000 µm3) decreased and that the smaller particles (<1000 µm3) increased in number. These patterns were closely linked to the condition of C. finmarchicus, which were of better condition (RNA:DNA ratios) with increasing biovolumes of large particles, and, conversely, lower RNA:DNA ratios with increasing biovolumes of smaller particles. Consequentially, the selective grazing by copepods stimulated increased biovolumes of smaller plankton, and this increase was responsible for the increased food quality, in terms of C:N and 3:6 ratios. Thus, we conclude that the decreasing growth potentials of C. finmarchicus were a result of a decrease of favourably sized food particles, induced by copepod grazing.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

14.
Life-history features of the sympatric amphipods Themisto pacifica and T. japonica in the western North Pacific were analyzed based on seasonal field samples collected from July 1996 through July 1998, and data from laboratory rearing experiments. T. pacfica occurred throughout the year, with populations peaking from spring to summer. In contrast, T. japonica were rare from autumn to early winter, but became abundant in late winter to spring. Mature T. pacifica females and juveniles occurred together throughout the year, indicating year-round reproduction. Mature T. japonica females were observed only in spring, and juveniles occurred irregularly in small numbers, suggesting limited, early-spring reproduction in this study area. Size composition analysis of T. pacifica identified a total of eight cohorts over the 2 years of the study. Due to the smaller sample size and rarity of mature females (>9.6 mm) and males (>7.1 mm), cohort analyses of T. japonica were not comparable. Laboratory rearing of specimens at 2°C, 5°C, 8°C and 12°C revealed that a linear equation best expressed body length growth by T. pacifica, while a logistic equation best expressed body length growth by T. japoncia. Combining these laboratory-derived growth patterns with maturity sizes of wild specimens, the minimum and maximum generation times of females at a temperature range of 2–12°C were computed as 32 days (12°C) and 224 days (2°C), respectively, for T. pacifica, and 66 days (12°C) and 358 days (2°C), respectively, for T. japonica. The numbers of eggs or juveniles in females marsupia increased with female body length and ranged from 23 to 64 for T. pacifica and from 152 to 601 for T. japonica. Taking into account the number of mature female instars, lifetime fecundities were estimated as 342 eggs for T. pacifica and 1195 eggs for T. japonica. Possible mechanisms for the coexistence of these two amphipods in the Oyashio region are also discussed.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

15.
The California sheephead, Semicossyphus pulcher Ayres (Labridae), is a carnivorous, temperate, rocky-reef/kelp-bed species that is highly sought in recreational and commercial fisheries. Fine-scale acoustic telemetry tracking was used to ascertain the home range and habitat utilization of S. pulcher. Sixteen adult S. pulcher (26–38 cm SL) were surgically fitted with small acoustic transmitters and manually tracked for up to 144 h during multiple, 24-h periods between March 2001 and August 2002 within the Catalina Marine Science Center Marine Life Reserve (33°26N; 118°29W). A geographic information system was used to calculate home range sizes (95% kernel utilization distributions) and habitat use. Tracking of the first five fish over 24 h confirmed that S. pulcher were strictly diurnal, so the remaining 11 fish were tracked from 1 h before sunrise to 1 h after sunset. Home ranges varied greatly, from 938 to 82,070 m2, with a mean (±SD) of 15,134±26,007 m2. Variability in home range sizes among fish was attributed to differences in habitat shape (embayment vs. contiguous coastline) and to natural habitat boundaries (deep, sandy expanses) in adjacent areas within the reserve. There was a significant relationship between fish length and proportion of time spent in different habitats (sand vs. reef). S. pulcher were found within rocky-reef areas 54% of the time, and, within these areas, a greater percentage of daytime was spent in high-relief areas. Based on the relatively small size and persistence of home ranges of adult S. pulcher, no-take reserves, if they contain appropriate habitat, would provide adequate protection for their stocks.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00227-005-1573-1.Communicated by J.P. Grassle, New Brunswick  相似文献   

16.
Large discoidal soritid foraminiferans (Soritinae) are abundant in coral reef ecosystems. As with the many cnidarian invertebrates that inhabit these systems, they also depend on symbiotic dinoflagellates (Symbiodinium) for their growth and survival. Several particular Symbiodinium sub-genera or clades inhabit these soritids. One of these groups, referred to as clade C, dominates corals and their relatives throughout the tropical Indo-Pacific. In contrast, the distributions of Symbiodinium spp. from clades A, B, and C are more evenly apportioned across Caribbean invertebrate communities. To explore the possibility that a similar biogeographic break exists in the symbionts harbored by soritids, we surveyed the Symbiodinium spp. from the soritid genus Sorites, collected from the Pacific and Caribbean coasts of Panama as well as from Florida. Characterization of Symbiodinium obtained from foraminiferal and cnidarian samples was conducted using restriction fragment length polymorphism and phylogenetic analyses of the nuclear internal transcribed spacer region 2 (ITS 2) and a portion of the large subunit ribosomal DNA sequences. A distinctive biogeographic break between the kinds of symbionts found in Sorites from the East Pacific and Caribbean was clearly evident. Differences between cnidarian and foraminferan symbioses in each ocean may be explained by the subjection of Caribbean communities to severer environmental conditions during the early Quarternary. Caribbean Sorites spp. harbored symbionts described from clade F (specifically sub-clade Fr4) and clade H (formally referred to as Fr1), while Sorites spp. from the eastern Pacific were dominated by a single Symbiodinium haplotype in clade C. An ITS 2 phylogeny determined that most clade C types recovered from Indo-Pacific soritids form a monophyletic sub-lineage with other clade C symbionts typically found in Pacific corals from the genus Porites. The existence of multiple Symbiodinium lineages at various taxonomic levels associated specifically with soritids indicates that symbioses with these hosts are important in driving Symbiodinium spp. evolution.Electronic Supplementary Material Supplementary material is available in the online version of this article at .Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

17.
Competitive interactions between two fucoid algae with different growth forms, Fucus serratus L. and Himanthalia elongata (L.) S.F. Gray were examined both in the laboratory and on a shore of the Isle of Man, Irish Sea. The growth of germlings of both species declined with increasing density, irrespective of whether they were with cohorts or rival species, indicating that intra- and interspecific competition occurred between germlings. H. elongata suppressed the performance of F. serratus at the germling stage by virtue of its larger initial size, and at the mushroom stage by forming a miniature canopy with the caps of the adjacent plants. In a field experiment, the mortality of H. elongata juveniles generally increased in mixtures with F. serratus and was highest when F. serratus were 50% of the plants. At the juvenile stage, the negative effect of F. serratus on H. elongata was more severe than the other way round. This was because F. serratus grows predominantly upwards, whereas H. elongata had already begun to expand laterally at the distal end. If F. serratus survives in sparse mixed stands with H. elongata juveniles, it can overgrow them and inhibit their subsequent survivorship and growth, probably by both shading and physical sweeping. H. elongata and F. serratus maintain their discrete monospecific stands because of the varying outcomes of mutual competitive exclusion resulting from their differing growth patterns. Thus it is possible for them to co-occur at a similar shore height.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

18.
19.
Previous feeding studies on herbivorous marine snails rarely have focused on temperature effects on food intake. If temperature affects food intake, ectothermic snails may experience difficulty obtaining sufficient nutritional resources, limiting their ability to sustain populations at suboptimal temperatures. We hypothesized that the feeding responses of Tegula species would correspond with temperatures characteristic of their geographic distributions. We determined activity, consumption rates, and gut passage times at 11°C, 15°C, 19°C, and 23°C for three Tegula species with distinct thermal distributions: T. brunnea (cold water), T. aureotincta (warm water), and individuals from warm- and cold-water populations of T. funebralis, a broadly distributed species. Activity and consumption rates of T. aureotincta increased with increasing temperature, but were highest for T. brunnea at 19°C, a temperature rarely achieved in habitats occupied by this species, and lowest at 11°C. Warm-water T. funebralis showed significantly lower activity and consumption rates at 11°C, whereas cold-water T. funebralis consumed food fastest at 15°C and were most active at 23°C. Temperature affected gut passage time only in T. aureotincta. These data suggest that temperature might influence the northern limit of T. aureotincta by affecting activity and food consumption rates. T. brunneas activity and ability to consume food were not hindered by warmer temperatures despite the present day restriction of this species to colder waters. Also, widely separated (>300 km) T. funebralis populations may be adapted to regional conditions based on the different temperature responses of northern and southern snails.Communicated by P.W. Sammarco, Chauvin  相似文献   

20.
Previous research on gametic incompatibility in marine invertebrates suggests that for highly dispersive marine invertebrate species, barriers to fertilization among closely related taxa are often incomplete and sometimes asymmetric. The nature of these barriers can dramatically affect the patterns of gene flow and genetic differentiation between species, and thus speciation. Blue mussels, in the genus Mytilus, are genetically distinct in allopatry yet hybrids are present wherever any two species within the group co-occur. The present study sampled M. edulis (L.) and M. trossulus (Gould) in May and June 2001 from the East Bay section of Cobscook Bay, Maine, USA (latitude 44°56′30″N; longitude 67°07′50″W), where the two species are sympatric. Gamete incompatibility was investigated in a series of laboratory fertilizations carried out in July 2001. The proportion of fertilized eggs typically exceeded 80% at sperm concentrations of 103–104 ml?1 among intraspecific matings (n=18), but was <30% even at sperm concentrations in excess of 105–106 ml?1 for interspecific matings (n=13). Further analysis indicated that approximately 100- to 700-fold higher sperm concentrations were required to achieve 20% fertilization in interspecific matings relative to intraspecific matings, indicating strong barriers to interspecific fertilization. The proportion of fertilized eggs did not follow this general pattern in all matings, however. The eggs from two (out of five) M. edulis females were almost as receptive to M. trossulus sperm as they were to M. edulis sperm. In contrast, the eggs from all M. trossulus females (n=3) were unreceptive to M. edulis sperm, suggesting that fertilization barriers between these species may be asymmetric. Given the experimental design employed in this study, the results are also consistent with a strong maternal or egg effect on the level of interspecific gamete compatibility in M. edulis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号