首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Introduction: The main objective of this research is to investigate the effect of traffic barrier geometric characteristics on crashes that occurred on non-interstate roads. Method: For this purpose, height, side-slope rate, post-spacing, and lateral offset of about 137 miles of traffic barriers were collected on non-interstate (state, federal aid primary, federal aid secondary, and federal aid urban) highways in Wyoming. In addition, crash reports recorded between 2008 and 2017 were added to the traffic barrier dataset. The safety performance of traffic barriers with regards to their geometric features was analyzed in terms of crash frequency and crash severity using random-parameters negative binomial, and random-parameters ordered logit models, respectively. Results: From the results, box beam barriers with a height of 27–29 inches were less likely to be associated with injury and fatal injury crashes compared to other barrier types. On the other hand, the likelihood of a severe injury crash was found to be higher for box beam barriers with a height taller than 31 inches. Both W-beam and box beam barriers with a post-spacing between 6.1 and 6.3 inches reduced the probability of severe injury crashes. In terms of the crash frequency, flare traffic barriers had a lower crash frequency compared to parallel traffic barriers. Non-interstate roads without longitudinal rumble strips were associated with a higher rate of traffic barrier crashes.  相似文献   

2.
IntroductionVehicles in transport sometimes leave the travel lane and encroach onto natural or artificial objects on the roadsides. These types of crashes are called run-off the road crashes, which account for a large proportion of fatalities and severe crashes to vehicle occupants. In the United States, there are about one million such crashes, with roadside features leading to one third of all road fatalities. Traffic barriers could be installed to keep vehicles on the roadways and to prevent vehicles from colliding with obstacles such as trees, boulder, and walls. The installation of traffic barriers would be warranted if the severity of colliding with the barrier would be less severe than colliding with other fix objects on the sides of the roadway. However, injuries and fatalities do occur when vehicle collide with traffic barriers. A comprehensive analysis of traffic barrier features is lacking due to the absence of traffic barrier features data. Previous research has focused on simulation studies or only a general evaluation of traffic barriers, without accounting for different traffic barrier features.MethodThis study is conducted using an extensive traffic barrier features database for the purpose of investigating the impact of different environmental and traffic barrier geometry on this type of crash severity. This study only included data related to two-lane undivided roadway systems, which did not involve median barrier crashes. Crash severity is modeled using a mixed binary logistic regression model in which some parameters are fixed and some are random.ResultsThe results indicated that the effects of traffic barrier height, traffic barrier offset, and shoulder width should not be separated, but rather considered as interactions that impact crash severity. Rollover, side slope height, alcohol involvement, road surface conditions, and posted speed limit are some factors that also impact the severity of these crashes. The effects of gender, truck traffic count, and time of a day were found to be best modeled with random parameters in this study. The effects of these risk factors are discussed in this paper.Practical applicationsResults from this study could provide new guidelines for the design of traffic barriers based upon the identified roadway and traffic barrier characteristics.  相似文献   

3.
IntroductionDespite the numerous safety studies done on traffic barriers’ performance assessment, the effect of variables such as traffic barrier’s height has not been identified considering a comprehensive actual crash data analysis. This study seeks to identify the impact of geometric variables (i.e., height, post-spacing, sideslope ratio, and lateral offset) on median traffic barriers’ performance in crashes on interstate roads.MethodGeometric dimensions of over 110 miles median traffic barriers on interstate Wyoming roads were inventoried in a field survey between 2016 and 2018. Then, the traffic barrier data collected was combined with historical crash records, traffic volume data, road geometric characteristics, and weather condition data to provide a comprehensive dataset for the analysis. Finally, an ordered logit model with random-parameters was developed for the severity of traffic barrier crashes. Based on the results, traffic barrier’s height was found to impact crash severity.ResultsCrashes involving cable barriers with a height between 30″ and 42″ were less severe than other traffic barrier types, while concrete barriers with a height shorter than 32″ were more likely involved with severe injury crashes. As another important finding, the post-spacing of 6.1–6.3 ft. was identified as the least severe range in W-beam barriers.Practical applicationsThe results show that using flare barriers should reduce the number of crashes compared to parallel barriers.  相似文献   

4.
Introduction: This study investigates the impact of several risk factors (i.e., roadway, driver, vehicle, environmental, and barrier-specific characteristics) on the injury severity resulting from barrier-related crashes and also on barrier-hit outcomes (i.e., vehicle containment, vehicle redirection, and barrier penetration). A total of 1,685 barrier-related crashes, which occurred on three major interstate highways (I-65, I-85, and I-20) in the state of Alabama, were collected for a seven-year period (2010–2016), and all relevant information from the police reports was reviewed. Features that were rarely explored before (e.g., median width, barrier length, barrier offset or lateral position, left shoulder width, blockout type, and number of cables) were also collected and examined. Two types of longitudinal barriers were analyzed: high-tension cable barriers installed on medians and strong-post guardrails installed on medians and/or roadsides. Method: Two separate mixed logit (MXL) models were used to analyze crash injury severity in median and roadside barrier-related crashes. Two additional MXL models were separately adopted for median and roadside barrier-related crashes to estimate the probability of three barrier-hit outcomes (vehicle containment, vehicle redirection, and barrier penetration). Results: The results of crash injury severity MXL models showed that, for both median and roadside barrier crashes, barrier penetration, female drivers, and driver fatigue were associated with a higher probability of injury or fatal crashes. The results of barrier-hit MXL models showed that longer barrier length, Brifen cable barrier system, and barrier lateral position were significant predictors of median barrier-hit outcomes, whereas dark lighting condition, driving under the influence (DUI), presence of curved freeway sections, and right shoulder width significantly contributed to roadside barrier-hit outcomes. Conclusions: The MXL model succeeded in identifying several contributing factors of crash severity and barrier-hit outcomes along Alabama’s interstate highways. Practical applications: One study application is to design longer barrier run length (greater than 1230 feet or 0.2 miles) to reduce the barrier penetration likelihood.  相似文献   

5.
IntroductionRoadway departure (RwD) crashes, comprising run-off-road (ROR) and cross-median/centerline head-on collisions, are one of the most lethal crash types. According to the FHWA, between 2015 and 2017, an average of 52 percent of motor vehicle traffic fatalities occurred each year due to roadway departure crashes. An avoidance maneuver, inattention or fatigue, or traveling too fast with respect to weather or geometric road conditions are among the most common reasons a driver leaves the travel lane. Roadway and roadside geometric design features such as clear zones play a significant role in whether human error results in a crash. Method: In this paper, we used mixed-logit models to investigate the contributing factors on injury severity of single-vehicle ROR crashes. To that end, we obtained five years' (2010–2014) of crash data related to roadway departures (i.e., overturn and fixed-object crashes) from the Federal Highway Administration's Highway Safety Information System Database. Results: The results indicate that factors such as driver conditions (e.g., age), environmental conditions (e.g., weather conditions), roadway geometric design features (e.g., shoulder width), and vehicle conditions significantly contributed to the severity of ROR crashes. Conclusions: Our results provide valuable information for traffic design and management agencies to improve roadside design policies and implementing appropriately forgiving roadsides for errant vehicles. Practical applications: Our results show that increasing shoulder width and keeping fences at the road can reduce ROR crash severity significantly. Also, increasing road friction by innovative materials and raising awareness campaigns for careful driving at daylight can decrease the ROR crash severity.  相似文献   

6.
Objectives: We combine data on roads and crash characteristics to identify patterns in road traffic crashes with regard to road characteristics. We illustrate how combined analysis of data regarding road maintenance, maintenance costs, road characteristics, crash characteristics, and geographical location can enrich road maintenance prioritization from a traffic safety perspective.

Methods: The study is based on traffic crash data merged with road maintenance data and annual average daily traffic (AADT) collected in Denmark. We analyzed 3,964 crashes that occurred from 2010 to 2015. A latent class clustering (LCC) technique was used to identify crash clusters with different road and crash characteristics. The distribution of crash severity and estimated road maintenance costs for each cluster was found and cluster differences were compared using the chi-square test. Finally, a map matching procedure was used to identify the geographical distribution of the crashes in each cluster.

Results: Results showed that based on road maintenance levels there was no difference in the distribution of crash severity. The LCC technique revealed 11 crash clusters. Five clusters were characterized by crashes on roads with a poor maintenance level (levels 4 and 3). Only a few of these crashes included a vulnerable road user (VRU) but many occurred on roads without barriers. Four clusters included a large share of crashes on acceptably maintained roads (level 2). For these clusters only small variations in road characteristics were found, whereas the differences in crash characteristics were more dominant. The last 2 clusters included crashes that mainly occurred on new roads with no need for maintenance (level 1). Injury severity, estimated maintenance costs, and geographical location were found to be differently distributed for most of the clusters.

Conclusions: We find that focusing solely on road maintenance and crash severity does not provide clear guidance of how to prioritize between road maintenance efforts from a traffic safety perspective. However, when combined with geographical location and crash characteristics, a more nuanced picture appears that allows consideration of different target groups and perspectives.  相似文献   


7.
Introduction: Road safety studies in signalized intersections have been performed extensively using annually aggregated traffic variables and crash frequencies. However, this type of aggregation reduces the strength of the results if variables that oscillate over the course of the day are considered (speed, traffic flow, signal cycle length) because average indicators are not able to describe the traffic conditions preceding the crash occurrence. This study aims to explore the relationship between traffic conditions aggregated in 15-min intervals and road crashes in urban signalized intersections. Method: First, an investigation of the reported crash times in the database was conducted to obtain the association between crashes and their precursor conditions. Then, 4.1 M traffic condition intervals were consolidated and grouped using a hierarchical clustering technique. Finally, charts of the frequency of crashes per cluster were explored. Results: The main findings suggest that high vehicular demand conditions are related to an increase in property damage only (PDO) crashes, and an increase in the number of lanes is linked to more PDO and injury crashes. Injury crashes occurred in a wide range of traffic conditions, indicating that a portion of these crashes were due to speeding, while the other fraction was associated with the vulnerability of road users. Traffic conditions with: (a) low vehicular demand and a long cycle length and (b) high vehicular demand and a short cycle length were critical in terms of PDO and injury crashes. Practical Applications: The use of disaggregated data allowed for a stronger evaluation of the relationship between road crashes and variables that oscillate over the course of the day. This approach also permits the development of real-time risk management strategies to mitigate the frequency of critical traffic conditions and reduce the likelihood of crashes.  相似文献   

8.
Abstract

Objective: Road departures are one of the most severe crash modes in the United States. To help reduce this risk, vehicles are being introduced in the United States with lane departure warning (LDW) systems, which warn the driver of a departure, and lane departure prevention (LDP) systems, which assist the driver in steering back to the roadway. Previous studies have estimated that LDW/LDP systems may prevent one third of drift-out-of-lane road departure crashes. This study investigates the crashes that were not prevented, to potentially set research priorities for next-generation road departure prevention systems.

Methods: The event data recorder (EDR) data from 128 road departure crashes in the National Automotive Sampling System Crashworthiness Data System (NASS-CDS) from 2011 to 2015 were mapped onto the vehicle trajectory and simulated with LDW/LDP to assess the potential for crash avoidance. The model predicted that 63–83% of single-vehicle road departure crashes may not be prevented by an LDW system and 49% may not be prevented by an LDP system.

Results and Conclusions: For LDP systems, which were assumed to have zero latency, no crashes were avoided if the time-to-collision (TTC) from lane crossing to impact was less than 0.55?s. Obstacles such as guardrails and traffic barriers, which tend to be very close to the road, were more common among the remaining crashes. The study shows that LDW/LDP systems are limited by two factors, driver reaction time and TTC to the roadside object. Thus, earlier driver response and longer TTC may help in these situations.  相似文献   

9.
Introduction: We examine the effects of various traffic parameters on type of road crash. Method: Multivariate probit models are specified on 4-years of data from the A4-A86 highway section in the Ile-de-France region, France. Results: Empirical findings indicate that crash type can almost exclusively be defined by the prevailing traffic conditions shortly before its occurrence. Rear-end crashes involving two vehicles were found to be more probable for relatively low values of both speed and density, rear-end crashes involving more than two vehicles appear to be more probable under congested conditions, while single-vehicle crashes appear to be largely geometry-dependent. Impact on Industry: Results could be integrated in a real-time traffic management application.  相似文献   

10.
Introduction: The state of Wyoming, like other western United States, is characterized by mountainous terrain. Such terrain is well noted for its severe downgrades and difficult geometry. Given the specific challenges of driving in such difficult terrain, crashes with severe injuries are bound to occur. The literature is replete with research about factors that influence crash injury severity under different conditions. Differences in geometric characteristics of downgrades and mechanics of vehicle operations on such sections mean different factors may be at play in impacting crash severity in contrast to straight, level roadway sections. However, the impact of downgrades on injury severity has not been fully explored in the literature. This study is thus an attempt to fill this research gap. In this paper, an investigation was carried out to determine the influencing factors of crash injury severities of downgrade crashes. Method: Due to the ordered nature of the response variable, the ordered logit model was chosen to investigate the influencing factors of crash injury severities of downgrade crashes. The model was calibrated separately for single and multiple-vehicle crashes to ensure the different factors influencing both types of crashes were captured. Results: The parameter estimates were as expected and mostly had signs consistent with engineering intuition. The results of the ordered model for single-vehicle crashes indicated that alcohol, gender, road condition, vehicle type, point of impact, vehicle maneuver, safety equipment use, driver action, and annual average daily traffic (AADT) per lane all impacted the injury severity of downgrade crashes. Safety equipment use, lighting conditions, posted speed limit, and lane width were also found to be significant factors influencing multiple-vehicle downgrade crashes. Injury severity probability plots were included as part of the study to provide a pictorial representation of how some of the variables change in response to each level of crash injury severity. Conclusion: Overall, this study provides insights into contributory factors of downgrade crashes. The literature review indicated that there are substantial differences between single- and multiple vehicle crashes. This was confirmed by the analysis which showed that mostly, separate factors impacted the crash injury severity of the two crash types. Practical applications: The results of this study could be used by policy makers, in other locations, to reduce downgrade crashes in mountainous areas.  相似文献   

11.
IntroductionMany U.S. cities have adopted the Vision Zero strategy with the specific goal of eliminating traffic-related deaths and injuries. To achieve this ambitious goal, safety professionals have increasingly called for the development of a safe systems approach to traffic safety. This approach calls for examining the macrolevel risk factors that may lead road users to engage in errors that result in crashes. This study explores the relationship between built environment variables and crash frequency, paying specific attention to the environmental mediating factors, such as traffic exposure, traffic conflicts, and network-level speed characteristics. Methods: Three years (2011–2013) of crash data from Mecklenburg County, North Carolina, were used to model crash frequency on surface streets as a function of built environment variables at the census block group level. Separate models were developed for total and KAB crashes (i.e., crashes resulting in fatalities (K), incapacitating injuries (A), or non-incapacitating injuries (B)) using the conditional autoregressive modeling approach to account for unobserved heterogeneity and spatial autocorrelation present in data. Results: Built environment variables that are found to have positive associations with both total and KAB crash frequencies include population, vehicle miles traveled, big box stores, intersections, and bus stops. On the other hand, the number of total and KAB crashes tend to be lower in census block groups with a higher proportion of two-lane roads and a higher proportion of roads with posted speed limits of 35 mph or less. Conclusions: This study demonstrates the plausible mechanism of how the built environment influences traffic safety. The variables found to be significant are all policy-relevant variables that can be manipulated to improve traffic safety. Practical Applications: The study findings will shape transportation planning and policy level decisions in designing the built environment for safer travels.  相似文献   

12.
Objective: A new European Union (EU) regulation for safety barriers, which is based on performance, has encouraged road agencies to perform an upgrade of old barriers, with the expectation that there will be safety benefits at the retrofitted sites. The new class of barriers was designed and installed in compliance with the 1998 (European Norm) EN 1317 standards for road restraint systems, which lays down common requirements for the testing and certification of road restraint systems in all countries of the European Committee for Standardization (CEN). Both the older and new barriers are made of steel and are installed in such a way as to avoid vehicle intrusion, but the older ones are thought to be only effective at low speeds and large angles of impact. The new standard seeks to remedy this by providing better protection at higher speeds. This article seeks to quantify the effect on the frequency of fatal and injury crashes of retrofitting motorways with barriers meeting the new standards.

Methods: The estimation of the crash modification was carried out by performing an empirical Bayes before–after analysis based on data from the A18 Messina–Catania motorway in Italy. The methodology has the great advantage to account for the regression to the mean effects. Besides, to account for time trend effects and dispersion of crash data, a modified calibration methodology of safety performance was used.

Results: This study, based on data collected on 76 km of motorway in the period 2000–2012, derived Crash Modification Factor point estimates that indicate reductions of 72% for run-off-road fatal and injury crashes and 38% in total fatal and injury crashes that could be expected by upgrading an old safety barrier by complying with new EU 1317 standards. The estimated benefit-cost ratio of 5.57 for total crashes indicates that the treatment is cost effective.

Conclusions: The magnitude of this benefit indicates that the retrofits are cost-effective even for total crashes and should continue in any European country inasmuch as the estimated Crash Modification Factors are based on treatment sites that are reasonably representative of all European motorways.  相似文献   


13.
Introduction: With prevalent and increased attention to driver inattention (DI) behavior, this research provides a comprehensive investigation of the influence of built environment and roadway characteristics on the DI-related vehicle crash frequency per year. Specifically, a comparative analysis between DI-related crash frequency in rural road segments and urban road segments is conducted. Method: Utilizing DI-related crash data collected from North Carolina for the period 2013–2017, three types of models: (1) Poisson/negative binomial (NB) model, (2) Poisson hurdle (HP) model/negative binomial hurdle (HNB) model, and (3) random intercepts Poisson hurdle (RIHP) model/random intercepts negative binomial hurdle (RIHNB) model, are applied to handle excessive zeros and unobserved heterogeneity in the dataset. Results: The results show that RIHP and RIHNB models distinctly outperform other models in terms of goodness-of-fit. The presence of commercial areas is found to increase the probability and frequency of DI-related crashes in both rural and urban regions. Roadway characteristics (such as non-freeways, segments with multiple lanes, and traffic signals) are positively associated with increased DI-related crash counts, whereas state-secondary routes and speed limits (higher than 35 mph) are associated with decreased DI-related crash counts in rural and urban regions. Besides, horizontal curved and longitudinal bottomed segments and segments with double yellow lines/no passing zones are likely to have fewer DI-related crashes in urban areas. Medians in rural road segments are found to be effective to reduce DI-related crashes. Practical Applications: These findings provide a valuable understanding of the DI-related crash frequency for transportation agencies to propose effective countermeasures and safety treatments (e.g., dispatching more police enforcement or surveillance cameras in commercial areas, and setting more medians in rural roads) to mitigate the negative consequences of DI behavior.  相似文献   

14.
Introduction: Alcohol-related impairment is a key contributing factor in traffic crashes. However, only a few studies have focused on pedestrian impairment as a crash characteristic. In Louisiana, pedestrian fatalities have been increasing. From 2010 to 2016, the number of pedestrian fatalities increased by 62%. A total of 128 pedestrians were killed in traffic crashes in 2016, and 34.4% of those fatalities involved pedestrians under the influence (PUI) of drugs or alcohol. Furthermore, alcohol-PUI fatalities have increased by 120% from 2010 to 2016. There is a vital need to examine the key contributing attributes that are associated with a high number of PUI crashes. Method: In this study, the research team analyzed Louisiana’s traffic crash data from 2010 to 2016 by applying correspondence regression analysis to identify the key contributing attributes and association patterns based on PUI involved injury levels. Results: The findings identified five risk clusters: intersection crashes at business/industrial locations, mid-block crashes on undivided roadways at residential and business/residential locations, segment related crashes associated with a pedestrian standing in the road, open country crashes with no lighting at night, and pedestrian violation related crashes on divided roadways. The association maps identified several critical attributes that are more associated with fatal and severe PUI crashes. These attributes are dark to no lighting, open country roadways, and non-intersection locations. Practical Applications: The findings of this study may be used to help design effective mitigation strategies to reduce PUI crashes.  相似文献   

15.
16.
IntroductionAlthough many researchers have estimated the crash modification factors (CMFs) for specific treatments (or countermeasures), there is a lack of prior studies that have explored the variation of CMFs. Thus, the main objectives of this study are: (a) to estimate CMFs for the installation of different types of roadside barriers, and (b) to determine the changes of safety effects for different crash types, severities, and conditions.MethodTwo observational before–after analyses (i.e. empirical Bayes (EB) and full Bayes (FB) approaches) were utilized in this study to estimate CMFs. To consider the variation of safety effects based on different vehicle, driver, weather, and time of day information, the crashes were categorized based on vehicle size (passenger and heavy), driver age (young, middle, and old), weather condition (normal and rain), and time difference (day time and night time).ResultsThe results show that the addition of roadside barriers is safety effective in reducing severe crashes for all types and run-off roadway (ROR) crashes. On the other hand, it was found that roadside barriers tend to increase all types of crashes for all severities. The results indicate that the treatment might increase the total number of crashes but it might be helpful in reducing injury and severe crashes. In this study, the variation of CMFs was determined for ROR crashes based on the different vehicle, driver, weather, and time information.Practical applicationsBased on the findings from this study, the variation of CMFs can enhance the reliability of CMFs for different roadway conditions in decision making process. Also, it can be recommended to identify the safety effects of specific treatments for different crash types and severity levels with consideration of the different vehicle, driver, weather, and time of day information.  相似文献   

17.
Introduction: Given the tremendous number of lives lost or injured, distracted driving is an important safety area to study. With the widespread use of cellphones, phone use while driving has become the most common distracted driving behavior. Although researchers have developed safety performance functions (SPFs) for various crash types, SPFs for distraction-affected crashes are rarely studied in the literature. One possible reason is the lack of critical distracted behavior information in the commonly used safety data (i.e., roadway inventory, traffic, and crash counts). Recently, the frequency of phone use while driving (referred to as phone use data) is recorded by mobile application companies and has become available to safety researchers. The primary objective of this study is to examine if phone use data can potentially predict distracted-affected crashes. Method: The authors first integrated phone use data with roadway inventory, traffic, and crash data in Texas. Then, the Random Forest (RF) algorithm was applied to assess the significance of the feature - phone use while driving - for predicting the number of distraction-affected crashes on a road segment. Further, this study developed two SPFs for distraction-affected crashes with and without the phone use data, separately. Both SPFs were assessed in terms of model fitting and prediction performances. Results: RF results rank the frequency of phone use as an important factor contributing to the number of distraction-affected crashes. Performance evaluations indicated that the inclusion of phone use data in the SPFs consistently improved both fitting and prediction abilities to predict distracted-affected crashes. Practical Applications: The phone use data provide new insights into the safety analyses of distraction-affected crashes, which cannot be achieved by only using the conventional roadway inventory and crash data. Therefore, safety researchers and practitioners are encouraged to incorporate the emerging data sources in reducing distraction-affected crashes.  相似文献   

18.
Introduction: The pedestrian hybrid beacon (PHB) is a traffic control device used at pedestrian crossings. A recent Arizona Department of Transportation research effort investigated changes in crashes for different severity levels and crash types (e.g., rear-end crashes) due to the PHB presence, as well as for crashes involving pedestrians and bicycles. Method: Two types of methodologies were used to evaluate the safety of PHBs: (a) an Empirical Bayes (EB) before-after study, and (b) a long-term cross-sectional observational study. For the EB before-after evaluation, the research team considered three reference groups: unsignalized intersections, signalized intersections, and both unsignalized and signalized intersections combined. Results: For the signalized and combined unsignalized and signalized intersection groups, all crash types considered showed statistically significant reductions in crashes (e.g., total crashes, fatal and injury crashes, rear-end crashes, fatal and injury rear-end crashes, angle crashes, fatal and injury angle crashes, pedestrian-related crashes, and fatal and injury pedestrian-related crashes). A cross-sectional study was conducted with a larger number of PHBs (186) to identify relationships between roadway characteristics and crashes at PHBs, especially with respect to the distance to an adjacent traffic control signal. The distance to an adjacent traffic signal was found to be significant only at the α = 0.1 level, and only for rear-end and fatal and injury rear-end crashes. Conclusions: This analysis represents the largest known study to date on the safety impacts of PHBs, along with a focus on how crossing and geometric characteristics affect crash patterns. The study showed the safety benefits of PHBs for both pedestrians and vehicles. Practical Applications: The findings from this study clearly support the installation of PHBs at midblock or intersection crossings, as well as at crossings on higher-speed roads.  相似文献   

19.
IntroductionThis study explored how drivers adapt to inclement weather in terms of driving speed, situational awareness, and visibility as road surface conditions change from dry to slippery and visibility decreases. The proposed work mined existing data from the SHRP 2 NDS for drivers who were involved in weather-related crash and near-crash events. Baseline events were also mined to create related metadata necessary for behavioral comparisons. Methods: Researchers attempted, to the greatest extent possible, to match non-adverse-weather driving scenarios that are similar to the crash and near-crash event for each driver. The ideal match scenario would be at a day prior to the crash during non-adverse weather conditions having the same driver, at the same time of day, with the same traffic level on the same road on which the crash or near-crash occurred. Once the matched scenarios have been identified, a detailed analysis will be performed to determine how a driver’s behavior changed from normal driving to inclement-weather driving. Results: Data collected indicated that, irrespective of site location (i.e., state), most crashes and near-crashes occurred in rain, with only about 12% occurring in snowy conditions. Also, the number of near-crashes was almost double the number of crashes showing that many drivers were able to avoid a crash by executing an evasive maneuver such as braking or steering. Conclusions: Most types of near crashes were rear-end and sideswipe avoidance epochs, as the drivers may have had a difficult time merging or trying to change lanes due to low visibility or traffic. Hard braking combined with swerving were the most commonly used evasive maneuvers, occurring when drivers did not adjust their speeds accordingly for specific situations. Practical applications: Results from this study are expected to be utilized to educate and guide drivers toward more confident and strategic driving behavior in adverse weather.  相似文献   

20.
Introduction: Reducing the likelihood of freeway secondary crashes will provide significant safety, operational and environmental benefits. This paper presents a method for assessing the likelihood of freeway secondary crashes with Adaptive Signal Control Systems (ASCS) deployed on alternate routes that are typically used by diverted freeway traffic to avoid any delay or congestion due to a freeway primary crash. Method: The method includes four steps: (1) identification of secondary crashes, (2) verification of alternate routes, (3) assessment of the likelihood of secondary crashes for freeways with ASCS deployed on alternate routes and non-ASCS (i.e. pre-timed, semi- or fully-actuated) alternate routes, and (4) investigation of unobserved heterogeneity of the likelihood of freeway secondary crashes. Four freeway sections (i.e., two with ASCS deployed on alternate routes and two non-ASCS alternate routes) in South Carolina are considered. Results and Conclusions: Findings from the logistic regression modeling reveal significant reduction in the likelihood of secondary crashes for one freeway section (i.e., Charleston I-26 E) with ASCS deployed on alternate route. Other factors such as rear-end crash, dark or limited light, peak period, and annual average daily traffic contribute to the likelihood of freeway secondary crashes. Furthermore, random-parameter logistic regression model results for Charleston I-26 E reveal that unobserved heterogeneity of ASCS effect exists across the observations and ASCS are associated with the reduction of the likelihood of freeway secondary crashes for 84% of the observations (i.e., primary crashes). Location of the primary crash on the freeway is observed to affect the benefit of ASCS toward freeway secondary crash reduction as the primary crash’s location determines how many upstream freeway vehicles will be able to take the alternate route. Practical Applications: Based on the findings, it is recommended that the South Carolina Department of Transportation (SCDOT) considers deploying ASCS on alternate routes parallel to freeway sections where high percentages of secondary crashes are found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号