首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chang L  Chen IP  Lin SS 《Chemosphere》2005,58(4):485-492
It has been shown that the CeO2/gamma-Al2O3 catalyst is a feasible alternative to CeO2 for the catalytic wet air oxidation (CWAO) of phenol because it remains an effective catalyst and yet is cheaper to prepare. In this study, we found that the optimal cerium content in the CeO2/gamma-Al2O3 catalyst was 20 wt.%, regardless of catalyst loading. Furthermore, at 180 degrees C, with a phenol concentration of 1000 mg l(-1), and an O2 partial pressure of 1.0M Pa or 1.5M Pa, the optimal catalyst loading was 3.0 gl (-1). The efficacy of CWAO of phenol improved with O2 partial pressure, although the effects of O2 pressure were more significant between 0.5 MPa and 1.5 MPa than between 1.5 MPa and 2.0 MPa. After 2 h of reaction, approximately 100% phenol conversion and 80% total organic carbon (TOC) removal was recorded at 180 degrees C, 1000 mg l(-1) of phenol and 3.0 g l(-1) of catalyst. Because these percentages subsequently leveled off, it is suggested that 2 h is a suitable time over which to run the reaction. The efficacy of CWAO of phenol decreased as initial phenol concentration was raised (from 400 to 2500 mg l(-1)), with the exception of phenol conversion after about 2 h, for which 400 mg l(-1) produced the lowest phenol conversion figure. Higher phenol concentrations require both catalyst loading and O2 partial pressure to be increased to maintain high performance. For example, for 2000 mg l(-1) and 2500 mg l(-1) phenol, nearly 100% phenol conversion and 90% TOC removal after 4 h of reaction at 180 degrees C required 4.0 g l(-1) of catalyst and 2.0 MPa.  相似文献   

2.
Thirteen isomers of branched para-nonylphenols (para-NP) in three technical mixtures were isomer-specifically determined using their synthesized standards by SIM of structurally specific ions, m/z 135, 149 or 163 with GC–MS. Of the 13 isomers, four isomers, 4-(2,4-dimethylheptan-4-yl)phenol, 4-(4-methyloctan-4-yl)phenol, 4-(3-ethyl-2-methylhexan-2-yl)phenol (3E22NP) and 4-(2,3-dimethylheptan-2-yl)phenol synthesized for their determinations were first used as standard substances. The 13 isomers in the technical mixtures individually occurred at mass percent portion of more than 2%. The total mass percent portions in the mixtures from Tokyo Chemical Industry (TCI), Aldrich, and Fluka covered with 89 ± 2%, 75 ± 4% and 77 ± 2%, respectively. The abundance of 4-(3,6-dimethylheptan-3-yl)phenol in the three mixtures was the largest with 11.1 ± 2% to 9.9 ± 0.3%, while that of 4-(2-methyloctan-2-yl)phenol was the smallest with 2.9 ± 0.3% to 3.0 ± 0.2%. Additionally, structures of four new isomers of more than 1% portion present in a technical mixture were elucidated as two pairs of diastereomeric isomers: two types of 4-(3,4-dimethylheptan-4-yl)phenol (344NP) and those of 4-(3,4-dimethylheptan-3-yl)phenol (343NP). By estrogenic assay of 13 isomers with yeast estrogen screen system, the activity of 3E22NP was the highest, while that of 4-(3-methyloctan-3-yl)phenol was the least. Their relative activities to that of 3E22NP were individually calculated. Estrogenic equivalent concentrations of the three technical mixtures were predictively evaluated. The ratio of the EEC to the conventional concentration, total mass percent portions of the 13 isomers in technical mixtures were 0.208 for TCI, 0.206 for Aldrich and 0.205 for Fluka. The predicted estrogenic activity of measured concentration of para-NP in technical mixtures was approximately 5-fold greater than the measured estrogen agonist activity.  相似文献   

3.
Biodegradation of phenol was observed in unsaturated sandbed columns, in which phenol concentration declined from 298 mg phenol/kg sand to less than 1 mg/kg after 21 days. In saturated sand-bed columns, phenol concentration declined from 230 mg phenol/kg to less than 1 mg/kg after 37 days. Pseudo-first-order phenol biodegradation rates were in the range 0.25 days(-1) (R2 = 0.9) to 0.66 days(-1) (R2 = 0.85) and 0.08 days(-1) (R2 = 0.68) to 0.14 days(-1) (R2 = 0.84) in the unsaturated and saturated sand-bed columns, respectively. Unsaturated columns presented a higher biomass density (21.5 mg/g) in the sand-bed and lower biomass concentration in the aqueous phase (3.5 NTU) compared with the saturated columns (6.4 mg/g and 14.0 NTU). A high concentration of phenol releases in the sand-bed columns resulted in an initial inhibition of microbial activity and destabilization of the attached biomass.  相似文献   

4.
Phenolic compounds present in the drainage from several industries are harmful pollutants and represent a potential danger to human health. In this work we have studied the removal of phenol from water using Brassica napus hairy roots as a source of enzymes, such as peroxidases, which were able to oxidise phenol. These hairy roots were investigated for their tolerance to highly toxic concentrations of phenol and for the involvement of their peroxidase isoenzymes in the removal of phenol. Roots grew normally in medium containing phenol in concentrations not exceeding 100 mg l(-1), without the addition of H(2)O(2). However, roots were able to remove phenol concentrations up to 500 mg l(-1), in the presence of H(2)O(2), reaching high removal efficiency, within 1h of treatment and over a wide range of pH (4-9). Hairy roots could be re-used, at least, for three to four consecutive cycles. Peroxidase activity gradually decreased to approximately 20% of the control, at the fifth cycle. Basic and near neutral isoenzymes (BNP) decreased along time of recycling while acidic isoenzymes (AP) remained without changes. Although both group of isoenzymes would be involved in phenol removal, AP showed higher affinity and catalytic efficiency for phenol as substrate than BNP. In addition, AP retained more activity than BNP after phenol treatment. Thus, AP appears to be a promising isoenzyme for phenol removal and for application in continuous treatments. Furthermore, enzyme isolation might not be necessary and the entire hairy roots, might constitute less expensive enzymatic systems for decontamination processes.  相似文献   

5.
Adav SS  Chen MY  Lee DJ  Ren NQ 《Chemosphere》2007,67(8):1566-1572
Aerobic granules effectively degrade phenol at high concentrations from which no Acinetobacter species, that can effectively degrade high concentrations of phenol, have ever been isolated from aerobic granules. The phenol-fed aerobic granule studied was made by merging several smaller granules, each with a core of proteins and nucleic acids surrounded by an outer layer enriched with polysaccharides. In the present study, a strain of Acinetobacter sp. was isolated from the phenol-fed aerobic granules and was identified using DNA sequencing. The fluorescent in situ hybridisation combined with the confocal laser scanning microscope test revealed that the isolated Acinetobacter strain was mainly distributed in the core regime of granule. Batch tests revealed that the suspended Acinetobacter strain could effectively degrade phenol at an initial phenol concentration of up to 1000 mg l(-1) with no cell growth taking place at a phenol concentration of 1500 mg l(-1). The Haldane model describes the inhibitory kinetics of the phenol degradation data. The suspended Acinetobacter strain had a propensity to attach to the surface of sterilized polyurethane foam at a concentration of 12.3mg dry cells mg(-1) dry foam. The immobilized cells could not only degrade phenol at a rate similar to the suspended cells at phenol concentration of 500 mg l(-1), but also effectively degraded phenol at 1500 mg l(-1). The polysaccharides outer layer protected the Acinetobacter strain from phenol's toxicity; while the strain may also contribute to bioaggregation of the granule for its high propensity to attach to solid surface.  相似文献   

6.
Guo XX  Brimblecombe P 《Chemosphere》2007,68(3):436-444
Phenols are widely present in the atmosphere and nitration probably in the aerosol phase leads to nitrophenols. Nitration by nitric acid in sulfuric acid can be rapid, but little is known of the process under atmospheric conditions. The Henry's law constants K(H)(dagger) of phenol and 2-, 3- and 4-nitrophenol were all measured by a bubble stripping method as: 2820mol kg(-1) atm(-1) (at 298K), 147mol kg(-1) atm(-1) (at 298K), 1.6x10(4)mol kg(-1)atm(-1) (at 308K) and 2.1x10(4)mol kg(-1) atm(-1) (at 308K), respectively. The Henry's law constant of phenol in sulfuric acid systems is lower by more than a factor of two at 1020mol kg(-1) atm(-1) (at 298K) in 40wt% sulfuric acid, which is in line with salting-out of oxygen-containing aromatic compounds in water-sulfuric acid systems. The Henry's law constants of 2- and 4-nitrophenol behave differently and are almost independent of sulfuric acid concentration. The variation of K(H)(dagger) with temperature (T) described in terms of -dln(K(H)(dagger))/d(1/T) does not to vary with sulfuric acid concentration, suggesting enthalpy of dissolution for phenol is independent of sulfuric acid. The series of Henry's law constants measured here can describe the equilibrium situation for phenols in careful determinations of phase partitioning in the atmosphere.  相似文献   

7.
Russ AS  Vinken R  Schuphan I  Schmidt B 《Chemosphere》2005,60(11):1624-1635
Eight tertiary nonanols were synthesized via Grignard reaction and coupled by Friedel–Crafts alkylation with phenol to the corresponding nonylphenols. Six branched para-nonylphenols (NP) were obtained: 4-(3′-methyl-3′-octyl)phenol (33NP), 4-(2′-methyl-2′-octyl)phenol (22NP), 4-(2′,5′-dimethyl-2′-heptyl)phenol (252NP), 4-(2′,5′,5′-trimethyl-2′-hexyl)phenol (2552NP), 4-(2′,4′-dimethyl-2′-heptyl)phenol (242NP) and 4-(4′-ethyl-2′-methyl-2′-hexyl)phenol (4E22NP). Their structures were confirmed by GC–MS and NMR spectroscopy. These six isomers as well as the earlier synthesized 4-(3′,5′-dimethyl-3′-heptyl)phenol (353NP), 4-(3′,6′-dimethyl-3′-heptyl)phenol (363NP) and 4-(2′,6′-dimethyl-2′-heptyl)phenol (262NP) were compared with commercial NP mixtures purchased from Acros and Fluka by GC–MS (equipped with a 100 m polysiloxane column). The analyses revealed that all obtained isomers are occurring in different quantities in both commercial NP mixtures.  相似文献   

8.
Two sets of new diastereomeric 4-nonylphenol (NP) isomers [4-(3,4-dimethylheptan-4-yl)phenol (344NP, NP-J, L) and 4-(3,4-dimethylheptan-3-yl)phenol (343NP, NP-K, P)] were separated from a commercial NP mixture. The mixture of these diastereomers was synthesized at the same time by a single Friedel-Crafts reaction of 3,4-dimethyl-4-heptanol and phenol, and the mixture was separated into individual NPs by HPLC equipped with Hypercarb column. For the first time, in this study the stereostructure-estrogenic activity relationship of NP diastereomers was investigated. The NP isomers (NP-L and NP-P) having the beta-methyl group over the benzene ring were found to be 2-4 times more estrogenic than their diastereomers (NP-J and NP-K). In the case of the other set of diastereomer [4-(3,5-dimethylheptan-3-yl)phenol, (353NP, NP-E, G)] containing gamma-methyl group in the molecule, the gamma-methyl proton signal (delta 0.49) in the more estrogenic isomer (NP-G) also appeared in a higher field than the corresponding methyl signal (delta 0.76) of the less estrogenic isomer (NP-E).  相似文献   

9.
The objective of this work was to evaluate the effect of the initial sulfide concentration on the kinetics and metabolism of phenol and sulfide in batch bioassays using nitrate as electron acceptor. Complete oxidation of sulfide (20 mg L(-1) of S(2-)) and phenol (19.6 mg L(-1)) was linked to nitrate reduction when nitrate was supplemented at stoichiometric concentrations. At 32 mg L(-1) of sulfide, oxidation of sulfide and phenol by the organo-lithoautotrophic microbial culture was sequential; first sulfide was rapidly oxidized to elemental sulfur and afterwards to sulfate; phenol oxidation started once sulfate production reached a maximum. When the initial sulfide concentration was increased from 20 to 26 and finally to 32 mg L(-1), sulfide oxidation was inhibited. In contrast phenol consumption by the denitrifying culture was not affected. These results indicated that sulfide affected strongly the sulfide oxidation rate and nitrate reduction.  相似文献   

10.
This work deals with a new abiotic oxidation process designed as a suitable pre-treatment step within a biological depuration of wastewater containing phenol or its derivatives (o-cresol, 2-chlorophenol and p-nitrophenol) or aniline. The reaction was carried out in a stirred tank reactor at 20 degrees C and atmospheric pressure in presence of the organic compound, 150mgl(-1), zero valent iron particles (10g), ethylenediamine tetraacetic acid (EDTA, 101mgl(-1)) and air. The experimental results show that 85% of phenol conversion can be achieved after 360min. 2-Chlorophenol was found to be more easily degradable and it is completely eliminated after 300min. The oxidation of o-cresol and aniline behaved more closely to phenol obtaining after 360min 70% and 68% of conversion respectively. p-Nitrophenol was a very refractory compound, giving only 28% of conversion after 360min. Moreover, the influence of some operating variables was studied over the following ranges: temperature from 20 to 50 degrees C, initial phenol concentration from 150 to 1000mgl(-1), EDTA concentration from 50 to 200mgl(-1) and iron particles from 5 to 20g. As expected, temperature strongly enhances phenol conversion. Also, an increase of the catalyst to phenol ratio or the iron or EDTA to phenol ratio improves the reaction rate. A preliminary kinetic analysis of the data shown that the rate of phenol disappearance is not first order with respect to the phenol.  相似文献   

11.
A high-performance liquid chromatographic method was developed to analyse selected endocrine disrupting chemicals in water by using automated on-line solid-phase extraction with a fluorescence detector. The excitation and emission wavelengths of the fluorescence detector were 230 nm and 290 nm, respectively. The selected endocrine disrupting chemicals include hormone steroids such as estradiol (E2), estriol (E3), ethynylestradiol (EE2), and ethynylestradiol 3-methyl ether (MeEE2) as well as nonylphenols (NP), octylphenols (OP), POE(1-2) nonyl phenol (NPE) and bisphenol A (BP). Three types of on-line cartridges (C18, PLRP-s and PRP-1) were tested to pre-concentrate the endocrine disruptors in deionised water. It was found that the recoveries of these chemicals at 1 microg/L were close to 100% except for 4-octyl phenol and 4-n-nonyl phenol, which had recoveries of about 40% to 80%. The two polymer cartridges (PLRP-s and PRP-1) gave higher recoveries than the C18 cartridges. The addition of methanol at 5% to 10% in water significantly improved the recovery of 4-octyl phenol and 4-n-nonyl phenol. The addition of methanol also led to an improvement in the recovery with C18 cartridges. With the addition of methanol in water samples, these three types of cartridges gave similar recoveries for the chemicals. The detection limits of this method ranged from 20 ng/L to 50 ng/L. A river water sample spiked with these chemicals was analysed using the above method and we found no interference with the peaks of the selected endocrine disrupting chemicals. The recoveries for these chemicals were more than 92% except for 4-NP with a recovery of 61%. This relatively simple method is useful for laboratory studies on the environmental fate of these endocrine disrupting chemicals in water.  相似文献   

12.
Tryba B  Morawski AW  Inagaki M  Toyoda M 《Chemosphere》2006,64(7):1225-1232
Fe-C-TiO(2) photocatalysts which contained the residue carbon (0.2-3.3 mass%) were prepared from a mixture of TiO(2) and FeC(2)O(4) through the heating at 673-1173 K in Ar. These photocatalysts did not show a high adsorption of phenol, but they were active in photo-Fenton reactions during decomposition of phenol under UV irradiation with addition of H(2)O(2). It was proved that Fe(2+) governed the photoactivity of Fe-C-TiO(2) photocatalysts, it decreased with heat-treatment temperature above 773 K. For comparison, Fe-TiO(2) photocatalyst was prepared by heating TiO(2) and FeC(2)O(4) at 823 K in air for 3h. Phenol decomposition was going much slower on Fe-TiO(2) photocatalyst in comparison with Fe-C-TiO(2), of which mechanism was different, on the former phenol was decomposed by the radical reaction, on the latter through a complex reaction with iron and intermediates of phenol decomposition. Therefore carbon-coating TiO(2) was found to be advantageous for mounting iron and its application for the phenol decomposition via photo-Fenton process.  相似文献   

13.
Although there are more than 200 odor-causing volatile organic compounds (VOCs), phenol and p-cresol are two prominent odor-causing VOCs found downwind from concentrated animal feeding operations (CAFOs). The VOC emissions from cattle and dairy production are difficult to quantify accurately because of their low concentrations, spatial variability, and limitations of available instruments. To quantify VOCs, a protocol following US. Environmental Protection Agency (EPA) Method TO-14A has been established based on the isolation flux chamber method and a portable gas chromatograph (GC) coupled with a purge-and-trap system. The general objective of this research was to quantify phenol and p-cresol emission rates (ERs) from different ground-level area sources (GLASs) in a free-stall dairy during summer and winter seasons using this protocol. Two-week-long sampling campaigns were conducted in a dairy operation in central Texas. Twenty-nine air samples were collected during winter and 37 samples were collected during summer from six specifically delineated GLASs (barn, loafing pen, lagoon, settling basin, silage pile, and walkway) at the free-stall dairy. Thirteen VOCs were identified during the sampling period and the GC was calibrated for phenol and p-cresol, the primary odorous VOCs identified. The overall calculated ERs for phenol and p-cresol were 2656 +/- 728 and 763 +/- 212 mg hd(-1) day(-1), respectively, during winter. Overall phenol and p-cresol ERs were calculated to be 1183 +/- 361 and 551 +/- 214 mg hd(-1) day(-1), respectively, during summer. In general, overall phenol and p-cresol ERs during winter were about 2.3 and 1.4 times, respectively, higher than those during summer.  相似文献   

14.
Carbon-coated TiO(2) modified by iron, were prepared from TiO(2) of anatase structure and PET modified by FeC(2)O(4). Catalysts were prepared by mixing powders of TiO(2) and modified PET and heating at different temperatures, from 400 to 800 degrees C under flow of Ar gas. High adsorption of phenol was observed on the catalyst heated at 400 degrees C, confirmed by FT-IR analysis. On this catalyst, fast rate of phenol decomposition was achieved by addition of small amount of H(2)O(2) to the reaction mixture. Phenol decomposition proceeded mainly through the direct oxidation of phenol species adsorbed on the catalyst surface due to the photo-Fenton reaction. Iron-modified carbon-coated TiO(2) catalysts heated at 500-800 degrees C showed almost no phenol adsorption or oxidation.  相似文献   

15.
A laboratory-scale activated sludge process was developed to reduce the pollution load of a dye-industry waste, containing aniline, phenol, methyl violet and rhodamine B as its major components. The waste exerted an organic load of 5576 mg litre(-1) as the chemical oxygen demand (COD), of 896 mg litre(-1) as total organic carbon (TOC), and had a 31.5 mg litre(-1) phenol content. A microbial sludge, capable of growing on the waste, was developed from cattle dung, adapted to the waste and used as a bioinoculum for the process. This resulted in reductions of 60% in COD, 37% in TOC, and 92% in phenol content, and a decrease in optical density of the colour of the waste from an initial 0.915 to 0.360 at 580 nm. Microorganisms isolated from sludge were identified as Pseudomonas alcaligenes and P. mendocina.  相似文献   

16.
Jiang Y  Wen J  Caiyin Q  Lin L  Hu Z 《Chemosphere》2006,65(7):1236-1241
He-Ne laser technology was utilized in this study to investigate the response of Alcaligenes faecalis to laser stimulation. The irradiation experiments were conducted by the adjustment of the output power from 5 to 25 mW and the exposure time from 5 to 25 min. The results showed that the survival rate changed regularly with the variety of irradiation dose, and high positive mutation frequency was determined by both the energy density and the output power. The mutant strain AFM 2 was obtained. Phenol biodegradation assay demonstrated that AFM 2 possessed a more prominent phenol-degrading potential than its parent strain, which presumably attributed to the improvements of phenol hydroxylase and catechol 1,2-dioxygenase activities. The phenol of 2000 mgl(-1) was completely degraded by AFM 2 within 85.5h at 30 degrees C. In addition, the cell growth and phenol degradation kinetics of the mutant strain AFM 2 and its parent strain in batch cultures were also investigated at the wide initial phenol concentration ranging from 0 to 2000 mgl(-1) by Haldane model. The results of these experiments further demonstrated that the mutant strain AFM 2 possessed a higher capacity to resist phenol.  相似文献   

17.
Catalytic wet-air oxidation (CWAO) of wastewater (chemical oxygen demand [COD] = 1800 mg O2/dm3) from a fine chemicals plant was investigated in a fixed-bed reactor at T = 393-473 K under total pressure of 5.0 or 8.0 MPa. Catalysts containing 0.3% wt. of platinum deposited on two supports, mixed silica-titania (SM1) and carbon black composites (CBC) were used. The CBC-supported catalyst appeared to be more active than the SM1-supported one. A slow decrease of activity of the platinum on SM1 (Pt-SM1) during the long-term operation is attributed to recrystallization of titania and leaching of a support component, while the Pt-CBC catalyst is deteriorated, owing to combustion of the support component. The power-law-kinetic equations were used to describe the rate of COD removal at CWAO over the catalysts. The kinetic parameters of COD reduction for the wastewater were determined and compared with the kinetic parameters describing phenol oxidation over the same catalysts. Rates of COD removal for the wastewater were found higher than those for phenol oxidation over the same catalysts and under identical operating conditions.  相似文献   

18.
Common vetch (Vicia sativa L.) is a legume species with an extensive agricultural use. However, the phytoremediation potentiality of this species has not been sufficiently explored because little is known about its resistance to inorganic and organic pollutants. In the present work, phenol tolerance of common vetch was assayed at different stages of growth. Germination index and germination rate decreased only at high phenol concentrations (250 and 500 mg L(-1)), whereas 30-day-old plants were able to tolerate this pollutant, with high removal efficiencies. The activities of antioxidative enzymes, such as peroxidase (POD) and ascorbate peroxidase, increased significantly with the highest phenol concentration, whereas superoxide dismutase activity, malondialdehyde, and H(2)O(2) levels remained unaltered. Besides, an increase in two basic isoforms of POD was observed in plants treated with phenol. The results suggested that common vetch has an efficient protection mechanism against phenol-induced oxidative damage. Moreover, it could tolerate and remove high phenol concentrations, avoiding serious phytotoxic effects. Thus, V. sativa could be considered an interesting tool in the field of phytoremediation.  相似文献   

19.
Degradation of phenol and o-, m- and p-cresol at a concentration of 150 mg l(-1) of each compound was studied in a suspended-carrier biofilm process consisting of two aerobic stages. The fungus Mortierella sarnyensis Mil'ko dominated the microflora in the first reactor, while bacteria dominated in the second reactor. The process was studied at 4, 7, 11 and 15 degrees C. The results from the experiments showed the process to be relatively efficient even at 4 degrees C. The degradation rate was 33% of that at 15 degrees C for o-cresol. Both phenol and the cresols were degraded in the first reactor and a new peak appeared in the HPLC-chromatograms indicating the formation of one or more intermediate compounds in the first stage. These compounds were however degraded to below the detection limit in the second reactor. Small new peaks appeared in the chromatograms of the outlet from the second reactor at the maximum loading rates.  相似文献   

20.
Shibata A  Toyota K  Miyake K  Katayama A 《Chemosphere》2007,68(11):2096-2103
Anaerobic degradation of phenol, p-cresol, 4-n-propylphenol (n-PP), 4-i-propylphenol (i-PP), 4-n-butylphenol (n-BP) and 4-sec-butylphenol (sec-BP) was observed in a paddy soil supplemented with nitrate. We detected the metabolites 4′-hydroxypropiophenone (HPP) from n-PP, 4-i-propenylphenol from i-PP, and 4-(1-butenyl)phenol and 4′-hydroxybutyrophenone (HBP) from n-BP. Compared with the original soils, Betaproteobacteria became predominant in the microcosm during the degradation of phenol and p-cresol whereas no remarkable change was observed in the community degrading propylphenols and butylphenols. The microcosm, however, did not degrade 4-t-butylphenol (t-BP), 4-t-octylphenol (t-OP) and 4-n-octylphenol (n-OP). Paddy soil supplemented with sulfate or iron (III) as electron acceptors did not degrade phenol and 4-alkylphenols with the exception of the degradation of p-cresol in sulfate-reducing conditions. It was demonstrated for the first time that anaerobic microbial degradation of alkylphenols, in a paddy soil supplemented with nitrate as an electron acceptor, occurred via oxidation of the alpha carbon in the alkyl chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号