首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. Although essential oils are well known antimicrobial agents, some microorganisms are activated by them and can use them as a carbon and energy source; this is the case for soil bacteria from Mediterranean ecosystems. We examined the assumption that soil microorganisms when offered with an essential oil, to which they had been previously exposed, would respond faster making immediate use of the newly added substrate. Origanum vulgare subsp. hirtum, Rosmarinus officinalis, Mentha spicata, and Coridothymus capitatus plants were collected and their essential oils isolated. Soil samples from the upper surface layer, beneath these aromatic plants, were also collected. All possible combinations of essential oils and soil samples were examined as well as the effect of the oil of R. officinalis and the non-indigenous, Lavandula angustifolia, on soil samples collected from cultivated fields. Soil respiration was used as a measure of the microbial activity. Oils (0.1 ml) were repeatedly added to the soil samples (150 g) and CO2 release was measured every seven days. Essential oils differed in their chemical composition. In spite of that, they activated respiration of the different soil samples, even of those not previously exposed to essential oils, to a comparable degree. These results suggest that essential oils are used as a carbon and energy source by rather ubiquitously occurring soil microorganisms and provide evidence that they would not accumulate in the soil, if environmental conditions favour growth of these microorganisms.  相似文献   

2.
高光和低光下木本植物形态和生理可塑性响应   总被引:3,自引:1,他引:3  
光资源的时空异质性普遍存在.为了提高光利用效率或有效避免强光的伤害,植物通常采取多种调节措施.植物适应林下异质、多变的环境过程中,表型的可塑性是非常关键的.植物表型可塑性与其环境异质性密不可分.植物通过生长变化、生物量分配、光合器官结构调整、叶氮分配、抗氧化防御系统、热耗散机制,以及长期的表型可塑性来增大截取光资源的潜力和实际光资源利用效率,同时也为自身提供了一种有效的保护机制.大量实验证明,阳生植物比阴生植物表现出较大的表型可塑性,且其可塑性方式存在差异.本文主要阐述了植物对高光和低光条件的形态和生理可塑性适应,为了解植物在极端光照条件下生存与繁殖提供参考.大量的人工模拟与自然光照实验有待进行来阐明植物对自然光照条件的适应,为植被恢复和重建提供参考和依据.参96  相似文献   

3.
Chromium toxicity and tolerance in plants   总被引:1,自引:0,他引:1  
Chromium (Cr) is the second most common metal contaminant in ground water, soil, and sediments due to its wide industrial application, hence posing a serious environmental concern. Among various valence states, Cr(III) and Cr(VI) are the most stable forms. Cr(VI) is the most persistent in the soil and is highly toxic for biota. Since Cr is a non-essential element for plants, there is no uptake mechanism; Cr is taken up along essential elements such as sulfate through sulfate transporters. Cr accumulation in plants causes high toxicity in terms of reduction in growth and biomass accumulation, and Cr induces structural alterations. Cr interferes with photosynthetic and respiration processes, and water and minerals uptake mechanism. Various enzymatic activities related to starch and nitrogen metabolism are decreased by Cr toxicity either by direct interference with the enzymes or through the production of reactive oxygen species. Cr causes oxidative damage by destruction of membrane lipids and DNA damage. Cr may even cause the death of plant species. Few plant species are able to accumulate high amount of Cr without being damaged. Such Cr-tolerant, hyperaccumulator plants are exploited for their bioremediation property. The present review discusses Cr availability in the environment, Cr transfer to biota, toxicity issues, effect on germination and plant growth, morphological and ultrastructural aberrations, biochemical and physiological alterations, effect on metabolic processes, Cr-induced alterations at the molecular level, Cr hyperaccumulation and Cr detoxification mechanism, and the role of arbuscular mycorrhizae in Cr toxicity, in plants.  相似文献   

4.
酸雨对外来植物入侵的影响   总被引:2,自引:0,他引:2  
廖周瑜  彭少麟 《生态环境》2007,16(2):639-643
酸雨和外来种入侵都是全球关注的问题。结合外来入侵植物的生态适应特性以及酸雨的危害特征,系统分析了酸雨对外来植物入侵产生的影响。酸雨对外来植物入侵的影响是复杂多样的。酸雨导致群落冠层稀疏,群落透光率增加,加之氮沉降后土壤、水体氮素的增加,有利于生长力强的外来喜阳植物入侵;酸雨加速土壤酸化,促使基本离子淋失以及A1毒等危害植物的生长发育,植物的内源激素以及化感作用发生改变,适应力和耐受力强的外来植物在与本地植物竞争中处于相对优势而成为入侵种;酸雨以及外来植物入侵改变了土壤微生物群落结构,影响本地植物的生长而促使外来植物的入侵。  相似文献   

5.
High levels of fluoride in tea plants pose a potential health risk to humans who drink tea. It has been demonstrated that tea plant fluoride is closely related to the available fluoride in soil. But approaches that could be used to regulate the availability of fluoride in soil have been rarely seen. This study aims to investigate how the addition of charcoal and bamboo charcoal affected soil fluoride availability and bioaccumulation of fluoride in tea plants. In a microcosm experiment, tea plants were grown in the tea garden soil mixed with different amounts of charcoal and bamboo charcoal [that is, 0.5, 1.0, 2.5, and 5.0?% (w/w)]. Soil-fluoride fractions and fluoride accumulated in tea plants were determined using the sequential extraction and ion selective electrode method. Obtained results showed that both charcoal and bamboo charcoal additions significantly enhanced the concentrations of Fe/Mn oxide-bound fluoride, but significantly reduced the concentrations of water-soluble and exchangeable fluoride (p?相似文献   

6.
Review of fly ash inertisation treatments and recycling   总被引:1,自引:0,他引:1  
Fly ash (FA) is a by-product of power, and incineration plants operated either on coal and biomass, or on municipal solid waste. FA can be divided into coal fly ash, obtained from power plant burning coal, flue gas desulphurisation FA, that is, the by-product generated by the air pollution control equipment in coal-fired power plants to reduce the release of SO2, biomass FA produced in the plants for thermal conversion of biomass and municipal solid waste incineration (MSWI) FA, that is, the finest residue obtained from the scrubber system in a MSWI plant. Because of the large amount produced in the world, fly ash is now considered the world’s fifth largest material resource. The composition of FA is very variable, depending on its origins; then, also pollutants can be very different. In this frame, it is fundamental to exploit the chemical or physical potentials of FA constituents, thus rendering them second-life functionality. This review paper is addressed to FA typology, composition, treatment, recycling, functional reuse and metal and organic pollutants abatement. Because of the general growing of environmental awareness and increasing energy and material demand, it is expected that increasing recycling rates will reduce the pressure on demand for primary raw materials, help to reuse valuable materials which would otherwise be wasted and reduce energy consumption and greenhouse gas emissions from extraction and processing.  相似文献   

7.
三江源区不同建植年代人工草地群落演替与土壤养分变化   总被引:6,自引:0,他引:6  
研究了了三源区不同建植期人工修复草地在不同演替阶段毒杂草[主要是甘肃马先蒿(Pedicularis kansuensis)]的入侵规律、数量特征,植物群落物种组成、生物苗和草地质最以及土壤养分、微生物活性的变化规律.结果表明,不同建植期人工修复草地植物群落的种类组成、植物功能群组成和群落数量特征存在显著差异.随着演替时间的推移,人工草地群落盖度、高度、物种数、生物最和多样性指数均表现出"V"字型变化规律,杂类草--甘肃马先蒿的数量特征变化尤为明显,在4 a的人工草地群落中开始局部入侵,在5~6 a的人工草地群落中大面积入侵,其入侵速度、入侵面积达到高峰期.土壤的含水量、容重、土壤中有机质、氮素和磷素在演替过程(7 a、9 a草地)中逐渐降低,到一定时期又逐步增加;随着演替的进行,不同建植期人工草地的土壤微牛物生物量碳和酶活性均呈"V"字型,变化.对于退化生态系统的恢复首先是植被恢复,其次是土壤肥力的恢复.土壤有机质等养分的积累、微生物活性的改善不仅能使土壤-植物复合系统的功能得以恢复,同时也能促进物种多样性的形成,有利于人工草地群落稳定性的提高.在试验区尽管植被恢复演替进行得比较缓慢,但从土壤发展的角度看,仍属进展演替.所以,在退化高寒草甸的恢复过程中,若降低和有效控制外界的干扰(如围栏封育),可为退化草地恢复提供繁殖体与土壤环境,实现人工草地逐步向恢复(正向)演替进行.图3表6参34  相似文献   

8.
Heavy metals,occurrence and toxicity for plants: a review   总被引:5,自引:0,他引:5  
Metal contamination issues are becoming increasingly common in India and elsewhere, with many documented cases of metal toxicity in mining industries, foundries, smelters, coal-burning power plants and agriculture. Heavy metals, such as cadmium, copper, lead, chromium and mercury are major environmental pollutants, particularly in areas with high anthropogenic pressure. Heavy metal accumulation in soils is of concern in agricultural production due to the adverse effects on food safety and marketability, crop growth due to phytotoxicity, and environmental health of soil organisms. The influence of plants and their metabolic activities affects the geological and biological redistribution of heavy metals through pollution of the air, water and soil. This article details the range of heavy metals, their occurrence and toxicity for plants. Metal toxicity has high impact and relevance to plants and consequently it affects the ecosystem, where the plants form an integral component. Plants growing in metal-polluted sites exhibit altered metabolism, growth reduction, lower biomass production and metal accumulation. Various physiological and biochemical processes in plants are affected by metals. The contemporary investigations into toxicity and tolerance in metal-stressed plants are prompted by the growing metal pollution in the environment. A few metals, including copper, manganese, cobalt, zinc and chromium are, however, essential to plant metabolism in trace amounts. It is only when metals are present in bioavailable forms and at excessive levels, they have the potential to become toxic to plants. This review focuses mainly on zinc, cadmium, copper, mercury, chromium, lead, arsenic, cobalt, nickel, manganese and iron.  相似文献   

9.
镉污染土壤对潜在能源植物生长的影响   总被引:7,自引:1,他引:7  
利用重金属污染土壤种植能源植物是一种同时解决环境问题和能源问题的新理念,但目前相关研究成果并不多。通过盆栽试验研究人工镉污染土壤中象草Pennisetumpurpureum和亚香茅Cymbopogonnardus两种植物植株的生长状况和两种植物对土壤镉的吸收和富集能力。结果表明,当外源可溶性镉加入到土壤后,其主要是以生物有效性较高的状态存在。土壤镉对象草和亚香茅生长的影响作用有很大的不同,亚香茅比象草具有更强的镉耐受力,其生物量受镉污染影响小。两种植物植株镉含量均随土壤镉添加量的增加而增加。除高镉处理象草外,植物地下部分含镉量比地上部分高很多。高镉处理象草地下部分含镉量比地上部分低的现象可能反映出根系已积累了太多的镉,因而加速了向地上部的转移,从而加剧了植物中毒的程度。赤泥添加剂具有降低土壤酸度,减少植物对镉的吸收和增加象草和亚香茅生物量的作用。  相似文献   

10.

Energy derived from fossil fuels contributes significantly to global climate change, accounting for more than 75% of global greenhouse gas emissions and approximately 90% of all carbon dioxide emissions. Alternative energy from renewable sources must be utilized to decarbonize the energy sector. However, the adverse effects of climate change, such as increasing temperatures, extreme winds, rising sea levels, and decreased precipitation, may impact renewable energies. Here we review renewable energies with a focus on costs, the impact of climate on renewable energies, the impact of renewable energies on the environment, economy, and on decarbonization in different countries. We focus on solar, wind, biomass, hydropower, and geothermal energy. We observe that the price of solar photovoltaic energy has declined from $0.417 in 2010 to $0.048/kilowatt-hour in 2021. Similarly, prices have declined by 68% for onshore wind, 60% for offshore wind, 68% for concentrated solar power, and 14% for biomass energy. Wind energy and hydropower production could decrease by as much as 40% in some regions due to climate change, whereas solar energy appears the least impacted energy source. Climate change can also modify biomass productivity, growth, chemical composition, and soil microbial communities. Hydroelectric power plants are the most damaging to the environment; and solar photovoltaics must be carefully installed to reduce their impact. Wind turbines and biomass power plants have a minimal environmental impact; therefore, they should be implemented extensively. Renewable energy sources could decarbonize 90% of the electricity industry by 2050, drastically reducing carbon emissions, and contributing to climate change mitigation. By establishing the zero carbon emission decarbonization concept, the future of renewable energy is promising, with the potential to replace fossil fuel-derived energy and limit global temperature rise to 1.5 °C by 2050.

  相似文献   

11.

The huge amounts of sewage sludge produced by municipal wastewater treatment plants induce major environmental and economical issues, calling for advanced disposal methods. Traditional methods for sewage sludge disposal increase greenhouse gas emissions and pollution. Moreover, biochar created from sewage sludge often cannot be used directly in soil applications due to elevated levels of heavy metals and other toxic compounds, which alter soil biota and earthworms. This has limited the application of sewage sludge-derived biochar as a fertilizer. Here, we review biomass and sewage sludge co-pyrolysis with a focus on the stabilization of heavy metals and toxicity reduction of the sludge-derived biochar. We observed that co-pyrolyzing sewage sludge with biomass materials reduced heavy metal concentrations and decreased the environmental risk of sludge-derived biochar by up to 93%. Biochar produced from sewage sludge and biomass co-pyrolysis could enhance the reproduction stimulation of soil biota by 20‒98%. Heavy metals immobilization and transformation are controlled by the co-feed material mixing ratio, pyrolysis temperature, and pyrolysis atmosphere.

  相似文献   

12.
蔡蕊  王文姬  许航  季荣 《环境化学》2021,40(1):102-110
四溴双酚A(tetrabromobisphenol A,TBBPA)是全球生产量最大的溴代阻燃剂,广泛应用于电子产品和塑料等高分子材料的生产中.由于高的亲脂性及环境稳定性,TBBPA在土壤中易于累积.土壤作为污染物主要的汇之一,污染物在土壤中的环境过程和归趋对正确评价污染物的环境风险至关重要.本文综述了土壤中TBBPA...  相似文献   

13.
采用固定样方法和定位观察法连续测定了2003~2007年间卧龙自然保护区大熊猫野化培训圈内及其附近区域的拐棍竹无性系种群数量和生长发育特性等参数,运用收获法与非破坏性重量估测法建立了不同龄级和残桩的竹子种群和分株生物量估测模型,进而利用最佳模型计算并评估了野化培训大熊猫采食和人为砍伐对拐棍竹无性系种群生物量和植株个体生物量的影响.结果表明:在环境条件、种群密度、生长发育特征和种群生物量等基本相似的基础上,大熊猫采食和人为砍伐不仅降低实验期间的竹子生物生产力,而且影响到后期阶段实验种群的恢复与发展.大熊猫采食样方中的竹子种群生物量虽然较对照样方低,就竹笋生物量而言,约为对照的57.79%,这与野化培训圈的面积较小、竹种单一而使采食比重(67.07%)较大有关,但其各龄级植株个体生物量均能达到大熊猫的取食利用标准(仅2004年生竹除外),具有持续供给大熊猫食物资源的潜力;而人为砍伐措施与大熊猫采食相比,影响效果极为强烈,它严重降低了拐棍竹无性系的种群生物量,尤其是竹笋重量更是如此,仅为对照样方的14.69%,且植株个体鲜重远低于大熊猫的觅食条件.因此,竹笋和无性系植株的生物量是大熊猫采食标准的主要因素.  相似文献   

14.
Ecological theory suggests that environmental variability can promote coexistence, provided that species occupy differential niches. In this study, we focus on two questions: (1) Do allocation trade-offs provide a sufficient basis for niche differentiation in succulent plant communities? (2) What is the relative importance of different forms of environmental variability on species diversity and community composition? We approach these questions with a generic, individual-based simulation model. In our model, plants compete for water in a spatially explicit environment. Species differ in their size at maturity and in the allocation of carbon to roots, leaves and storage tissue. The model was fully specified with independent literature data. Model output was compared to characteristics of a species-rich community in the semi-arid Richtersveld (South Africa). The model reproduced the coexistence of plants with different sizes at maturity, the dominance of succulent shrubs, and the level of vegetation cover. We analyzed the effects of three forms of environmental variability: (a) temporal fluctuations in precipitation (rain and fog), (b) spatial heterogeneity of water supply due to run-on and run-off processes and (c) ‘rock pockets’ that limit root competition in space. The three types of variability had differential effects on diversity: diversity exhibited a strong hump-shaped response to temporal variation. Spatial variability increased diversity, with the strongest increase occurring at intermediate levels of temporal variability. Finally, rock pockets had the weakest effect, but contributed to diversity by providing refuges for small species, particularly at low temporal variability. The model thus shows that spatio-temporal variation of resource supply can maintain diversity over long time scales even in small systems, as is the case in the Richtersveld succulent communities. Trade-offs in allocation provide the basis for necessary niche differentiation. By describing resource competition between individual plants, our model provides a mechanistic basis for the link from species traits to community composition at given environmental conditions. It thereby contributes to an understanding of the forces shaping plant communities. Such an understanding is critical to reduce the threats environmental change poses to biodiversity and ecosystem services.  相似文献   

15.
Microbial processes, particularly enzyme activities, play crucial functional roles in soil ecology, hence serving as sensitive indicators of soil quality. We assessed the temporal dynamics of microbial biomass and selected soil enzymes (β-d-glucosidase, cellobiohydrolase, polyphenol oxidase, urease, glycine-aminopeptidase and alkaline phosphatase) during wheat cultivation, under four different tillage practices in the rice–wheat system. The four practices involved conventional tilling of soil before cultivating each crop (CTR-CTW); no tilling before cultivating rice but conventional tillage before wheat (NTR-CTW); conventional tilling before cultivating rice but no tilling before wheat (CTR-NTW) and no tilling before cultivation of each crop (NTR-NTW). Microbial biomass and activities of hydrolytic enzymes increased under NTR-NTW followed by CTR-NTW and NTR-CTW with respect to the conventional practice CTR-CTW, thus reflecting improvement in microbial activities with reduced tillage frequency. Enzyme activities generally depended on soil moisture and temperature, but nature of relationships varied among different practices. Nutrient demand appeared to be the strongest driver of alkaline phosphatase and urease, and soil temperature for glycine-aminopeptidase. Under CTR-CTW, activities of most of the extracellular enzymes were related with β-d-glucosidase or urease, but such relations altered under rest of the practices. The study showed that extracellular soil enzymes respond sensitively to tillage practices as well as environmental variables, particularly soil temperature and moisture and hence can serve as a sensitive indicator of changes in soil processes. Considering improvement in microbial biomass and enzymatic activities as indicators of better soil quality, adoption of no tillage apparently improved soil quality. Still, more number of field studies are required under tillage managements to explore the relationships between different enzyme activities and environmental factors.  相似文献   

16.
人工模拟产卵地是根据黄脊竹蝗成虫产卵时对自然条件的选择习性,人为造就最适环境,招引成虫集中产卵,避免因林内立竹及植被较密等不利生态因素造成的见缝插针式的散产导致的产卵范围扩大以及给查卵和防治工作带来的困难.试验结果表明,在竹林透光度无差异的情况下,对照区卵块密度平均10.4块/m2,人工模拟产卵地平均为21.2块/m2,是对照的2.04倍,而产卵面积却大为缩小,对照区平均0.038hm2,模拟地均为0.01hm2,仅为对照的l/4.不仅可以诱集成虫集中产卵,便于小面积集中防治,而且还可以省工、省时、省力、省经费.  相似文献   

17.
Above and below-ground biomass and nitrogen and carbon composition ofSpartina maritima, Halimione portulacoides andArthrocnemum perenne, dominating species in plant communities of the lower, middle and higher salt marsh, respectively, were compared in an estuarine salt marsh in Portugal. Plant and soil nitrogen and carbon pools were estimated. For all three species root biomass was significantly higher (70–92% of total biomass) than above-ground biomass. The percentage of root biomass was related to the location of the plants in the marsh: higher values were found in plants growing in the lower salt marsh where the sediment was more unstable and subject to tidal action, which stresses the role of the roots as an anchor. For all three species nitrogen concentrations were highest in leaves, reflecting the photosynthetic role of the tissue. For carbon higher concentrations were found in the stems, with the exception ofS. maritima. In general, lower nitrogen concentrations were found in summer, which can be explained by dilution processes due to plant growth. For both nitrogen and carbon, higher concentrations were found in the soil surface layers. Higher soil nitrogen and carbon levels were associated with higher organic matter contents. Most of the nitrogen in the salt marsh occurred in the sediments (0–40 cm) and only ca. 5.7–13.3% of the total was found in the plants. The greater portion (76.5%–86%) of carbon was found in the sediment.  相似文献   

18.
19.
Technical product harvesting (TEPHA) is a newly developing interdisciplinary approach in which bio-based production is investigated from a technical and ecological perspective. Society‘s demand for ecologically produced and sustainably operable goods is a key driver for the substitution of conventional materials like metals or plastics through bio-based alternatives. Technical product harvesting of near net shape grown components describes the use of suitable biomass for the production of technical products through influencing the natural shape of plants during their growth period. The use of natural materials may show positive effects on the amount of non-renewable resource consumption. This also increases the product recyclability at the end of its life cycle. Furthermore, through the near net shape growth of biomass, production steps can be reduced. As a consequence such approaches may save energy and the needed resources like crude oil, coal or gas. The derived near net shape grown components are not only considered beneficial from an environmental point of view. They can also have mechanical advantages through an intrinsic topology optimization in contrast to common natural materials, which are influenced in their shape after harvesting. In order to prove these benefits a comprehensive, interdisciplinary scientific strategy is needed. Here, both mechanical investigations and life cycle assessment as a method of environmental evaluation are used.  相似文献   

20.
Maize (Zea mays L.) has been widely adopted for phytomanagement of cadmium (Cd)-contaminated soils due to its high biomass production and Cd accumulation capacity. This paper reviewed the toxic effects of Cd and its management by maize plants. Maize could tolerate a certain level of Cd in soil while higher Cd stress can decrease seed germination, mineral nutrition, photosynthesis and growth/yields. Toxicity response of maize to Cd varies with cultivar/varieties, growth medium and stress duration/extent. Exogenous application of organic and inorganic amendments has been used for enhancing Cd tolerance of maize. The selection of Cd-tolerant maize cultivar, crop rotation, soil type, and exogenous application of microbes is a representative agronomic practice to enhance Cd tolerance in maize. Proper selection of cultivar and agronomic practices combined with amendments might be successful for the remediation of Cd-contaminated soils with maize. However, there might be the risk of food chain contamination by maize grains obtained from the Cd-contaminated soils. Thus, maize cultivation could be an option for the management of low- and medium-grade Cd-contaminated soils if grain yield is required. On the other hand, maize can be grown on Cd-polluted soils only if biomass is required for energy production purposes. Long-term field trials are required, including risks and benefit analysis for various management strategies aiming Cd phytomanagement with maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号