首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
We studied within-site spatial variation of the carbon stock in the organic layer of boreal forest soil. A total of 1,006 soil samples were taken in ten forest stands (five Scots pine stands and five Norway spruce stands). Our results indicate that the spatial autocorrelation disappears at a distance of 75-225 cm. This spatial autocorrelation should be taken into account in the sampling design by locating the sampling points at adequate intervals. With a sample size of over 20-30 samples per site, additional soil samples do not notably improve the precision of the site mean estimate. An adequate sample size is dependent on the purpose of sampling and on the site-specific soil variation. Our results on the dependence between sample size and precision of the mean estimates can be applied in designing efficient soil monitoring in boreal coniferous forests.  相似文献   

2.
A simple and sensitive method based on a modified hollow-fiber liquid-phase microextraction followed by gas chromatography–mass spectrometry has been successfully developed for the extraction and simultaneous derivatization of some nitrophenols (NPs) in soil and rain samples. Microwave-assisted solvent extraction was used for the extraction of NPs from the soil, while the rain sample was directly applied to the previously mentioned method. Briefly, in this method, the analytes were extracted from aqueous samples into a thin layer of organic solvent (dodecane?+?10 % tri-n-octylphosphine oxide) sustained in the pores of a porous hollow fiber. Then, they were back-extracted using a small volume of organic acceptor solution (25 μl; 10 mg/L N-methyl-N-(trimethylsilyl)trifluoroacetamide, as derivatization reagent, in acetonitrile) that was located inside the lumen of the hollow fiber. Under the optimized extraction conditions, enrichment factors of 255 to 280 and limits of detection of 0.1 to 0.2 μg/L (S/N?=?3) with dynamic linear ranges of 1–100 μg/L were obtained for the analytes. The accuracy of the approach was tested by the relative recovery experiments on spiked samples, with results ranging from 93 to 113 %. The method was shown to be rapid, cost-effective, and potentially interesting for screening purposes.  相似文献   

3.
Soil carbon redistribution is an important process in the terrestrial carbon cycle. This study describes a new index, soil carbon redistribution (SCR) index, that can be used to assess long-term soil carbon redistribution at a large watershed scale. The new index is based on the theoretical preconditions that soil carbon redistribution is mainly controlled by vegetation type, precipitation, topography/slope, and soil carbon concentration. The Haihe River Basin served as an example for this analysis. The SCR index was calculated, and a GIS-based map shows its spatial patterns. The results suggested that soil carbon was usually prone to being carried away from mountainous regions with natural vegetation, while it was prone to deposition in the plain and plateau regions with cultivated vegetation. The methods in the paper offer a tool that can be used to quantify the potential risk where soil carbon is prone to being carried away and deposited in a large watershed.  相似文献   

4.
In this study, the proton-induced X-ray emission (PIXE) technique has been applied to measure the elemental composition and concentrations of particulate matter of 220 samples of aerosols in Tehran’s atmosphere within a 450-day time interval starting from March 2009 and ending in June 2010, covering all four seasons. PIXE analysis shows the samples are comprised of various elements including Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, and Pb. Also, to obtain more information about the sources of pollution and to identify the major sources of urban particulate matter, principal component analysis (PCA) was used. Furthermore, micro-PIXE was performed to study individual aerosols in some samples. Results revealed that the concentration of elements originating from vehicle emissions increases three times in winter; whereas the concentration of elements with soil origin remains constant. Based on wind rose maps, it is inferred that the high concentrations of the elements Al, Si, K, Ca, Ti, Mn, and Fe are associated with natural dust brought by winds into Tehran from the west.  相似文献   

5.
The solute concentration in the subsoil beneath the root zone is an important parameter for leaching assessment. Drainage centrifugation is considered a simple and straightforward method of determining soil solution chemistry. Although several studies have been carried out to determine whether this method is robust, hardly any results are available for loess subsoils. To study the effect of centrifugation conditions on soil moisture recovery and solute concentration, we sampled the subsoil (1.5–3.0 m depth) at commercial farms in the loess region of the Netherlands. The effect of time (20, 35, 60, 120 and 240 min) on recovery was studied at two levels of the relative centrifugal force (733 and 6597g). The effect of force on recovery was studied by centrifugation for 35 min at 117, 264, 733, 2932, 6597 and 14,191g. All soil moisture samples were chemically analysed. This study shows that drainage centrifugation offers a robust, reproducible and standardised way for determining solute concentrations in mobile soil moisture in silt loam subsoils. The centrifugal force, rather than centrifugation time, has a major effect on recovery. The maximum recovery for silt loams at field capacity is about 40%. Concentrations of most solutes are fairly constant with an increasing recovery, as most solutes, including nitrate, did not show a change in concentration with an increasing recovery.  相似文献   

6.
7.
This paper describes a comparison of two methods of sediment pore-water sampling and two methods of surface water sampling that were used in a broader investigation of cause(s) of adverse effects on benthic invertebrate communities at two Saskatchewan uranium operations (Key Lake and Rabbit Lake). Variables measured and compared included pH, ammonia, DOC, and trace metals. The two types of sediment pore-water samples that were compared are centrifuged and 0.45-microm filtered sediment core samples vs. 0.2-microm dialysis (peeper) samples. The two types of surface water samples that were compared are 53-microm filtered Van Dorn horizontal beta samples vs. 0.2-microm dialysis (peeper) samples. Results showed that 62% of the sediment core pore water values were higher than the corresponding peeper pore-water measurements, and that 63% of the Van Dorn surface water measurements were lower than corresponding peeper surface water measurements. Furthermore, only 24% and 14% of surface water and pore-water measurements, respectively, fell within +/-10% range of one another; 73% and 50%, respectively, fell within +/-50%. Although somewhat confounded by differences in filtering method, the observed differences are believed to primarily be related to small, vertical differences in the environment sampled. Despite observed differences in concentrations of toxicologically relevant variables generated by the different sampling methods, the weight of evidence (WOE) conclusions drawn from each set of exposure data on the possible cause(s) of in situ toxicity to Hyalella azteca from a related study were the same at each uranium operation. However, this concurrence was largely due to other dominant lines of evidence. The WOE conclusions at Key Lake were dominated by the toxicity response of H. azteca in relation to exposure chemistry, where as the WOE conclusions at Rabbit Lake were informed by exposure chemistry, the toxicological response of H. azteca, and whole-body contaminant concentrations in the test organisms. Had these multiple lines of evidence not been available, differences in exposure chemistry generated by the different sampling methods could have substantially influenced the identification of potential causes of in situ toxicity.  相似文献   

8.
A new, simple, sensitive, and selective spectrophotometric method for the determination of copper in water and soil samples has been demonstrated. The method is based on the reaction of Cu(I) with neocuproine (2,9-dimethyl-1, 10-phenanothroline) and extracted with N-phenyl benzimidoylthiourea in chloroform. The value of molar absorptivity of the complex in the term of Cu(I) is 1.45 × 105 L mol???1 cm???1 at λ max 460 nm in chloroform. The detection limit of copper in water and soil is 2 ng mL???1 and 4 ng g???1, respectively. The method is free from the interference of the ions commonly found to be associated with the copper determination in water and soil samples. The application of the proposed method has been successfully tested for the determination of copper in different types of water and soil samples.  相似文献   

9.
A sensitive spectrophotometric method has been developed for determination of ametryn in agricultural samples. The proposed method was based on reaction with pyridine and further coupling with sulfanilic acid to form a colored product. The absorbance was measured at 400 nm with a molar absorptivity of 2.1 × 105 L mol−1 cm−1. The method shows a linear range from 0.2–20 μg mL−1 with limit of detection and limit of quantification 0.16 and 0.54 μg mL−1, respectively. The method has been successfully applied to the determination of ametryn in sugarcane juice and commercial formulations after separation of ametryn from triazine herbicides based on solvent extraction. Recovery values were found to be in the range of 96.0 ± 0.2% to 98.4 ± 0.1%.  相似文献   

10.
We have aimed at characterizing top soil samples taken in-situ from five different locations of the unregulated dumping site in Eskişehir/Turkey for a period of six months. The study is the first attempt in the city and in Turkey, regarding particularly the SPME (Solid Phase Microextraction Technique) analysis method utilized. A comprehensive research has been conducted to produce critical soil data to be used for indicating current risks as well as the urgency of rehabilitating the site and establishing a sanitary landfill in the site. Conventional physicochemical analytical methods and SPME technique were used to analyze the samples. Physicochemical analyses were performed for determining the pH, total dried matter, volatile matter, total nitrogen, phosphorus, macro elements and heavy metals. Meteorological data were also recorded for the same period. SPSS.10.0 statistical program was used to determine the correlation between meteorological data and physicochemical analysis results. Mean values were used in the correlation analyses. These data indicated that the air temperature and precipitation have significant effects on soil characteristics. SPME, coupled with GC/MS, was used to identify eighty six volatile and semi-volatile organic compounds contained in soil samples. The samples were extracted by headspace SPME with heating (δHS-SPME). SPME analyses were conducted using a commercially available polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber having a film thickness of 65 μm (Supelco) as a capture medium. The experimentally optimized headspace sampling conditions were arranged (15 min. at 50˚C) before a 30 min. sampling period.  相似文献   

11.
In regions with high livestock densities, the usage of antibiotics and metals for veterinary purposes or as growth promoters poses a risk in manured soils. We investigated to which degree the concentrations and depth distributions of Cu, Zn, Cr and As could be used as a tracer to discover contaminations with sulfonamides, tetracyclines and fluoroquinolones. Besides, we estimated the potential vertical translocation of antibiotics and compared the results to measured data. In the peri-urban region of Beijing, China, soil was sampled from agricultural fields and a dry riverbed contaminated by organic waste disposal. The antibiotic concentrations reached 110 μg kg?1 sulfamethazine, 111 μg kg?1 chlortetracycline and 62 μg kg?1 enrofloxacin in the topsoil of agricultural fields. Intriguingly, total concentrations of Cu, Zn, Cr and As were smaller than 65, 130, 36 and 10 mg kg?1 in surface soil, respectively, therewith fulfilling Chinese quality standards. Correlations between sulfamethazine concentrations and Cu or Zn suggest that in regions with high manure applications, one might use the frequently existing monitoring data for metals to identify potential pollution hotspots for antibiotics in topsoils. In the subsoils, we found sulfamethazine down to ≥2 m depth on agricultural sites and down to ≥4 m depth in the riverbed. As no translocation of metals was observed, subsoil antibiotic contamination could not be predicted from metal data. Nevertheless, sulfonamide stocks in the subsoil could be estimated with an accuracy of 35–200 % from fertilisation data and potential leaching rates. While this may not be sufficient for precise prediction of antibiotic exposure, it may very well be useful for the pre-identification of risk hotspots for subsequent in-depth assessment studies.  相似文献   

12.
Agricultural wastes (AW) are produced in huge quantities worldwide and may cause detrimental effects on environmental quality, affecting soil, water, and air quality. Given the growing soil degradation worldwide, the need for more food of good quality and therefore the intensified agriculture, it is important to develop recycling plans even for those types of treated AW (e.g., composts) that are not considered hazardous. Two strategic approaches for safe and sustainable landspreading of organic wastes are proposed, depending on wastes properties and hazard potential, i.e., an approach appropriate for traditionally used wastes (manures and composts) and another approach for wastes that are potentially hazardous or hazardous and should only be reused under specific restrictions. Both approaches foresee concrete steps, require close cooperation between farmers and local/regional authorities, and are appropriate to ensure environmental sustainability at AW recycling or disposal areas. Desktop and web application tools are also presented that are anticipated to assist authorities in implementing their monitoring strategies.  相似文献   

13.
The water level fluctuation zone (WLFZ) in the Three Gorges Reservoir is located in the intersection of terrestrial and aquatic ecosystems, and assessing heavy metal pollution in the drown zone is critical for ecological remediation and water conservation. In this study, soils were collected in June and September 2009 in natural recovery area and revegetation area of the WLFZ, and geochemical approaches including geoaccumulation index (I geo) and factor analysis and soil microbial community structure were applied to assess the spatial variability and evaluate the influence of revegetation on metals in the WLFZ. Geochemical approaches demonstrated the moderate pollutant of Cd, the slight pollutant of Hg, and four types of pollutant sources including industrial and domestic wastewater, natural rock weathering, traffic exhaust, and crustal materials in the WLFZ. Our results also demonstrated significantly lower concentrations for elements of As, Cd, Pb, Zn, and Mn in the revegetation area. Moreover, soil microbial community structure failed to monitor the heavy metal pollution in such a relatively clean area. Our results suggest that revegetation plays an important role in controlling heavy metal pollution in the WLFZ of the Three Gorges Reservoir, China.  相似文献   

14.
15.
Groundwater level plays a significant role in coastal plains. Heavy pumping and excessive use of near-coast groundwater can increase the intrusion of seawater into the aquifers. In the present study, groundwater levels were measured at 59 groundwater wells at different times during pre- and post-irrigation seasons (April and September of the year 2012) in Çar?amba Plain, Turkey. To select the best method, two deterministic interpolation methods (inverse distance weighing (IDW) with the weights of 1, 2, and 3 and radial basis function (RBF) with spline with tension (SPT) and completely regularized spline (CRS)) and two stochastic methods (ordinary kriging (OK) with spherical, exponential, and Gaussian variograms) and cokriging (COK)) were compared and then the best interpolation method was used to evaluate the spatial distribution of groundwater levels in different seasons and seasonal changes. A total of nine different techniques were tested. Also, risky areas of seawater intrusion in coastal area were determined using the best methods for two periods. The performance of these interpolation methods is evaluated by using a validation test method. Statistical indices of correlation (R 2), mean absolute error (MAE), and root-mean-square error (RMSE) were used to select and validate the best methods. Comparisons between predicted and observed values indicated RBF as the optimal method for groundwater level estimation in April and September. When the best method RBF and the worst method IDW were compared, significant differences were observed in the spatial distribution of groundwater. Results of the study also revealed that excessive groundwater withdrawals during the post-irrigation season dropped the groundwater levels up to 2.0 m in some sections. With regard to seawater intrusion, 9,103 ha of land area was determined to be highly risky and risky.  相似文献   

16.
Direct current (DC) resistivity, self potential (SP) and very low frequency electromagnetic (VLF-EM) measurements are carried out to detect the spread of groundwater contamination and to locate possible pathways of leachate plumes, that resulted from an open waste disposal site of Canakkale municipality. There is no proper management of the waste disposal site in which industrial and domestic wastes were improperly dumped. Furthermore, because of the dumpsite is being located at the catchment area borders of a small creek and is being topographically at a high elevation relative to the urban area, the groundwater is expected to be hazardously contaminated. Interpretations of DC resistivity geoelectrical data showed a low resistivity zone (<5 ohm-m), which appears to be a zone, that is fully saturated with leachate from an open dumpsite. The VLF-EM and SP method, support the results of geoelectrical method relating a contaminated zone in the survey area. There is a good correlation between the geophysical investigations and the results of previously collected geochemical and hydrochemical measurements.  相似文献   

17.
Managing urban soil sealing is a difficult venture due to its spatial heterogeneity and embedding in a socio-ecological system. A systemic solution is needed to tackle its spatial, ecological and social sub-systems. This study develops a guideline for urban actors to find a systemic solution to soil sealing management based on two case studies in Germany: Munich and Leipzig. Legal-planning, informal-planning, economic-fiscal, co-operative and informational responses were evaluated by indicators to proof which strategy considers the spatial complexity of urban soil sealing (systemic spatial efficiency) and, while considering spatial complexity, to assess what the key management areas for action are to reduce the ecological impacts by urban soil sealing (ecological impact efficiency) and to support an efficient implementation by urban actors (social implementation efficiency). Results suggest framing the systemic solution to soil sealing management through a cross-scale, legal-planning development strategy embedded in higher European policies. Within the socio-ecological system, the key management area for action should focus on the protection of green infrastructure being of high value for actors from the European to local scales. Further efforts are necessary to establish a systemic monitoring concept to optimize socio-ecological benefits and avoid trade-offs such as between urban infill development and urban green protection. This place-based study can be regarded as a stepping stone on how to develop systemic strategies by considering different spatial sub-targets and socio-ecological systems.  相似文献   

18.
Polyaromatic hydrocarbons (PAHs) utilizing bacteria were isolated from soils of seven sites of Mathura refinery, India. Twenty-six bacterial strains with different morphotypes were isolated. These strains were acclimatized to utilize a mixture of four polycyclic aromatic hydrocarbons, i.e., anthracene, fluorene, phenanthrene, and pyrene, each at 50 mg/L concentration as sole carbon source. Out of total isolates, 15 potent isolates were subjected to 16S rDNA sequencing and identified as a member of diverse genera, i.e., Bacillus, Acinetobacter, Stenotrophomonas, Alcaligenes, Lysinibacillus, Brevibacterium, Serratia, and Streptomyces. Consortium of four promising isolates (Acinetobacter, Brevibacterium, Serratia, and Streptomyces) were also investigated for bioremediation of PAH mixture. This consortium was proved to be efficient PAH degrader resulting in 40–70 % degradation of PAH within 7 days. Results of this study indicated that these genera may play an active role in bioremediation of PAHs.  相似文献   

19.
To identify the potential sources responsible for the particulate matter emission from secondary iron and steel smelting factory environment, PM2.5 and PM2.5?10 particles were collected using the low-volume air samplers twice a week for a year. The samples were analyzed for the elemental and black carbon content using x-ray fluorescence spectrometer and optical transmissometer, respectively. The average mass concentrations were 216.26, 151.68, and 138. 62 μg/m3 for PM2.5 and 331.36, 190.01, and 184.60 μg/m3 for PM2.5?10 for the production, outside M1 and outside M2 sites, respectively. The same size resolved data set were used as input for the positive matrix factorization (PMF), principal component factor analysis (PCFA), and Unmix (UNMIX) receptor modeling in order to identify the possible sources of particulate matter and their contribution. The PMF resolved four sources with their respective contributions were metal processing (33 %), e-waste (33 %), diesel emission (22 %) and soil (12 %) for PM2.5, and coking (50 %), soil (29 %), metal processing (16 %) and diesel combustion (5 %) for PM2.5?10. PCFA identified soil, metal processing, Pb source, and diesel combustion contributing 45, 41, 9, and 5 %, respectively to PM2.5 while metal processing, soil, coal combustion and open burning contributed 43, 38, 12, and 7 %, respectively to the PM2.5?10. Also, UNMIX identified metal processing, soil, and diesel emission with 43, 42 and 15 % contributions, respectively for the fine fraction, and metal processing (71 %), soil (21 %) and unidentified source (1 %) for the coarse fraction. The study concluded that metal processing and e-waste are the major sources contributing to the fine fraction while coking and soil contributed to the coarse fraction within the factory environment. The application of PMF, PCFA and UNMIX receptor models improved the source identification and apportionment of particulate matter drive in the study area.  相似文献   

20.
Waters are among to the most vulnerable environmental resources exposed to the impact of various point and non-point pollutants from rural/urban activities. Systematic and long-term monitoring of hydro-resources is therefore of crucial importance for sustainable water management, although such practice is lacking across many (agro-)hydro-ecosystems. In the presented study, for the first time, the spatial distribution (covering almost 9000 ha) and temporal variation (2006–2013) in certain quality parameters was characterized in drainage watercourses Tatarnica and Subic, whose catchment is rural and suburban areas close to the city of Novi Sad, Republic of Serbia. Based on majority of observed parameters, both watercourses belonged to I and II water quality classes, with occasional presence of certain parameters (e.g., suspended solids, total phosphorus; ammonium) at extreme values exacerbating both watercourses to classes IV and V. The value of the synthetic pollution index (i.e., a combined effect of all considered parameters) showed a higher degree of water pollution in watercourse Subic (on average 2.00) than Tatarnica (on average 0.72). Also, cluster analysis for watercourse Tatarnica detected two groups of parameters (mostly related to nutrients and organic matter), indicating more complex impacts on water quality during the observed period, in which elucidation thus established water quality monitoring program would be of great importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号