首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Vitrification and production of ceramics materials starting from sediment excavated from Venice lagoon is described. This sediment is classified as toxic waste because contains several heavy metal ions and organic pollutants and was successfully vitrified at 1200-1350 degrees C. Twenty weight percentage of glass cullet, coming from a community glass recycling program, was added to the raw materials, previously calcined at 900 degrees C, as a way of adjusting the variations of composition of the individual sediment batches. Chemical durability (leaching) tests showed that the optimized glass compositions are inert, and thus not only volume reduction but also inertization of the waste was obtained by this process. Moreover, the economics of the entire process was analysed. The valorization of the waste was accomplished by the subsequent processing of the glass derived from the inertization. Glass ceramic materials were produced by viscous phase sintering of pressed glass powders which crystallized during the densification process. Sintered glass ceramic products had good mechanical characteristics (HV = 7.5 GPa, bending strength 150 +/- 8 MPa), making them suitable for applications in the building industry.  相似文献   

2.
Alteration products of vitrified wastes coming from the incineration of household refuse (MSW) are described. Two vitrified wastes containing 50% and 70% of fly ash and a synthetic stained-glass with a composition close to that of an ancient glass (medieval stained-glass) were altered under different pH conditions (1, 5.5 corresponding to demineralized water and 10) during 181 days. Under acidic condition, the alteration layer is made of an amorphous hydrated silica gel impoverished in most of the initial elements. A minor phase MPO(4)*nH(2)O, where M represents Fe, Ti, Al, Ca and K cations, also constitutes the altered layer of the synthetic stained-glass. Under neutral and basic conditions, the altered layer is made of an amorphous hydrated silica gel and a crystallized calcium phosphate phase. The silica gel is depleted in alkalis and alkali-earth elements but contains significant amounts of aluminium, magnesium and transition elements, whereas the calcium phosphate is a hydroxylapatite-like phase with P-Si substitutions and a Ca/P ratio depending on the pH of the solution. This study shows: (i) the strong influence of pH conditions on the crystal-chemistry of alteration products and thus on the mechanisms of weathering resulting in different trapping of polluting elements, and (ii) that glass alteration does not necessary produce thermodynamically stable phases which has to be taken into account for the prediction of the long-term behavior.  相似文献   

3.
Copper waste is iron-rich hazardous waste containing heavy metals such as Cu, Zn, Co, Pb. The results of leaching tests show that the concentration of these elements exceeds the Turkish and EPA regulatory limits. Consequently, this waste cannot be disposed of in its present form and therefore requires treatment to stabilize it or make it inert prior to disposal. Vitrification was selected as the technology for the treatment of the toxic waste under investigation. During the vitrification process significant amounts of the toxic organic and inorganic chemical compounds could be destroyed, and at the same time, the metal species are immobilized as they become an integral part of the glass matrix. The copper flotation waste samples used in this research were obtained from the Black Sea Copper Works of Samsun, Turkey. The samples were vitrified after being mixed with other inorganic waste and materials. The copper flotation waste and their glass-ceramic products were characterized by X-ray analysis (XRD), scanning electron microscopy and by the toxicity characteristic leaching procedure test. The products showed very good chemical durability. The glass-ceramics fabricated at 850 degrees C/2 h have a large application potential especially as construction and building materials.  相似文献   

4.
During incineration of municipal solid waste (MSW), various environmentally harmful elements and heavy metals are liberated either into bottom ash, or carried away with the off-gases and subsequently trapped in fly-ash. If these minor but harmful elements are not properly isolated and immobilized, it can lead to secondary environmental pollution to the air, soil and water. The stricter environmental regulations to be implemented in the near future in The Netherlands require a higher immobilization efficiency of the bottom ash treatment. In the present study, MSW incinerator bottom ash was vitrified at higher temperatures and the slag formed and metal recovered were examined. The behaviour of soluble elements that remain in the slag is evaluated by standard leaching test. The results obtained can provide a valuable route to treat the ashes from incinerators, and to make recycling and more efficient utilization of the bottom ash possible.  相似文献   

5.
The characterization of the bottom ashes produced by two Portuguese municipal solid waste incinerators (MSWI) was performed with the aim of assessing the feasibility of using this waste as raw material in the production of glass that can be further processed as glass-ceramics for application in construction. Density and particle size distribution measurements were carried out for physical characterization. Chemical characterization revealed that SiO(2), a network glass former oxide, was present in a relatively high content (52-58wt%), indicating the suitability for this waste to be employed in the development of vitreous materials. CaO, Na(2)O and K(2)O, which act as fluxing agents, were present in various amounts (2-17wt%) together with several other oxides normally present in ceramic and glass raw materials. Mineralogical characterization revealed that the main crystalline phases were quartz (SiO(2)) and calcite (CaCO(3)) and that minor amounts of different alkaline and alkaline-earth aluminosilicate phases were also present. Thermal characterization showed that the decomposition of the different compounds occurred up to 1100 degrees C and that total weight loss was <10wt%. Heating both bottom ashes at 1400 degrees C for 2h resulted in a melt with suitable viscosity to be poured into a mould, and homogeneous black-coloured glasses with a smooth shiny surface were obtained after cooling. The vitrified bottom ashes were totally amorphous as confirmed by X-ray diffraction. The results from the present experimental work indicate that the examined bottom ashes can be a potential material to melt and to obtain a glass that can be further processed as glass-ceramics to be applied in construction.  相似文献   

6.
This study presents a novel thermal plasma melting technique for neutralizing and recycling municipal solid waste incinerator (MSWI) ash residues. MSWI ash residues were converted into water-quenched vitrified slag using plasma vitrification, which is environmentally benign. Slag is adopted as a raw material in producing porous materials for architectural and decorative applications, eliminating the problem of its disposal. Porous materials are produced using water-quenched vitrified slag with Portland cement and foaming agent. The true density, bulk density, porosity and water absorption ratio of the foamed specimens are studied here by varying the size of the slag particles, the water-to-solid ratio, and the ratio of the weights of the core materials, including the water-quenched vitrified slag and cement. The thermal conductivity and flexural strength of porous panels are also determined. The experimental results show the bulk density and the porosity of the porous materials are 0.9–1.2 g cm?3 and 50–60%, respectively, and the pore structure has a closed form. The thermal conductivity of the porous material is 0.1946 W m?1 K?1. Therefore, the slag composite materials are lightweight and thermal insulators having considerable potential for building applications.  相似文献   

7.
Plasma gasification is an innovative technology for transforming high calorific waste streams into a valuable synthesis gas and a vitrified slag by means of a thermal plasma. A test program has been set up to evaluate the feasibility of plasma gasification and the impact of this process on the environment. RDF (refuse derived fuel) from carpet and textile waste was selected as feed material for semi-pilot gasification tests. The aim of the tests was: (1) to evaluate the technical feasibility of making a stable synthesis gas; (2) to characterize the composition of this synthesis gas; (3) to define a suitable after-treatment configuration for purification of the syngas and (4) to characterize the stability of the slag, i.e., its resistance to leaching for use as a secondary building material. The tests illustrate that plasma gasification can result in a suitable syngas quality and a slag, characterized by an acceptable leachability. Based on the test results, a further scale-up of this technology will be prepared and validation tests run.  相似文献   

8.
Lead-rich solid industrial wastes were vitrified by the addition of glass formers in various concentrations, to produce non-toxic vitreous stabilized products that can be freely disposed or used as construction materials. Toxicity of both the as-received industrial solid waste and the stabilized products was determined using standard leaching test procedures. The chemically stable vitreous products were subjected to thermal annealing in order to investigate the extent of crystal separation that could occur during cooling of large pieces of glass. Leaching tests were repeated to investigate the relation between annealing process and chemical stability. X-ray, scanning and transmission electron microscopy techniques were employed to identify the microstructure of stabilized products before and after thermal treatment. Relation between synthesis and processing, chemical stability and microstructure was investigated.  相似文献   

9.
The composition of household waste in Greenland was investigated for the first time. About 2 tonnes of household waste was sampled as every 7th bag collected during 1 week along the scheduled collection routes in Sisimiut, the second largest town in Greenland with about 5400 inhabitants. The collection bags were sorted manually into 10 material fractions. The household waste composition consisted primarily of biowaste (43%) and the combustible fraction (30%), including anything combustible that did not belong to other clean fractions as paper, cardboard and plastic. Paper (8%) (dominated by magazine type paper) and glass (7%) were other important material fractions of the household waste. The remaining approximately 10% constituted of steel (1.5%), aluminum (0.5%), plastic (2.4%), wood (1.0%), non-combustible waste (1.8%) and household hazardous waste (1.2%). The high content of biowaste and the low content of paper make Greenlandic waste much different from Danish household waste. The moisture content, calorific value and chemical composition (55 elements, of which 22 were below detection limits) were determined for each material fraction. These characteristics were similar to what has been found for material fractions in Danish household waste. The chemical composition and the calorific value of the plastic fraction revealed that this fraction was not clean but contained a lot of biowaste. The established waste composition is useful in assessing alternative waste management schemes for household waste in Greenland.  相似文献   

10.
This study investigated the physical properties, the chemical composition and the leaching behaviour of two bottom ash (BA) samples from two different refuse derived fuel high-temperature gasification plants, as a function of particle size. The X-ray diffraction patterns showed that the materials contained large amounts of glass. This aspect was also confirmed by the results of availability and ANC leaching tests. Chemical composition indicated that Fe, Mn, Cu and Cr were the most abundant metals, with a slight enrichment in the finest fractions.Suitability of samples for inert waste landfilling and reuse was evaluated through the leaching test EN 12457-2. In one sample the concentration of all metals was below the limit set by law, while limits were exceeded for Cu, Cr and Ni in the other sample, where the finest fraction showed to give the main contribution to leaching of Cu and Ni.Preliminary results of physical and geotechnical characterisation indicated the suitability of vitrified BA for reuse in the field of civil engineering. The possible application of a size separation pre-treatment in order to improve the chemical characteristics of the materials was also discussed.  相似文献   

11.
The elemental composition of the industrial waste incineration bottom ash (IWIBA) samples collected from three different types of incinerator with different kinds of wastes were compared. The major-to-ultratrace elements in the IWIBA samples were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). As a result, ca. 40 elements in the concentration range from milligrams per gram to submicrograms per gram could be determined with relative standard deviations of less than 5%. The IWIBA sample from petrochemical wastes contained lower concentrations of the elements, because fewer mineral constituents were contained in the input waste materials. On the contrary, the elemental concentrations in the IWIBA sample from industrial solid wastes provided the highest values for most elements, while the elemental compositions of the IWIBA sample from food wastes were similar to those of municipal solid waste incineration bottom ash. In addition, it was found from the analytical results that the levels of various heavy metals such as Cr, Mn, Fe, Ni, Cu, As, Zr, Mo, Sb, Ba, and Pb were higher in the IWIBA samples than in municipal solid waste incineration bottom ash. The enrichment factors of the elements in the IWIBA samples were estimated from the analytical results to compare the elemental distributions in incineration bottom ashes in relation to their mining influence factors, which are the indices for human use of the elements.  相似文献   

12.
Fourteen paper sludge samples were collected at seven representative pulp and paper mills in Japan, and were analyzed to obtain fundamental data on the reuse of paper sludge-incinerated ash as papermaking material. For comparison, incinerated ashes of municipal solid waste (MSW) were collected at MSW incineration plants in Tokyo, and analyzed by similar methods. Elementary and X-ray diffraction analyses revealed that the predominant elements in paper sludge samples are calcium, silicon, aluminum, and magnesium, which are derived from paper fillers, coating pigments, and coagulants used in papermaking and process effluent treatments. Similar results were also obtained for the MSW-incinerated ashes, indicating that major components in the collected MSW are paper-related materials. Incineration of paper sludge around 800°C is recommended in terms of high brightness of the incinerated ash, which has about 60% brightness. Calcium, silicon, and aluminum components in the paper sludge are fused or sintered by heating. Although paper-sludge-incinerated ashes have irregular shape and large particle size distributions, they may be used as papermaking materials after pulverization using a ball mill. The MSW-incinerated ashes have 5%–30% water-soluble fractions and low brightness, and thus incineration conditions must be changed to reuse the MSW-incinerated ash as a papermaking material.Part of this paper was presented at the 68th Research Conference of Japan Tappi, Tokyo, 2001  相似文献   

13.
Recycling of packaging wastes may be compatible with incineration within integrated waste management systems. To study this, a mathematical model is presented to calculate the fraction composition of residual municipal solid waste (MSW) only as a function of the MSW fraction composition at source and recycling fractions of the different waste materials. The application of the model to the Lisbon region yielded results showing that the residual waste fraction composition depends both on the packaging wastes fraction at source and on the ratio between that fraction and the fraction of the same material, packaging and non-packaging, at source. This behaviour determines the variation of the residual waste LHV. For 100% of paper packaging recycling, LHV reduces 4.2% whereas this reduction is of 14.4% for 100% of packaging plastics recycling. For 100% of food waste recovery, LHV increases 36.8% due to the moisture fraction reduction of the residual waste. Additionally the results evidence that the negative impact of recycling paper and plastic packaging on the LHV may be compensated by recycling food waste and glass and metal packaging. This makes packaging materials recycling and food waste recovery compatible strategies with incineration within integrated waste management systems.  相似文献   

14.
Nuclear waste repositories need highly durable cementitious materials to function for over thousands of years while resisting leaching and degradation. The durability of cementitious material can be effectively improved by reducing permeability and by changing cement hydrates to a less soluble matrix. This paper describes the properties of carbonated new cementitious materials containing belite-rich cement and gamma-2CaO.SiO2 as main components. In addition, the long-term leaching properties are investigated and compared with ordinary Portland cement by using a predictive leaching model.  相似文献   

15.
Incineration has undergone several technology improvements, reducing air emissions and increasing the efficiency of energy and material recovery; however, there is still a long way to go. To analyze the environmental impacts of waste incineration, this study assessed 15 waste fractions that compose municipal waste in Spain, which are grouped as non-inert materials (plastics, paper, cardboard and organic matter), unburned materials (glass and Al) and ferrous materials. Additionally, this paper evaluates the valorization of bottom ash (BA) to produce steel, aluminum and cement in these recycled/recoverable waste fractions. The results depend on the input waste composition and the heating value (HHV) and showed that ferrous and unburned materials had the worst environmental performance due to the null HHV. The valorization of BA in steel, Al and cement production significantly reduced the environmental impact and the consumption of resources. BA recycling for secondary steel and Al production would improve the environmental performance of the combustion of unburned materials and ferrous materials, whereas the use of BA in cement production diminished the consumption of NR for non-inert materials. This is of great interest for organic matter and PC, waste with a low energy production and high heavy metal and sulfur content.  相似文献   

16.
Efficient, cost effective measures for the safe disposal of hazardous wastes have been developed to meet the needs of industries in Brisbane and the surrounding area. Liquid hazardous wastes are neutralised, oxidised, or reduced as appropriate, and fixed (solidified) by the addition of fly-ash and cement kiln dust to form a material of the consistency of coarse gravel. Fixation is performed in cells dug in solid clay, holding about 70 tonnes. Fixed material containing pesticides, paints or organic solvents is left in the clay cells, capped with clay; fixed inorganics and waste oils having no toxic contaminants are used for land contouring on the site. Leachate tests on the latter have been uniformly below 10 times USEPA Drinking Water guidelines — that is, 10 times better than the limits nominated by the EP Leach Test (1980). Bores around the site have detected no leachates during the past seven years. A simple but effective management system keeps wastes segregated and confirms the identity of each batch of waste on receipt. All costs are charged to the waste generator including costs of correcting errors.  相似文献   

17.
Enormous amounts of oyster shell waste have been illegally disposed of at oyster farm sites along the southern coast of Korea. In this study to evaluate the possibility of recycling this waste for use as a construction material, the mechanical characteristics of pulverized oyster shell were investigated in terms of its potential utilization as a substitute for the aggregates used in mortar. The unconfined compressive strengths of various soil mortar specimens, with varying blending ratios of cement, water and oyster shell, were evaluated by performing unconfined compression tests, and the results were compared with the strengths of normal cement mortar made with sand. In addition, the effect of organic chemicals on the hardening of concrete was evaluated by preparing ethyl-benzene-mixed mortar specimens. The long-term strength improvement resulting from the addition of fly ash was also examined by performing unconfined compression tests on specimens with fly-ash content. There was no significant reduction in the compressive strength of the mortars containing small oyster shell particles instead of sand. From these test data, the possible application of oyster shells in construction materials could be verified, and the change in the strength parameters according to the presence of organic compounds was also evaluated.  相似文献   

18.
Waste that reflected the average UK composition of household waste was treated by autoclaving at the three set pressure/temperature levels of 2.7 bar/130 degrees C, 6.2 bar/160 degrees C and 15.5 bar/200 degrees C. The biodegradable fraction of the autoclaved household waste (;floc') was manually separated by screening and underwent characterization for its Cd, Cr, Cu, Pb, Hg, Ni, and Zn content. Autoclaving did not guarantee the production of compost/digestate that met the UK specification for compost, BSi PAS100, without restrictions being made on the composition of the waste feedstock. Results indicate that the levels of Zn and Cd associated with floc materials alone could lead to compost limit values being exceeded. For all other potentially toxic elements (PTEs), the estimated excessive (i.e. above levels of compliance) PTEs levels for compost/digestate were mainly due to external (i.e. non-floc) materials, primarily electronic/electrical waste. Batteries may have also contributed to the high levels of Zn and Hg. In this study, for all PTEs examined, with the exception of Cd and Zn, autoclaving had a performance comparable to that of the most effective mechanical biological treatment systems.  相似文献   

19.
20.
Tradable-permit schemes are becoming an increasingly popular technique for encouraging materials recovery and the diversion of waste from landfill. Such schemes operate using various forms of market-based trading of waste permits between polluters but usually rely on mandatory recycling targets to provide an incentive for trading. Using the UK's Packaging Recovery Note (PRN) scheme as a template, this paper examines the potential for permit trading where mandatory targets are absent and schemes must be driven solely by the financial benefits of reduced landfill costs and permit/material sales. The case examined is sterilized clinical waste, which has considerable recycling potential but suffers from health concerns and a poor public image. Interviews with healthcare and waste-management representatives indicate that although elements of the PRN scheme might prove appropriate for encouraging materials recovery, the absence of government targets and uncertain end markets for sterilized clinical waste present major obstacles to trading. Alternative incentives would therefore be required to catalyse schemes and develop recycling infrastructure. In the final analysis, thermal processing may be a more practical alternative to landfill than materials recovery for this particular waste stream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号