首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Huang YY  Wang SL  Liu JC  Tzou YM  Chang RR  Chen JH 《Chemosphere》2008,70(7):1218-1227
Humic acids (HAs) are a major component of soil organic matter which strongly affects the sorption behavior of organic contaminants in soils. To assess the sorption-desorption characteristics of organic compounds on HAs, the organic adsorbent is usually isolated using an acid-base extraction method followed by air-drying or freeze-drying. In this study, a peat soil from the Yangming mountain area of Taiwan was sampled and repeatedly extracted followed by either air-drying or a non-drying treatment (denoted DHAs and NDHAs, respectively). The sorption of 2,4,6-TCP on HAs was evaluated using the batch method. Kinetic sorption results indicated that DHAs exhibited a two-step first-order sorption behavior, involving a rapid sorption followed by a slow sorption. The slow sorption may be attributed to the diffusion of 2,4,6-TCP through the condensed aromatic domains of HAs. On the contrary, the sorption of 2,4,6-TCP on NDHAs was extremely rapid, and the sorption data did not fit existing kinetic models. Each HA sample exhibited a nonlinear sorption isotherm. Sorption nonlinearity (represented by Freundlich N values) and K(oc) had a positive relationship with aliphaticity for DHAs; however, nonlinearity and K(oc) correlated positively with aromaticity when NDHAs adsorbents were used. We conclude that the air-drying technique may artificially create a more condensed area, which strongly affects the sorption characteristics of HAs. Thus, an incorrect evaluation of the sorption capacity and its relationship with the chemical composition of HAs would arise following use of the air-drying method.  相似文献   

2.
Kim M  Kim J  Hyun S 《Chemosphere》2012,89(3):262-268
The well-known cosolvency-induced sorption model is not applicable to predict the sorption of carboxylic acids in cosolvent system. To investigate the phenomenon, sorption and solubility of chlorinated phenols (2,4-dichlorophenol (2,4-DCP) and 2,4,6-trichlorophenol (2,4,6-TCP)) and carboxylic acids (benzoic acid and 2,4-dichlorophenoxyacetic acid (2,4-D)) were measured in soil-methanol mixture with various ionic strengths. The sorption (Km) of chlorinated phenols was explained by a cosolvency-induced sorption model; the inverse log-linear relationship between the Km and methanol volume fraction (fc). However, the Km of carboxylic acids increased with increasing fc. This discrepancy was attributed to the effect of the carboxylic moiety. To explain the effect, solubility was measured for benzoic acid and 2,4,6-TCP from various liquid conditions. For both solutes, the cosolvency power (σ) increased with CaCl2 concentrations and the salting constant (Ks) became smaller as fc increased. However, the σ value at a given salt concentration and the Ks value at a given fc were greater for 2,4,6-TCP than for benzoic acid, both of which were due to the greater hydrophobicity of the former. Overall, the solubility profiles of the both solutes on combination of fc and CaCl2 concentration evidenced no specific role of the carboxylic moiety. Therefore, it can be reasonably concluded that the positive relationship between Km and fc for carboxylic organic acid can be attributed to the modification of the activity coefficient occurred in the solid phase, which cannot be traceable by cosolvency-based model.  相似文献   

3.
考察了pH值对“Fe^0一厌氧微生物”体系降解2,4,6,一三氯酚(2,4,6.TCP)效果的影响,结果表明:pH值是影响“Fe^0-厌氧微生物”体系降解2,4,6-TCP效果的重要参数,初始pH值直接影响微生物活性和铁腐蚀,进而影响过程pH值变化,反过来又影响铁腐蚀和微生物活性,pH7.0~9.0的中性偏碱范围较适于厌氧微生物生长。Fe^0与微生物对目标污染物的降解具有协同促进作用,其协同促进机制表现在3方面:Fe^0与微生物对体系过程pH值具有互补调节作用,可将体系的pH值调节值适于微生物生长的中性范围;Fe^0腐蚀产生的Fe2+和H2可为微生物代谢提供电子对和营养物质,从而促进生物还原脱氯的进行;Fe^0的腐蚀过程直接对氯代有机物还原脱氯,而微生物又可促进Fe^0腐蚀。  相似文献   

4.
考察了pH值对"Fe0-厌氧微生物"体系降解2,4,6,-三氯酚(2,4,6-TCP)效果的影响,结果表明:pH值是影响"Fe0-厌氧微生物"体系降解2,4,6-TCP效果的重要参数,初始pH值直接影响微生物活性和铁腐蚀,进而影响过程pH值变化,反过来又影响铁腐蚀和微生物活性,pH 7.0~9.0的中性偏碱范围较适于厌氧微生物生长。Fe0与微生物对目标污染物的降解具有协同促进作用,其协同促进机制表现在3方面:Fe0与微生物对体系过程pH值具有互补调节作用,可将体系的pH值调节值适于微生物生长的中性范围;Fe0腐蚀产生的Fe2+和H2可为微生物代谢提供电子对和营养物质,从而促进生物还原脱氯的进行;Fe0的腐蚀过程直接对氯代有机物还原脱氯,而微生物又可促进Fe0腐蚀。  相似文献   

5.
Yin D  Hu S  Jin H  Yu L 《Chemosphere》2003,52(1):67-73
Freshwater quality criteria of 2,4,6-trichlorophenol (2,4,6-TCP) were developed with particular reference to the aquatic biota in China, and based on USEPA's guidelines. Acute toxicity tests were performed on nine different domestic species indigenous to China to determine 48 h LC(50) and 96 h LC(50) values for 2,4,6-TCP. In addition, 21 d survival-reproduction test with Daphnia magna, 30 d embryo-larval test with Carassius auratus, 60 d fry-juvenile test with Ctenopharyngodon idellus, 30 d early life stage test with Bufo bufo gargarizans and 96 h growth inhibition test with Scenedesmus obliqaus were also conducted to estimate lower chronic limit and upper chronic limit values. The final acute value (FAV) was 2.01 mg/l 2,4,6-TCP. Acute-to-chronic ratios ranged from 5.01 to 12.2. The final chronic value (FCV) and the final plant value (FPV) of 2,4,6-TCP were 0.226 and 2.24 mg/l respectively. Based on FAV, FCV and FPV for 2,4,6-TCP, a criteria maximum concentration of 1.01 mg/l and a criterion continuous concentration of 0.226 mg/l were derived. The results of this study provide useful data for deriving national or local water quality criteria for 2,4,6-TCP based on aquatic biota in China.  相似文献   

6.
Shan J  Xu J  Zhou W  Ji L  Cui Y  Guo H  Ji R 《Chemosphere》2011,82(2):156-162
Earthworms are the dominant soil biomass of many terrestrial ecosystems and markedly influence the physico-chemical and biological properties of soil; however, little is known about the effects of earthworm activities on the environmental behavior of micropollutants in soil. We studied the sorption and desorption of 2,4-dichlorophenol, 2,4,6-trichlorophenol, and pentachlorophenol on geophagous earthworm (anecic Metaphire guillelmi) casts of various aging times and on the parent soil. The casts were characteristic of lower pH and higher content of fine particles (silt and clay) than the parent soil. The sorption of the chlorophenols on the soil and casts were well fitted to linear isotherms, with sorption capacity in the order of pentachlorophenol > 2,4-dichlorophenol > 2,4,6-trichlorophenol. The sorption on the cast with different aging time was quite similar and was higher than on the parent soil. The sorption on the soil did not change between pH 7.07 of the soil and pH 6.76 of the casts. The desorption hysteresis of the chlorophenols on the soil and casts was compound specific and 2,4,6-trichlorophenol showed the highest hysteresis. The higher sorption capacity of the casts was not owing to the lowered pH of the casts, but mainly to the higher fine particles in the casts and the possible changes of nature of the soil organic matter through the earthworm gut passage. Our results indicate that geophagous earthworms may change sorption behavior and thus the bioavailability and transport of chlorophenols in soil. Earthworm effects should be considered when evaluating the environmental behavior and risk of organic pollutants in the ecosystems where earthworms are abundant.  相似文献   

7.
Trichlorophenols such as 2,4,5-trichlorophenol (2,4,5-TCP) and 2,4,6-trichlorophenol (2,4,6-TCP) are organochlorine compounds to which the general public can be exposed via contaminated food, water, and air. This study assessed exposure to 2,4,5-TCP and 2,4,6-TCP in Koreans age 18–69 years based on the Korean National Human Biomonitoring Survey conducted in 2009. Using data from 1,865 representative Koreans, we found that the geometric mean urinary concentrations of 2,4,5-TCP and 2,4,6-TCP were 83.4 pg/mL [95 % confidence interval (CI)?=?78.6–88.6] and 0.39 ng/mL (95 % CI?=?0.35–0.42), respectively. The creatinine-adjusted geometric mean 2,4,5-TCP and 2,4,6-TCP levels were 78.8 ng/g creatinine (95 % CI?=?73.8–84.1) and 0.36 μg/g creatinine (95 % CI?=?0.33–0.40), respectively. Of the Korean adult population, about 67.5 and 87.5 % had respective urine 2,4,5-TCP and 2,4,6-TCP concentrations >0.05 ng/mL (the limit of detection, LOD). Urine 2,4,5-TCP concentrations were significantly associated with age and place of residence, whereas urine 2,4,6-TCP concentrations were higher in rural residents. These findings suggest that most Koreans had detectable levels of 2,4,5-TCP and 2,4,6-TCP in their urine and that the body burden of 2,4,5-TCP and 2,4,6-TCP varied according to demographic and geographic factors.  相似文献   

8.
The aim of this research was to investigate the long-term hydraulic conductivity changes in sand-bed columns exposed to 2,4,6-trichlorophenol (TCP). Continuous flow laboratory studies were conducted using sand-bed columns (15 cm i.d.; 200 cm length) at 20+/-1 degrees C during 365 d. The influence of (i) initial loads of 2,4,6-TCP (15, 30, 45 and 60 mg kg(-1) of 2,4,6-TCP), and (ii) recirculating water velocity (0.09, 0.56 and 1.18 cm min(-1)) on the biodegradation of 2,4,6-TCP and hydraulic conductivity changes in the sand-bed columns were investigated. The experimental results indicated that biodegradation of 2,4,6-TCP followed pseudo-first-order kinetics in the range of k(1)=0.01-1.64 d(-1), and it was influenced by initial load (p<0.01) and recirculating water velocity (p<0.01). Indigenous microbial biomass growth and changes resulted in a spatial (180 cm) and temporal (365 d) reduction of hydraulic conductivity in the sand-bed columns by up to two orders of magnitude during biodegradation of 2,4,6-TCP. The fastest hydraulic conductivity reductions were observed in the sand-bed column operated at the highest recirculating water velocity and highest cumulative load of 2,4,6-TCP following 365 d of continuous treatment (p<0.05).  相似文献   

9.
The bioavailability of pollutants, pesticides and/or their degradation products in soil depends on the strength of their sorption by the different soil components, particularly by the clay minerals. This study reports the sorption-desorption behavior of the environmentally hazardous industrial pollutants and certain pesticides degradation products, 3-chloroaniline, 3,4-dichloroaniline, 2,4,6-trichloroaniline, 4-chlorophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol on the reference clays kaolinite KGa-1 and Na-montmorillonite SWy-l. In batch studies, 2.0 g of clay were equilibrated with 100.0 mL solutions of each chemical at concentrations ranging from 10.0 to 200.0 mg/L. The uptake of the compounds was deduced from the results of HPLC-UV-Vis analysis. The lipophilic species were best retained by both clay materials. The most lipophilic chemical used in the study, 2,4,6-trichloroaniline, was also the most strongly retained, with sorption of up to 8 mg/g. In desorption experiments, which also relied on HPLC-UV-Vis technique, 2,4,6-trichloroaniline was the least desorbed from montmorillonite. However, on kaolinite all of the compounds under study were irreversibly retained. The experimental data have been modelled according to the Langmuir and Freundlich isotherms. A hypothesis is proposed concerning the sorption mechanism and potential applications of the findings in remediation strategies have been suggested.  相似文献   

10.
Li F  Ji L  Luo Y  Oh K 《Chemosphere》2007,67(1):13-19
With Carassius auratus, one of the main economic fish species in Eastern China as test material, this paper studied the hydroxyl radical generation and oxidative stress in its liver under the effect of 2,4,6-trichlorophenol (2,4,6-TCP). Different doses of 2,4,6-TCP were injected intraperitoneally into the fishes, and the Electron paramagnetic resonance (EPR) spectra of hepatic free radicals, activities of superoxide dismutase (SOD), catalase (CAT) and glutathione-s-transferase (GST), levels of reduced glutathione (GSH) and oxidized glutathione (GSSG), and malondialdehyde (MDA) contents were determined 24h after injection. The results showed that under the effects of 2,4,6-TCP, the generation of free radical that was considered to be hydroxyl radical increased significantly, the activities of antioxidant enzymes decreased, with CAT most strongly affected and followed by SOD and GST, the GSH level decreased significantly while GSSG level had little difference, resulting in a decreased GSH/GSSG ratio, and the MDA content increased significantly. All the test parameters showed that C. auratus was subjected to oxidative stress and damage when exposed to 2,4,6-TCP.  相似文献   

11.

The bioavailability of pollutants, pesticides and/or their degradation products in soil depends on the strength of their sorption by the different soil components, particularly by the clay minerals. This study reports the sorption-desorption behavior of the environmentally hazardous industrial pollutants and certain pesticides degradation products, 3-chloroaniline, 3,4-dichloroaniline, 2,4,6-trichloroaniline, 4-chlorophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol on the reference clays kaolinite KGa-1 and Na-montmorillonite SWy-l. In batch studies, 2.0 g of clay were equilibrated with 100.0 mL solutions of each chemical at concentrations ranging from 10.0 to 200.0 mg/L. The uptake of the compounds was deduced from the results of HPLC-UV-Vis analysis. The lipophilic species were best retained by both clay materials. The most lipophilic chemical used in the study, 2,4,6-trichloroaniline, was also the most strongly retained, with sorption of up to 8 mg/g. In desorption experiments, which also relied on HPLC-UV-Vis technique, 2,4,6-trichloroaniline was the least desorbed from montmorillonite. However, on kaolinite all of the compounds under study were irreversibly retained. The experimental data have been modelled according to the Langmuir and Freundlich isotherms. A hypothesis is proposed concerning the sorption mechanism and potential applications of the findings in remediation strategies have been suggested.  相似文献   

12.
The dechlorination of 2,4,6-trichlorophenol (TCP) in municipal sewage sludge with a chlorophenol (CP)-adapted consortium was investigated. Results show that dechlorination rates differed according to the source of the sludge samples used in the batch experiments. No significant differences in 2,4,6-TCP dechlorination were observed following treatment with inoculum at densities ranging from 10% to 50% (V/V), but a significant delay was noted at 5% (V/V) density. Overall, results show that the higher the 2,4,6-TCP concentration, the slower the dechlorination rate. The addition of acetate, lactate, pyruvate, vitamin B12 or manganese dioxide did not results in a significant change in 2,4,6-TCP dechlorination. Data collected from a bioreactor experiment revealed that pH 7.0 and a total solid concentration of 10 g/L were optimal for dechlorination. Dechlorination rates decreased significantly at higher agitation speeds. 2,4,6-TCP dechlorination was enhanced under methanogenic conditions, but it was inhibited under denitrifying and sulfate-reducing conditions.  相似文献   

13.
Choi JH  Kim YH  Choi SJ 《Chemosphere》2007,67(8):1551-1557
The reductive dechlorination and biodegradation of 2,4,6-trichlorophenol (2,4,6-TCP) was investigated in a laboratory-scale sequential barrier system consisting of a chemical and biological reactive barrier. Palladium coated iron (Pd/Fe) was used as a reactive barrier medium for the chemical degradation of 2,4,6-TCP, and a sand column seeded with anaerobic microbes was used as a biobarrier following the chemical reactive barrier in this study. Only phenol was detected in the effluent from the Pd/Fe column reactor, indicating that the complete dechlorination of 2,4,6-TCP was achieved. The residence time of 30.2-21.2h was required for the complete dechlorination of 2,4,6-TCP of 100 mg l(-1) in the column reactor. The surface area-normalized rate constant (k(SA)) is 3.84 (+/-0.48)x10(-5)lm(-2)h(-1). The reaction rate in the column tests was one order of magnitude slower than that in the batch test. In the operation of the biobarrier, about 100 microM of phenol was completely removed with a residence time of 7-8d. Consequently, the dechlorination prior to biodegradation turns out to increase the overall treatability. Moreover, the sequential permeable reactive barriers, consisting of iron barrier and biobarrier, could be recommended for groundwater contaminated with toxic organic compounds such as chlorophenols.  相似文献   

14.
Soils are often polluted by chlorophenols in timber production areas in the northern hemisphere. The tcpA gene encodes the first step of 2,4,6-trichlorophenol (246-TCP) degradation. We tested tcpA gene frequency in three natural pristine soils with different 246-TCP degradation capacity. Gene tcpA frequency increased more in spiked than non-spiked 10-L pails containing coniferous humus soil with high degradation capacity, in contrast to soils where degradation was slower. As the soil in each mesocosm originated from a spatially separate field plot, changes in tcpA gene frequency affected 246-TCP degradation over a range of soil origins. This indicates that the abundance of and changes in tcpA gene frequency could be utilized in estimating the efficacy of natural attenuation and biostimulation treatments in controlled conditions.  相似文献   

15.

Introduction

The ecological risks posed by three chlorophenols (CPs), 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP), and pentachlorophenol (PCP) in Chinese surface waters were assessed.

Materials and methods

This was achieved by applying a tiered ecological risk assessment (ERA) approach ranging from deterministic methods to probabilistic options to measured concentrations of CPs in surface water of seven major watersheds and three drainage regions in China and the chronic toxicity data for indigenous Chinese species.

Results and discussion

The results show that the risks of three chlorophenols are ranked PCP>2,4-DCP??2,4,6-TCP. PCP posed little ecological risk while 2,4-DCP and 2,4,6-TCP posed negligible or de minimis risk in Chinese surface water. However, the risks varied with different river basins, for example, PCP posed some ecological risk in the Yangtze, Huaihe, and Pearl Rivers. The magnitude of 2,4-DCP and 2,4,6-TCP pollution in North China was more serious than that in South China.

Conclusion

The probabilistic risk assessment approach, which can provide more information for risk managers and decision makers, was favored over the screening-level single-value estimate method. However, the results from all tiers of the ERA methods in the framework were consistent with each other.  相似文献   

16.
Jin X  Zha J  Xu Y  Giesy JP  Richardson KL  Wang Z 《Chemosphere》2012,86(1):17-23
2,4,6-Trichlorophenol (2,4,6-TCP) is a common chemical intermediate and a by-product of water chlorination and combustion processes, and is a priority pollutant of the aquatic environment in many countries. Although information on the toxicity of 2,4,6-TCP is available, there is a lack of information on the predicted no-effect concentration (PNEC) of 2,4,6-TCP, mainly due to the shortage of chronic and site-specific toxicity data. In the present study, acute and sub-chronic toxicity of 2,4,6-TCP on six different resident Chinese aquatic species were determined. PNEC values were calculated and compared by use of two approaches: assessment factor (AF) and species sensitivity distribution (SSD). Values for acute toxicity ranged from 1.1 mg L−1 (Plagiognathops microlepis) to 42 mg L−1 (Corbicula fluminea) and the sub-chronic no observed effect concentrations (NOECs) ranged from 0.05 mg L−1 (Mylopharyngodon piceus) to 2.0 mg L−1 (C. fluminea). PNECs obtained by the assessment factor approach with acute (AF = 1000, 0.001 mg L−1) or chronic (AF = 10, 0.005 mg L−1) toxicity data were one order of magnitude less than those from SSD methods (0.057 mg L−1). PNEC values calculated using SSD methods with a 50% certainty for 2,4,6-TCP was less than those obtained by use of the USEPA recommend final chronic value (FCV) method (0.097 mg L−1) and the one obtained by use of the USEPA recommend acute-to-chronic (ACR) methods (0.073 mg L−1). PNECs derived using AF methods were more protective and conservative than that derived using SSD methods.  相似文献   

17.
Environmental Science and Pollution Research - 2,4,6-Trichlorophenol (2,4,6-TCP) is a common waste among the resulting chlorophenols generated in the production of common products classified as an...  相似文献   

18.
An investigation of biodegradation of chlorinated phenol in an anaerobic/aerobic bioprocess environment was made. The reactor configuration used consisted of linked anaerobic and aerobic reactors, which served as a model for a proposed bioremediation strategy. The proposed strategy was studied in two reactors before linkage. In the anaerobic compartment, the transformation of the model contaminant, 2,4,6-trichlorophenol (2,4,6-TCP), to lesser-chlorinated metabolites was shown to occur during reductive dechlorination under sulfate-reducing conditions. The consortium was also shown to desorb and mobilize 2,4,6-TCP in soils. This was followed, in the aerobic compartment, by biodegradation of the pollutant and metabolites, 2,4-dichlorophenol, 4-chlorophenol, and phenol, by immobilized white-rot fungi. The integrated process achieved elimination of the compound by more than 99% through fungal degradation of metabolites produced in the dechlorination stage. pH correction to the anaerobic reactor was found to be necessary because acidic effluent from the fungal reactor inhibited sulfate reduction and dechlorination.  相似文献   

19.
Recent monitoring investigations have shown that antimicrobial agents used in veterinary medicine can cause non-point source contamination of soils through manure spreading. In the present study, the effect of the antimicrobial agent sulfamethazine (sulfadimidine) on degradation and sorption of the herbicide metolachlor in a sandy loam soil was studied. In soil samples treated with sulfamethazine at two concentrations (15 and 150 microg kg(-1) soil), metolachlor persistence was not different than of that observed in untreated samples. These results were supported by the absence of effects of both sulfamethazine concentration levels on the size of the culturable soil bacteria population. Equilibrating soil samples with metolachlor solutions containing equivalent sulfamethazine concentrations did not lead to any significant effects on metolachlor sorption, suggesting that, under the conditions of the present experiment, sulfamethazine did not affect metolachlor bioavailability in soil. This laboratory investigation showed that concentrations of sulfamethazine in the microg kg(-1) range did not cause significant effects on metolachlor degradation and sorption thus not affecting the main processes ruling its environmental fate in soil.  相似文献   

20.
Sorption capability of bedrock components from a fractured chalk province was evaluated using ametryn, phenanthrene, m-xylene, 2,4,6-tribromophenol, and 1,2-dichloroethane. Sorption isotherms for the four aromatic compounds were nonlinear on gray (unoxidized) chalk. Over the studied solution ranges, the distribution coefficient decreased by factor of 3 for phenanthrene and m-xylene, a factor 4 for ametryn, and by an order of magnitude for 2,4,6-tribromophenol. In contrast, 1,2-dichloroethane displayed a linear isotherm. The importance of polar interactions for ametryn sorption was evaluated by normalizing sorption to an "inert" solvent, n-hexane. n-Hexane-normalized sorption of ametryn was much greater than that of phenanthrene, presumably due to ametryn participation in hydrogen bonding interactions. In sharp contrast to sorption to gray chalk, sorption to white (oxidized) chalk is 100- to 1000-fold lower at any given solution concentration. The much greater sorption on gray chalk cannot be explained by specific surface area, clay content, or organic matter content; thus, the nature of the organic matter is considered to control sorption in the chalk samples. Gray chalk sorption capacity estimates for ametryn and 2,4,6-tribromophenol are similar, which, together with evidence of competition for sorption sites, suggests that the limited capacity sorption domain for both compounds is similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号