首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对膜生物反应器(MBR)较长的污泥龄导致磷的处理效果差的问题,采用铁盐强化除磷,向反应器中投加n(Fe)/n(P)=2.0的Fe Cl3·6H2O,系统考察膜生物反应器对氮、有机物及磷的去除效果,重点考察膜生物反应器投加铁盐前后运行性能、活性污泥菌群及膜污染速率变化情况.结果显示,在氮、有机物去除方面,投加前后没有发生明显的变化,去除率始终保持在90%左右.在磷去除方面,投加前磷的平均去除率为52%,投加后去除率提高了近40%,去除效果显著提升.实验进一步研究了加入三价铁盐前后对活性污泥优势菌群和生物除磷的影响.铁盐的投加降低了活性污泥菌群多样性及部分已知聚磷菌的相对丰度,对生物除磷造成一定的负面影响.在膜污染方面,通过跨膜压差(TMP)记录分析此浓度的铁盐并没有导致膜生物反应器膜组件膜污染的加剧.本研究表明,该浓度(n(Fe)/n(P)=2.0)的铁盐进入膜生物反应器会对体系内活性污泥聚磷菌的相对丰度及生物除磷效率造成一定程度上的降低,但对膜污染没有明显影响,可以使出水各项指标尤其是磷的尾水排放浓度达标.  相似文献   

2.
投加填料强化A/O系统脱氮性能研究   总被引:1,自引:0,他引:1  
介绍了投加填料法对A/O(厌氧—好氧)工艺生物脱氮的影响。在填料投加率50%(φ(填料)=50%)、好氧段HRT 4.4 h和缺氧段HRT 2.2 h的情况下,进水CODC r为300~800 mg/L、NH4+-N为30~70 mg/L,TN为30~90 mg/L,出水CODC r小于48 mg/L,NH4+-N小于5 mg/L,TN小于15 mg/L,去除效率可分别达到90%、91%和60%以上,出水水质达到了《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A排放标准,明显优于常规A/O系统。  相似文献   

3.
刘新  梁怀亮  施园  周川  许斌斌 《环境化学》2012,31(12):1901-1907
为解决低浓度污水处理工艺脱氮除磷过程中存在的微生物碳源不足的问题,本文研制了新型填料床-逐级曝气串联反应器.填料床分别采用珊瑚砂、竹炭颗粒、钢渣为填料,在好氧、厌氧兼顾的环境下,实现化学除磷、生物除氮.试验采用模拟生活污水,COD、TN、TP、氨氮的浓度为170—190 mg.L-1、27—30 mg.L-1、8—10 mg.L-1,23—25 mg.L-1.反应器在第27天启动成功,100 d稳定运行结果显示,当HRT为14 h,曝气池DO为3.5 mg.L-1,反应器处理效果良好,出水中COD、TN、TP、氨氮的浓度分别为30.7 mg.L-1、5.59 mg.L-1、1.0 mg.L-1、4.67 mg.L-1,达到《城镇污水处理厂污染物排放标准》(GB18918—2002)中的一级B排放标准.经钢渣填料床处理后的污水,TP浓度降到1 mg.L-1左右,在不排泥的情况下,实现TP的高效去除,同时有效避免了除磷与脱氮过程对碳源的竞争,实现了生物法对水体中富余氮、磷的高效去除.  相似文献   

4.
纤毛状生物膜脱氮除磷工艺(CNR)是一种高效的生物脱氮除磷工艺.好氧池中纤毛状生物膜填料的添加,固化了大量世代时间长的硝化菌,提高了硝化反应速度,而且成功地解决了好氧段硝化菌与聚磷菌的泥龄矛盾.通过对天津某污水处理厂进行CNR工艺中试,得出结论如下:填料比表面积大,微生物附着量高达1 350~1 500g·m~(-2);填料容易挂膜、脱膜,无堵塞现象,更不需要反冲洗,维护管理简单;填料上形成的生物膜中,微生物体系稳定,种群丰富,微生物相包括钟虫(vorticella)、轮虫(rotaria)、表壳虫(arcella)、吸管虫(tokophrya)等;采用CNR工艺对污水处理,常规项目的去除率均达到80%以上,出水水质除总氮达到一级B标准,其他均达到<城镇污水处理厂污染物排放标准>(GB 18918-2002)的一级A排放标准.  相似文献   

5.
考察了不同进水有机物浓度下厌氧/好氧序批式移动床生物膜反应器(SBMBBR)污染物去除特性,实验结果表明,SBMBBR能够实现低碳源污水中氮和磷的同步去除,在进水TN和TP浓度分别为116.7 mg.L-1和11.5 mg.L-1、COD浓度为456 mg.L-1的条件下,TN和TP去除率分别达到94.3%和92.2%以上.反应器除磷是基于常规生物除磷和反硝化除磷过程实现的,脱氮主要是基于好氧段发生的同时硝化反硝化(SND)作用而完成.由于生物膜内部存在的DO扩散梯度,在好氧阶段混合液DO浓度不断提高的条件下反应器内具有良好SND反应的发生.进水COD浓度由149 mg.L-1提高至456 mg.L-1的过程中,反应器硝化效果不变,反硝化和除磷效果改善.反应器在好氧阶段pH值基本维持在7.0—7.1之间,为各类菌群的生长创造了条件.碱度变化较pH值更能反映硝化和反硝化反应发生的程度.反应器中微生物相丰富,生物膜以丝状菌为骨架,其上附着大量的球状菌和杆状菌,而悬浮活性污泥中丝状菌较少,形成了由细菌、真菌到原生动物和后生动物的复杂的生态体系,为系统取得稳定的污水处理效果提供了有效的保证.  相似文献   

6.
城市污水处理厂提标改造的核心是生物高效脱氮除磷,而碳源是关键因素;充分利用碳源,既能提高脱氮除磷效率,又可节省投资。要提升污水处理工艺脱氮除磷效率的潜力,就有必要对城市污水的水质特征,特别是其中的碳源构成进行可靠的检测分析。文章分析了广州市2012—2016年18个季度的水质监测数据,并依据活性污泥数学模型ASM2D,采用膜过滤、曲线分析、差量计算等方法,获得了作为碳源的有机污染物COD的构成比例。结果表明,由于中心城区的功能趋同,广州市城市污水水质亦趋同,COD和BOD5没有显著性差异,进水COD质量浓度约为200 mg?L~(-1)左右,BOD5约为90 mg?L~(-1),可生化性稳定为0.47。在碳源构成中,溶解性COD稳定,均值为48.55 mg?L~(-1),其中可发酵的易生物降解有机物(SF)、发酵产物(SA)和惰性溶解性有机物(SI)分别为23.43、15.62和9.50 mg?L~(-1);颗粒性COD波动大,其中慢速可生物降解有机物(XS)占总COD的43.76%,根据可利用碳源计算的碳氮比和碳磷比分别达到5.57和61.19,相比传统水质指标提高20%以上,具有较大的生物高效脱氮除磷潜力,慢速可生物降解有机物是实现这一潜力的关键。研究结果可为广州市城市污水厂设计、改造、运营提供依据;结合计算机模拟技术,采用多点进水和多种回流,有助于充分利用碳源,提升活性污泥工艺的脱氮除磷效率。  相似文献   

7.
从活性污泥中筛选的1株具有高效反硝化能力的聚磷菌B8应用于水平潜流人工湿地中进行强化去除总氮和总磷试验,同时分析并对比了菌剂强化潜流湿地系统和未投菌潜流湿地系统的功能菌数量变化规律.采用常绿植物构建2套相同的水平潜流湿地尾水处理模拟生态系统.结果表明,连续投加14 d B8菌液于水平潜流湿地后,在停止投菌后运行89 d内,投菌湿地系统平均脱氮率为70.1%,未投菌湿地系统平均脱氮率为50.2%;在停止投菌后运行19 d内,投菌湿地系统平均除磷率为63.1%,未投菌湿地系统平均除磷率为45.9%.经过4个月的跟踪运行,基于高通量454测序对湿地微生物群落结构及相关生物学信息对比分析,表明投加外菌源B8会引起潜流湿地内部微生物物种数量减少、微生物均匀度下降和湿地基质微生物群落多样性下降.通过湿地进水总氮浓度对投菌湿地系统和未投菌湿地系统脱氮率影响线性拟合分析表明,投菌湿地在不同氮负荷条件下脱氮效果显著优于未投菌湿地,证实投加B8菌可以有效强化水平潜流湿地的脱氮能力.  相似文献   

8.
实验构建生物阴极双室微生物燃料电池,探究在微氧条件下曝气量对其产电性能和阴极脱氮的影响.以乙酸钠为碳源,氯化铵为氮源.实验在25℃温度下,阴极持续曝气,并控制反应器内为微氧状态,富集培养短程硝化反硝化菌群.实现了在特定曝气量条件下生物阴极短程硝化反硝化脱氮.实验结果表明,在曝气量为1.64 mL·min-1的条件下,短程硝化反硝化脱氮效果最好.亚硝态氮积累率为81.70%,总氮去除率达到69.66%,最大稳定电压达0.47 V左右,库伦效率为43.8%,产电效能较好.针对实际污水处理开展相关实验,MFC阴极短程硝化反硝化总氮去除率可达到81.93%,优于全程硝化反硝化.在短程硝化反硝化的微生物群落中,Betaproteobacteria纲和Thauera菌属在短程硝化反硝化中得到了有效的富集,有利于生物脱氮,并且Nitrosomonas菌是主要的氨氧化菌属.  相似文献   

9.
白酒生产过程中伴随高氮废水的产生,其中包含氨氮(NH_4~+-N)、硝氮(NO_3~--N)和亚硝氮(NO_2~--N),企业基于现有的曝气等工艺可以去除NH_4~+-N,但却难以有效去除NO_2~--N和NO_2~--N,导致总氮(TN)含量无法达到新标准(TN 20 mg/L),因此高效去除废水中的NO_3~--N和NO_2~--N成为当下的研究热点.采用上流式厌氧污泥床(up-flow anaerobic sludge blanket,UASB)生物反应器驯养活性污泥,形成稳定的微生物群系;筛选得到最佳碳源,构建了生物厌氧反硝化脱氮体系,并通过三代全长16S rRNA测序分析了体系的细菌群落结构.结果显示,在甲醇、乙酸钠、丁二酸钠、葡萄糖、酒厂原水、柠檬酸钠和MicroC多种碳源中,MicroC效果最佳,在处理高硝氮废水(NO_3~--N=531 mg/L)时,添加量为C/N=1.0,出水的NO_3~--N含量小于1 mg/L,NO_3~--N去除率达98%,COD去除率超过90%.该体系中,反硝化前期斯氏假单胞菌(Pseudomonas stutzeri)和硫杆菌(Thioclava sp.)是优势种,还原大量的NO_3~--N,而细菌多样性较低;反硝化后期微嗜酸寡养单胞菌(Stenotrophomonas acidaminiphila)变成优势种,还原残留的NO_3~--N.本研究表明以MicroC为碳源的厌氧反硝化体系可实现酒厂高硝氮废水低成本且高效率的脱氮处理,物种Pseudomonas stutzeri发挥主要的反硝化作用,结果对反硝化工程有重要的指导意义.(图8表3参30)  相似文献   

10.
张洪  刘希  郭意  李永峰  乔丽娜 《环境化学》2014,(11):1963-1970
为解决A2/O工艺处理低浓度城市生活污水的碳源问题,采用了甲醇、葡萄糖、乙酸分别作为A2/O系统的碳源,结果表明,甲醇作为系统外加碳源最经济、最合适,其中TN、TP去除率分别达到75.81%和76.21%,NO-x-N被去除时间为30 min.研究最大化利用碳源,得到外加碳源甲醇在厌氧/缺氧/好氧区段的投加比例为1∶2∶0、投加量为400 mg·L-1,硝酸盐回流比为250%时,系统运行效果最佳,TN、NH3-N和TP去除率分别为90.56%、96.67%和92.56%,出水浓度分别为12.3 mg·L-1、4.1 mg·L-1和0.45 mg·L-1,达到GB18918—2002一级A类标准.通过一段时间的运行,在缺氧段发生了反硝化吸磷的现象,有利于碳源的节省和系统的高效运行.  相似文献   

11.
剩余污泥水解酸化产生的挥发性脂肪酸(VFAs)等有机物可作为补充碳源回用于低C/N比城市污水脱氮除磷系统中。然而,在污泥水解酸化过程中由于甲烷菌等微生物的作用而难以实现水解酸化产物的有效积累。同时,含有高浓度氮磷的污泥水解酸化液直接回用将进一步增加污水处理的氮磷负荷。本研究基于碳源回用目标,在热碱预处理的基础上,采用添加二溴乙烷磺酸钠(BES,2-Bromoethanesulfonic acid sodium)和Ca O2的方式对城市污水厂剩余污泥水解酸化过程的主要产物即溶解性有机物(SCOD)、VFAs及氮磷的溶出进行优化调控,旨在得到含有高浓度有机物、低浓度氮磷的污泥水解酸化液以回用于低C/N比城市污水脱氮除磷系统,提高出水水质,为剩余污泥的资源化利用提供理论依据。结果表明,污泥经Na OH预处理后,添加BES可有效提高水解酸化过程SCOD、VFAs的积累,其最高质量浓度分别达到6 169.8 mg·L~(-1)及1 335.0 mg·L~(-1),较对照组分别提高66.7%、192.5%,其中,VFAs中乙酸的质量分数达到66.0%。添加CaO_2的实验组酸化液中,NH4_+~-N和PO_4~3--P的溶出量显著降低,分别降至200.7 mg·L~(-1)、9.6 mg·L~(-1),较对照组分别减少了59.6%、65.7%。同时添加BES和CaO_2的组合体系在实现污泥水解酸化过程SCOD、VFAs累积的同时有效降低了氨氮和正磷酸盐的溶出,所获取的剩余污泥水解酸化产物可作为低C/N比城市污水脱氮除磷提标升级的优质碳源,实现了剩余污泥的资源化回用。  相似文献   

12.
滇池是中国富营养化状态最为严重的湖泊,而入湖河流氮磷元素的输入是其主要原因。河流水质的低C/N特征是限制氮素去除的关键因素,采用固相反硝化技术能够为反硝化过程提供持续的碳源,因而能够强化受污染河流的脱氮效果。以滇池的重点控制入湖河流-新运粮河为研究对象,设计了微曝气生物滤池(Biological aerating filter,BAF)-固相碳源反硝化(Solid-phase denitrification,SPD)组合工艺,在河道旁路展开示范工程研究。组合工艺设计规模为800 m3·d-1,BAF(气水比为3∶1~5∶1)和SPD生物滤池的最大表面水力负荷分别为4.2和1.4 m3·m-2·h-1,其中SPD生物滤池采用新型固相碳源共混可生物降解聚合物与惰性载体共混作为生物膜载体。工艺研究结果表明,在BAF气水比为3∶1~5∶1、HRT为0.5~1 h和SPD滤池HRT为0.5~1 h的运行工况下,BAF对NH4+-N的平均硝化率达到了91.27%,SPD滤池的平均反硝化率93.60%,工艺出水NH4+-N、NO3--N和NO2--N平均浓度分别为0.68、0.70和0.02 mg·L-1。示范工程对各项污染物的去除效果良好,对TN、TP和CODCr的去除率分别达到84.93%、50.15%和31.39%;工艺出水TN、TP和CODCr平均浓度分别为1.75、0.20和22.96 mg·L-1,主要水质指标均达到了地表水V类水质标准。采用新型固相碳源填充的反硝化生物滤池强化了工艺针对低C/N水质特征污染水体的脱氮效果,组合工艺对滇池氮素输入控制具有重要的意义。  相似文献   

13.
好氧脱氮微生物的混合培养条件   总被引:6,自引:0,他引:6  
从土壤和水中筛选分离到混合脱氮微生物菌群,能在好氧条件下将NH4^ 一步转化为N2排放,整个过程无NO3^-的积累,混合脱氮微生物菌群培养的最佳碳源为NaHCO3和CH3COONa的混合物,质量浓度均为0.25gL^-1;(NH4)2SO4为氮源的最适质量浓度为0.2gL^-1;最适pH7-10;温度30℃;在混合脱氮微生物菌群的最适培养条件下,30h内氨氮去除率达98%以上,细胞生长质量浓度达2.9gL^-1,采用分批补料策略补加(NH4)2SO4使菌浓提高了31.0%,图6表4参11  相似文献   

14.
为了解决低有机污染高氮素水中由于低碳氮比而造成的后续脱氮问题,通过设反应填充床,外加固相碳源,对比了2种可降解聚合物PBS和PCL的反硝化效果。结果表明,(1)在进水TN质量浓度维持在14.33~18.31 mg.L-1,HRT为15.6 min时,PBS填充床平均TN去除率为94.93%,高于PCL填充床。(2)PBS填充床平均反硝化速率为13.55 mg.L-1.h-1(以N计),高于PCL填充床的9.07 mg.L-1.h-(1以N计)。(3)PBS填充床NO3-N、NO2-N、NH3-N的出水质量浓度分别维持在0.37~0.87、0~0.20、0.01~0.07 mg.L-1,优于PCL填充床。(4)PBS和PCL颗粒表面附着的微生物以杆菌为主,伴有少量的弧菌。该研究为日后新型固相碳源的开发提供了科学依据。  相似文献   

15.
生物电化学系统(BES)因兼有污染物去除与能量回收等优点,近年来已成为环境污染治理领域的关注热点.对生物电化学技术在脱氮方面的基本原理、含氮污染物的转化途径进行综述,主要的生物脱氮过程包括阴极反硝化、阳极氨氧化以及阴极同步硝化反硝化等,而非生物脱氮过程包括NH_3/NH_4~+的跨膜转移、氨气逃逸等.总结已报道的BES中主要脱氮微生物及其脱氮机制,BES中多数反硝化菌属于变形菌门(Proteobacteria);硝化细菌主要是亚硝化菌属(Nitrosomonas)和硝化杆菌属(Nitrobacter);在同步硝化反硝化过程中,电极上的硝化、反硝化菌有明显的分层现象.最后阐述了生物电化学脱氮技术在生活污水、渗滤液、地下水处理等领域的最新应用研究,通过改变反应器构型以及运行模式等条件构建不同BES处理各类污水,以达到去除污染物同时回收电能或资源的目的.基于目前BES的优势,认为减少脱氮中间产物(NO_2~--N、N_2O)的积累及扩大BES规模对电能输出和污染物去除效果的影响将是未来的研究方向.  相似文献   

16.
A2/O工艺强化反硝化除磷体系中微生物特性分析   总被引:1,自引:0,他引:1  
为了更直观地认识反硝化除磷体系中生物脱氮除磷机理及运行状态,本文尝试了对A2/O工艺强化反硝化除磷体系在稳定运行期的活性污泥采取直接染色的手段,观察聚-β羟基丁酸(PHB)和聚磷酸盐(Poly-P)的沿程变化状况,同时结合活性污泥的电镜扫描图像,考察该系统的微生物菌群特征.试验结果表明,在厌氧阶段,微生物细胞内PHB的量大幅提高,上清液中磷酸盐的含量上升,聚磷酸盐含量明显下降,粒径为1~1.5μm、呈球状和棒状的菌群构成的葡萄状细胞簇占居优势;在缺氧阶段,微生物细胞内PHB的量下降,上清液中磷酸盐含量下降,聚磷酸盐含量上升,粒径为0.5~1μm的椭球菌与1.0~1.5μm的球杆菌占优势;在好氧阶段,微生物细胞内PHB的量较低或接近零,上清液中磷酸盐的含量接近零,聚磷酸盐含量明显上升,此时粒径1.0~1.5μm的球菌以单个或成对出现,球菌不再饱满,呈现接近消失的状态.相比之下,单纯的脱氮系统则不存在上述微生物特性的变化.图8参12  相似文献   

17.
地下渗滤系统(subsurface wastewater infiltration system,SWIS)是一种生态化的污水处理技术模式,在处理小水量、分散污水方面具有较为明显的技术优势,例如管理简单、运行费用低、兼具生态服务功能等。SWIS对污水中氮的去除主要依靠微生物硝化-反硝化作用,脱氮效果受内外部条件因子制约。当基质层内部溶解氧含量不足、NO_2~-积累、氧化亚氮还原酶活性受到抑制时,硝化和反硝化过程均可释放N_2O气体。进水水质、操作条件、温度等因素影响N_2O释放量和转化率。利用原位实验平台,采用静态箱-气相色谱分析方法,以实际生活污水为研究对象,分析了进水氮负荷波动条件下SWIS中N_2O产率、转化率和释放周期的变化规律。研究表明,进水氮负荷显著影响SWIS除污效率、N_2O产率和转化率。随着进水氮负荷由1.6 g·m~(-2)·d~(-1)增至7.2 g·m~(-2)·d~(-1),出水COD、NH_4~+-N、TN质量浓度分别由(9±3)、(0.4±0.1)、(1.5±0.11)mg·L~(-1)升高到(70±7)、(11.0±1.0)、(15.4±0.4)mg·L~(-1);N_2O产率与转化率表现出先升高后降低的趋势,其中,N_2O产率可高达(60.6±2.0)mg·m~(-2)·d~(-1),同时,进水总氮(转化率1.33%±0.03%)转化成N_2O逸出系统;随着系统落干时间的延长,N_2O产率呈下降趋势。综合考虑处理能力、出水水质和N_2O释放量,建议在工程应用中,选用具有一定脱氮能力的前处理工艺,控制SWIS进水氮负荷在4.0~5.6g·m~(-2)·d~(-1)之间,且适当延长SWIS干化周期。此时,出水水质满足城市景观地表水水质标准(GB/T18921—2002),N_2O产率和转化率均维持在较低水平。  相似文献   

18.
好氧颗粒污泥是微生物通过自凝聚作用形成的一种特殊的生物聚集体,具有结构致密、沉降性能优异、抗冲击负荷能力强、多功能微生物分区定殖等特点,其在废水强化脱氮除磷与难降解有机物去除方面具有明显的技术优势.针对目前工业和养殖废水及城镇生活污水等碳氮比低、处理出水总氮达标压力大等突出问题,综述基于好氧颗粒污泥的全自养、同步硝化反硝化、短程硝化反硝化、短程硝化-厌氧氨氧化、异养硝化-好氧反硝化等强化脱氮工艺,介绍其脱氮机制及技术优势,阐明不同好氧颗粒污泥脱氮工艺的特点与颗粒污泥特性,同时总结各种工艺的启动条件及富集相应功能菌的好氧颗粒污泥的形成因素,评估不同工艺应用于实际废水生物处理的可行性.在此基础上进一步分析进水基质组成(不同碳氮比)、运行模式(连续曝气和间歇曝气)、运行条件(溶解氧浓度、温度和pH)等对好氧颗粒污泥工艺强化脱氮性能与稳定运行的影响.最后提出应进一步优化好氧颗粒污泥强化脱氮工艺的运行参数,解析好氧颗粒污泥微生物菌群功能,揭示好氧颗粒污泥形成与结构稳定的微生物学机理.  相似文献   

19.
COD对颗粒污泥厌氧氨氧化反应性能的影响   总被引:8,自引:1,他引:8  
研究了COD对颗粒污泥厌氧氨氧化反应的影响,并对颗粒污泥的厌氧氨氧化脱氮性能进行了分析.厌氧颗粒污泥取自实验室长期运行的EGSB生物脱氮反应器,实验用水为人工配水,以葡萄糖为有机碳源;主要考察了COD对NH4 -N、NO2--N、NO3--N和TN去除的影响.结果表明:当进水不含COD时,反应器对NH4 -N、NO2--N和NO3--N和TN的去除率分别为12.5%、29.1%、16.1%和16.3%;当COD浓度分别为200mg/L、350mg/L和550mg/L时,反应器对NH4 -N的去除率分别为14.2%、14.2%和23.7%,对NO2--N的去除率均接近100%,对NO3--N的去除率分别为94.5%、86.6%和84.2%,对TN的去除率分别为50.7%、46.9%和50.4%,COD去除率分别为85%、66%和60%.分析发现,在反应初期,氨氮的去除主要通过厌氧氨氧化过程实现,随着反应的进行,反硝化菌活性逐渐提高,传统的反硝化过程占优势.同时还观察到,在反应初期COD对氨氮去除的抑制作用非常明显.图2参21  相似文献   

20.
为揭示投加具有反硝化聚磷能力的恶臭假单胞菌(B8)强化序批式反应器(SBR)除污特性和微生物种属,将B8菌液和干粉菌剂分别引入SBR,构成液态型DNPAOs-SBR污水处理系统A和干粉型DNPAOs-SBR污水处理系统B,以不接菌的SBR污水处理系统C为对照,分别考察了在厌氧-缺氧条件下运行的各反应器除污效果.结果表明,各SBR(A、B、C)对COD去除率均达到90%以上;第49—77天时A系统、B系统和C系统NO-3平均去除率分别为61.62%、68.58%和26.72%;第62—77天时A系统、B系统和C系统TP平均去除率分别为53.66%、55.45%和46.61%;投菌强化系统在缺氧段对TP降解过程符合一阶指数衰减动力学模式,在第71天时,A号吸磷动力学系数KP为1.2584,B号吸磷动力学系数KP为2.0379;对SBR内活性污泥菌种16S r DNA测序及Gen Bank BLAST,A系统和B系统中占优势菌种依次是溶血不动杆菌、恶臭假单胞菌和粪产碱菌,而未投菌C系统占优势菌类依次是溶血不动杆菌、粪产碱菌和产碱假单胞菌,表明投加的B8菌在液态型DNPAOs-SBR污水处理系统和干粉型DNPAOs-SBR污水处理系统内得到生长富集,从而成为优势菌群.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号