首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crait JR  Ben-David M 《Ecology》2007,88(4):1040-1052
Animals that deposit aquatically derived nutrients on terrestrial landscapes link food webs and affect a variety of in situ processes. This phenomenon, however, is poorly documented in freshwater habitats, especially where species introductions have drastically changed an ecosystem's trophic structure. In this study, we used stable isotopes to document water-to-land nutrient transport by river otters (Lontra canadensis) around Yellowstone Lake, an ecosystem recently altered by nonnative species invasions. We then investigated the effects of otter fertilization on plant growth and prevalence at latrine (scent-marking) sites and evaluated how the recent changes to the lake's food web could influence these plant responses. Values of delta15N were higher on latrines compared to non-latrine sites in five of seven sample plant taxa. Additionally, latrine grasses had higher percentage N than those from non-latrines. Foliar delta15N positively related to fecal deposition rate for some plants, indicating that increased otter scent-marking led to a rise in these N values. Logistic regression models indicated that otters selected for well-shaded latrines with access to foraging. Atypical latrines, misclassified as non-latrines by the regression models, had values of delta15N similar to correctly classified latrines, suggesting that site effects alone cannot explain elevated N values at otter latrine sites. No difference in plant diversity or percent cover of N-fixing taxa occurred between latrine and nonlatrine sites, though specific genera did differ between site types. Measurements of shoot lengths indicated increased growth of some latrine currants (Ribes sp.). In Yellowstone Lake, a twofold reduction in otter numbers could result in an even greater decline in nutrient deposition at latrines, as otters may become less social in a system with decreased prey availability. Our results highlight the role of animals in linking aquatic and terrestrial habitats in inland freshwater systems and suggest that ongoing changes in the trophic structure of Yellowstone Lake could have unexpected ramifications well beyond the lake itself.  相似文献   

2.
Anthony RG  Estes JA  Ricca MA  Miles AK  Forsman ED 《Ecology》2008,89(10):2725-2735
Because sea otters (Enhydra lutris) exert a wide array of direct and indirect effects on coastal marine ecosystems throughout their geographic range, we investigated the potential influence of sea otters on the ecology of Bald Eagles (Haliaeetus leucocephalus) in the Aleutian Islands, Alaska, USA. We studied the diets, productivity, and density of breeding Bald Eagles on four islands during 1993-1994 and 2000-2002, when sea otters were abundant and scarce, respectively. Bald Eagles depend on nearshore marine communities for most of their prey in this ecosystem, so we predicted that the recent decline in otter populations would have an indirect negative effect on diets and demography of Bald Eagles. Contrary to our predictions, we found no effects on density of breeding pairs on four islands from 1993-1994 to 2000-2002. In contrast, diets and diet diversity of Bald Eagles changed considerably between the two time periods, likely reflecting a change in prey availability resulting from the increase and subsequent decline in sea otter populations. The frequency of sea otter pups, rock greenling (Hexagammus lagocephalus), and smooth lumpsuckers (Aptocyclus ventricosus) in the eagle's diet declined with corresponding increases in Rock Ptarmigan (Lagopus mutus), Glaucous-winged Gulls (Larus glaucescens), Atka mackerel (Pleurogrammus monopterygius), and various species of seabirds during the period of the recent otter population decline. Breeding success and productivity of Bald Eagles also increased during this time period, which may be due to the higher nutritional quality of avian prey consumed in later years. Our results provide further evidence of the wide-ranging indirect effects of sea otter predation on nearshore marine communities and another apex predator, the Bald Eagle. Although the indirect effects of sea otters are widely known, this example is unique because the food-web pathway transcended five species and several trophic levels in linking one apex predator to another.  相似文献   

3.
木麻黄(Casuarina equisetifolia)是我国东南沿海海岸防护林骨干树种。本文对广东省茂名市木麻黄防护林开展了不同林龄的种群结构、植物多样性、以及土壤养分特征的研究。结果表明,滨海沙地木麻黄群落在生长过程中有明显的自疏现象,18年林个体数(975株·hm-2)不足3年林个体数一半(2350株·hm-2),3年至6年龄木麻黄生长最快。调查林地内共有植物27种,其中灌木8种,草本植物18种。随林龄的增长,林下植物种数显著增加,多样性指数、均匀度指数逐步增加,优势度指数下降。林地土壤有机碳、全氮与速效氮供应水平极低;土壤磷供应相对较好,表层有效磷一般高于3.5mg·kg-1。土壤有效养分与植物多样性显著相关,显示养分是植物定居的主要限制因素。结果表明,木麻黄林结构简单,生物多样性低,土壤养分贫乏。  相似文献   

4.
不同干扰强度对沙质海岸带植物物种β多样性的影响   总被引:1,自引:0,他引:1  
高伟  叶功富  游水生  韩孟孟  杜林梅  辛秀 《生态环境》2010,19(11):2581-2586
选择东山岛沙质海岸带4种不同干扰强度林分作为空间演替系列,采用样方法研究其β多样性的变化,结果表明:(1)不同干扰强度林分的植物组成和重要值差别较大,在天然次生林的乔木层和灌木层中,潺槁木姜子(Litsea glutinosa)均是第一优势种,重要值分别为98和137,群落结构稳定;择伐干扰群落中,潺槁木姜子变为乔木层第三优势种,重要值为33,灌木层中仍为第一优势种,重要值为128;皆伐干扰群落中其优势地位逐渐降低,乔木层已无潺槁木姜子的分布,群落结构简单、稳定性差;(2)β多样性(CJ、CS、βWS、βC、βR、CN、CMH)测度表明,随着干扰强度的增大,群落间物种更替速率由低到高呈现增大趋势,物种变化较大,共有种逐渐减少;研究结果支持了"初始植物区系"学说,为选择合适树种构建稳定高效的沿海防护林体系提供了基础资料。  相似文献   

5.
The structuring and organizing effects of apex predators on ecosystems are becoming increasingly well documented. The enhancement of kelp forests via sea otter predation on herbivorous sea urchins is among the earliest and best known examples. This study provides evidence for direct and indirect trophic interactions among sea otters, predatory sea stars, and filter-feeding mussels (Mytilus trossulus) and barnacles (Semibalanus cariosis). In western Massacre Bay at Attu Island (173°E, 53°N), subtidal transects showed sea star body size and biomass density declined markedly between 1983 and 1994 as sea otters reinhabited this area. Mussels and barnacles translocated from the rocky intertidal zone to shallow subtidal habitats to assess loss rates from sea star predation showed lower mortality rates after the arrival of sea otters. Prey mortality rates in subtidal caged controls were consistently low and similar to those of intertidal controls in both years. These findings elucidate a trophic pathway by which sea otters can influence ecosystems separate from the well-known sea otter/sea urchin/macroalgae cascade.  相似文献   

6.
塔里木河下游植物群落结构特征分析   总被引:9,自引:0,他引:9  
张绘芳  李霞  王建刚  杨艳静 《生态环境》2007,16(4):1219-1224
对塔里木河下游经30a断流后的应急输水河畔植被进行外业调查,分析了调查区植物群落的种类组成、垂直结构、密度结构以及优势种群的格局分布,旨在了解输水后研究区植物群落在结构特征方面恢复程度。结果表明:调查样地内有植物13种,其中胡杨(Populus euphratica)、柽柳(Tamarix)、黑果枸杞(Lycium ruthenicum)、花花柴(Karelinia caspica)和疏叶骆驼刺(Alhagi sparsifolia)为优势种。不同地下水条件物种的重要值不同,表现在不同离河距离具有不同的物种组成结构,随地下水埋深不同植物群落由以胡杨和胀果甘草为主到以柽柳、黑果枸杞、花花柴和疏叶骆驼刺等抗旱耐盐碱植物为主。乔木层密度随着离河距离加大而减小,灌木层和草本层密度随离河距离加大呈先增加后减小的趋势。群落垂直结构随离河距离加大由乔-灌-草3层逐渐转变为灌-草2层,随离河距离加大趋于简单。优势种群胡杨在离河300m以内呈聚集分布,聚集强度随离河距加大而增强;柽柳灌丛在离河50m呈均匀分布,离河150m以外呈聚集分布,但离河750m段有向随机分布发展趋势。植物群落结构特征在不同的离河距离具有差异,说明经过输水下游植物群落的恢复在结构特征方面有响应,为区域生态治理和保护提供科学依据。  相似文献   

7.
Gundale MJ  Hyodo F  Nilsson MC  Wardle DA 《Ecology》2012,93(7):1695-1706
Most theories attempting to explain the coexistence of species in local communities make fundamental assumptions regarding whether neighbors exhibit competitive, neutral, or positive resource-use interactions; however, few long-term data from naturally assembled plant communities exist to test these assumptions. We utilized a 13-year experiment consisting of factorial removal of three shrub species (Vaccinium myrtillus, V. vitis-idaea, and Empetrum hermaphroditum) and factorial removal of two functional groups (tree roots and feather mosses) to assess how neighbors affect N acquisition and growth of each of the three shrub species. The removal plots were established on each of 30 lake islands in northern Sweden that form a natural gradient of resource availability. We tested the hypotheses that: (1) the presence of functionally similar neighbors would reduce shrub N acquisition through competition for a shared N resource; (2) the removal of functional groups would affect shrub N acquisition by altering the breadth of their niches; and (3) soil fertility would influence the effects of neighbor removals. We found that the removal of functionally similar neighbors (i.e., other shrub species) usually resulted in higher biomass and biomass N, with the strength of these effects varying strongly with site fertility. Shrub species removals never resulted in altered stable N isotope ratios (delta(15)N), suggesting that the niche breadth of the three shrubs was unaffected by the presence of neighboring shrub species. In the functional group removal experiment, we found positive effects of feather moss removal on V. myrtillus biomass and biomass N, and negative effects on E. hermaphrotium N concentration and V. vitis-idaea biomass and biomass N. Tree root removal also caused a significant shift in foliar delta(15)N of V. myrtillus and altered the delta(15)N, biomass, and biomass N of E. hermaphroditum. Collectively, these results show that the resource acquisition and niche breadth of the three shrub species are often affected by neighbors, and further that both the identity of neighbors and site fertility strongly determine whether these interactions are positive, negative, or neutral. These findings have implications for understanding species coexistence and the reciprocal relationships between productivity and species diversity in this ecosystem.  相似文献   

8.
Abstract: Recovery criteria for depleted species or populations normally are based on demographic measures, the goal being to maintain enough individuals over a sufficiently large area to assure a socially tolerable risk of future extinction. Such demographically based recovery criteria may be insufficient to restore the functional roles of strongly interacting species. We explored the idea of developing a recovery criterion for sea otters (Enhydra lutris) in the Aleutian archipelago on the basis of their keystone role in kelp forest ecosystems. We surveyed sea otters and rocky reef habitats at 34 island‐time combinations. The system nearly always existed in either a kelp‐dominated or deforested phase state, which was predictable from sea otter density. We used a resampling analysis of these data to show that the phase state at any particular island can be determined at 95% probability of correct classification with information from as few as six sites. When sea otter population status (and thus the phase state of the kelp forest) was allowed to vary randomly among islands, just 15 islands had to be sampled to estimate the true proportion that were kelp dominated (within 10%) with 90% confidence. We conclude that kelp forest phase state is a more appropriate, sensitive, and cost‐effective measure of sea otter recovery than the more traditional demographically based metrics, and we suggest that similar approaches have broad potential utility in establishing recovery criteria for depleted populations of other functionally important species.  相似文献   

9.
Abstract: A price on carbon is expected to generate demand for carbon offset schemes. This demand could drive investment in tree‐based monocultures that provide higher carbon yields than diverse plantings of native tree and shrub species, which sequester less carbon but provide greater variation in vegetation structure and composition. Economic instruments such as species conservation banking, the creation and trading of credits that represent biological‐diversity values on private land, could close the financial gap between monocultures and more diverse plantings by providing payments to individuals who plant diverse species in locations that contribute to conservation and restoration goals. We studied a highly modified agricultural system in southern Australia that is typical of many temperate agriculture zones globally (i.e., has a high proportion of endangered species, high levels of habitat fragmentation, and presence of non‐native species). We quantified the economic returns from agriculture and from carbon plantings (monoculture and mixed tree and shrubs) under six carbon‐price scenarios. We also identified high‐priority locations for restoration of cleared landscapes with mixed tree and shrub carbon plantings. Depending on the price of carbon, direct annual payments to landowners of AU$7/ha/year to $125/ha/year (US$6–120/ha/year) may be sufficient to augment economic returns from a carbon market and encourage tree plantings that contribute more to the restoration of natural systems and endangered species habitats than monocultures. Thus, areas of high priority for conservation and restoration may be restored relatively cheaply in the presence of a carbon market. Overall, however, less carbon is sequestered by mixed native tree and shrub plantings.  相似文献   

10.
We took advantage of regional differences in environmental forcing and consumer abundance to examine the relative importance of nutrient availability (bottom-up), grazing pressure (top-down), and storm waves (disturbance) in determining the standing biomass and net primary production (NPP) of the giant kelp Macrocystis pyrifera in central and southern California. Using a nine-year data set collected from 17 sites we show that, despite high densities of sea urchin grazers and prolonged periods of low nutrient availability in southern California, NPP by giant kelp was twice that of central California where nutrient concentrations were consistently high and sea urchins were nearly absent due to predation by sea otters. Waves associated with winter storms were consistently higher in central California, and the loss of kelp biomass to winter wave disturbance was on average twice that of southern California. These observations suggest that the more intense wave disturbance in central California limited NPP by giant kelp under otherwise favorable conditions. Regional patterns of interannual variation in NPP were similar to those of wave disturbance in that year-to-year variation in disturbance and NPP were both greater in southern California. Our findings provide strong evidence that regional differences in wave disturbance overwhelmed those of nutrient supply and grazing intensity to determine NPP by giant kelp. The important role of disturbance in controlling NPP revealed by our study is likely not unique to giant kelp forests, as vegetation dynamics in many systems are dominated by post-disturbance succession with climax communities being relatively uncommon. The effects of disturbance frequency may be easier to detect in giant kelp because it is fast growing and relatively short lived, with cycles of disturbance and recovery occurring on time scales of years. Much longer data sets (decades to centuries) will likely be needed to properly evaluate the role of disturbance relative to other processes in determining patterns of NPP in other systems.  相似文献   

11.
Failure to account for interactions between endangered species may lead to unexpected population dynamics, inefficient management strategies, waste of scarce resources, and, at worst, increased extinction risk. The importance of species interactions is undisputed, yet recovery targets generally do not account for such interactions. This shortcoming is a consequence of species‐centered legislation, but also of uncertainty surrounding the dynamics of species interactions and the complexity of modeling such interactions. The northern sea otter (Enhydra lutris kenyoni) and one of its preferred prey, northern abalone (Haliotis kamtschatkana), are endangered species for which recovery strategies have been developed without consideration of their strong predator–prey interactions. Using simulation‐based optimization procedures from artificial intelligence, namely reinforcement learning and stochastic dynamic programming, we combined sea otter and northern abalone population models with functional‐response models and examined how different management actions affect population dynamics and the likelihood of achieving recovery targets for each species through time. Recovery targets for these interacting species were difficult to achieve simultaneously in the absence of management. Although sea otters were predicted to recover, achieving abalone recovery targets failed even when threats to abalone such as predation and poaching were reduced. A management strategy entailing a 50% reduction in the poaching of northern abalone was a minimum requirement to reach short‐term recovery goals for northern abalone when sea otters were present. Removing sea otters had a marginally positive effect on the abalone population but only when we assumed a functional response with strong predation pressure. Our optimization method could be applied more generally to any interacting threatened or invasive species for which there are multiple conservation objectives. Definición de Metas de Recuperación Realistas para Dos Especies en Peligro Interactuantes, Enhydra lutris y Haliotis kamtschatkana  相似文献   

12.
In coastal areas of the North Pacific Ocean, annual returns of spawning salmon provide a substantial influx of nutrients and organic matter to streams and are generally believed to enhance the productivity of recipient ecosystems. Loss of this subsidy from areas with diminished salmon runs has been hypothesized to limit ecosystem productivity in juvenile salmon rearing habitats (lakes and streams), thereby reinforcing population declines. Using five to seven years of data from an Alaskan stream supporting moderate salmon densities, we show that salmon predictably increased stream water nutrient concentrations, which were on average 190% (nitrogen) and 390% (phosphorus) pre-salmon values, and that primary producers incorporated some of these nutrients into tissues. However, benthic algal biomass declined by an order of magnitude despite increased nutrients. We also measured changes in stream ecosystem metabolic properties, including gross primary productivity (GPP) and ecosystem respiration (ER), from three salmon streams by analyzing diel measurements of oxygen concentrations and stable isotopic ratios (delta O-O2) within a Bayesian statistical model of oxygen dynamics. Our results do not support a shift toward higher primary productivity with the return of salmon, as is expected from a nutrient fertilization mechanism. Rather, net ecosystem metabolism switched from approximately net autotrophic (GPP > or = ER) to a strongly net heterotrophic state (GPP < ER) in response to bioturbation of benthic habitats by salmon. Following the seasonal arrival of salmon, GPP declined to <12% of pre-salmon rates, while ER increased by over threefold. Metabolism by live salmon could not account for the observed increase in ER early in the salmon run, suggesting salmon nutrients and disturbance enhanced in situ heterotrophic respiration. Salmon also changed the physical properties of the stream, increasing air-water gas exchange by nearly 10-fold during peak spawning. We suggest that management efforts to restore salmon ecosystems should consider effects on ecosystem metabolic properties and how salmon disturbance affects the incorporation of marine-derived nutrients into food webs.  相似文献   

13.
Sea otter, Enhydra lutris, predation had no detectable effect on abundance and size distribution of deep-burrowing bivalve prey in the Elkhorn Slough, California, USA. Up to 23 otters were present for 6 mo of the study period (March 1984 through April 1985). This is in contrast to previous studies of sea otter predation, especially on the shallow-burrowing Pismo clam Tivela stultorum, which can be found along the wave-exposed coast near the slough. The deep-burrowing clams Tresus nuttallii and Saxidomus nuttalli made up 61% of the prey taken in the slough, and are more difficult for otters to excavate than Pismo clams. The occurrence of foraging otters was highest in an area where the two bivalve prey were extremely abundant (18 individuals m–2). However, the otters did not selectively prey on the largest clams available within the study sight, but foraged preferentially in a patch of smaller individuals where bivalve burrow depth was restricted by the presence of a dense clay layer. This foraging strategy maximized the amount of prey biomass obtained per unit volume of sediment excavated. Our findings suggest that in soft-sediment habitats deep-burrowing bivalves may be more resistant to otter predation than shallower burrowers.  相似文献   

14.
澳门松山市政公园物种多样性特征   总被引:2,自引:0,他引:2  
根据实际情况.将澳门松山市政公园植物群落分为阴香群落、假萍婆群落、假萍婆+石栗群落,调查并分析了各群落的物种多样性特征.结果表明,乔木层、灌木层和草本层的物种多样性水平表现为灌木层较高.草本层与乔木层较低.但总体而言.这些群落的植物种类都较少,物种多样性水平尤其乔木层物种多样性水平低.因此,应加强抚育,可通过生态恢复改善环境条件,为生物多样性的发展创造条件;通过林分改造促进群落物种多样性水平的提高,同时也能丰富森林景观.  相似文献   

15.
南亚热带中幼龄针阔混交林生态化学计量特征   总被引:5,自引:0,他引:5  
为了解南亚热带中幼龄针阔混交林植物、凋落物和土壤生态化学计量特征,本研究以10-11 a、7-9 a和3-5 a林龄人工针阔混交林为研究对象,通过对植物叶片(乔木、灌木和草本)、凋落物及土壤的碳(C)、氮(N)和磷(P)含量及计量比分析,探讨了中幼龄针阔混交林生态化学计量特征、相互关系及其N、P养分限制。结果表明,1)针阔混交林乔木、灌木和草本叶片碳含量均值分别为502.88、472.18和438.31 mg·g-1,其叶片碳含量表现为乔木〉灌木〉草本;叶片全氮含量均值分别为15.87、19.61和15.72 mg·g-1,叶片全磷含量均值为1-09、1.24和0.91 mg·g-1,其叶片氮和磷含量均表现为灌木〉乔木〉草本;凋落物碳、氮和磷含量均值分别为497-07、11-36和0.45 mg·g-1,凋落物氮和磷含量均低于植物。2)针阔混交林乔木叶片C/N、C/P和N/P均值分别为34.43、517-06和15.63,灌木和草本叶片C/N、C/P和N/P均值分别为26.60和28.55、438.77和507.59、16.52和17.95,而凋落物C/N、C/P和N/P为46.50、1193.26和26.17;不同林龄杉木叶片N/P均低于14,表明杉木生长受N限制;10-11 a林龄阔叶树生长受N的限制,7-9 a和3-5 a林龄阔叶树生长受P的限制,灌木和草本生长基本受P限制。3)植物叶片全氮和全磷含量呈极显著正相关(P〈0.01),C/N与C/P呈极显著正相关(P〈0.01),而全磷含量与C/N、C/P、N/P呈极显著和显著负相关(P〈0.01,P〈0-05);土壤有机碳含量与土壤全氮含量、C/P、N/P呈极显著和显著正相关(P〈0.01,P〈0-05)。本研究为中幼龄人工林抚育及可持续经营提供科学参考。  相似文献   

16.
Phillips RP  Fahey TJ 《Ecology》2006,87(5):1302-1313
Previous research on the effects of tree species on soil processes has focused primarily on the role of leaf litter inputs. We quantified the extent to which arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) tree species influence soil microbial activity and nutrient availability through rhizosphere effects. Rhizosphere soil, bulk soil, and fine roots were collected from 12 monospecifc plots (six AM and six ECM tree species) planted on a common soil at the Turkey Hill Plantations in Dryden, New York. Rhizosphere effects were estimated by the percentage difference between rhizosphere and bulk soil samples for several assays. Rhizosphere effects on soil microbes and their activities were significant for ECM species but in only a few cases for AM species. In AM tree species, microbial biomass, net N mineralization, and phosphatase enzyme activity in the rhizosphere were 10-12% greater than in bulk soil. In ECM tree species, rhizosphere effects for microbial biomass, C mineralization rates, net N mineralization, and phosphatase activity were 25-30% greater than bulk soil, and significantly greater than AM rhizosphere effects. The magnitude of rhizosphere effects was negatively correlated with the degree of mycorrhizal colonization in AM tree species (r = -0.83) and with fine root biomass (r = -0.88) in ECM tree species, suggesting that different factors influence rhizosphere effects in tree species forming different mycorrhizal associations. Rhizosphere effects on net N mineralization and phosphatase activity were also much greater in soils with pH < 4.3 for both AM and ECM tree species, suggesting that soil pH and its relation to nutrient availability may also influence the magnitude of rhizosphere effects. Our results support the idea that tree roots stimulate nutrient availability in the rhizosphere, and that systematic differences between AM and ECM may result in distinctive rhizosphere effects for C, N, and P cycling between AM and ECM tree species.  相似文献   

17.
Among the many factors that potentially influence the rate at which nitrogen (N) becomes available to plants in terrestrial ecosystems are the identity and diversity of species composition, frequency of disturbance or stand turnover, and time. Replicated suites of investigator-designed communities afforded an opportunity to examine the effects of those factors on net N mineralization over a 12-year period. The communities consisted of large-stature perennial plants, comprising three tree species (Hyeronima alchorneoides, Cedrela odorata, and Cordia alliodora), a palm (Euterpe oleracea), and a large, perennial herb (Heliconia imbricata). Trees were grown in monoculture and in combination with the other two life-forms; tree monocultures were subjected to rotations of one or four years, or like the three-life-form systems, left uncut. The work was conducted on fertile soil in the humid lowlands of Costa Rica, a site with few abiotic constraints to plant growth. Rates of net N mineralization and nitrification were high, typically in the range of 0.2-0.8 microg x g(1) x d(-1), with net nitrification slightly higher than net mineralization, indicating preferential uptake of ammonium (NH4+) by plants and microbes. Net rates of N mineralization were about 30% lower in stands of one of the three tree species, Hyeronima, than in stands of the other two. Contrary to expectations, short-rotation management (one or four years) resulted in higher net rates of N mineralization than in uncut stands, whether the latter were composed of a single tree species or a combination of life-forms. Neither additional species richness nor replenishment of leached N augmented mineralization rates. The net rate at which N was supplied tended to be lowest in stands where demand for N was highest. Careful choice of species, coupled with low frequency of disturbance, can lead to maintenance of N within biomass and steady rates of within-system circulation, whereas pulses, whether caused by cutting and replanting or by the phenological traits of the species selected or combined, subject N supplies to leaching loss.  相似文献   

18.
We used a Leslie matrix population model to investigate the impact of a range of harvest rates proposed for Alaskan sea otters (Enhydra lutris). The simulation included an analysis of several population mechanisms that might be important in the natural regulation of sea otter populations or in their reactions to harvesting. Significant differences in equilibrium population levels were found between compensatory mechanisms when fixed harvest rates were applied for 25-year periods. Adult harvests set at 2 and 4% of the total population showed that new stable population levels were rapidly attained. Harvest rates of 8 and 10%, however, resulted in marked population declines in simulated harvests. This analysis demonstrates that limited harvesting can be sustained by the population and that otter population compensation responses will be a critical determinant of sustainable harvest rates of sea otter populations.  相似文献   

19.
Tank JL  Rosi-Marshall EJ  Baker MA  Hall RO 《Ecology》2008,89(10):2935-2945
Given recent focus on large rivers as conduits for excess nutrients to coastal zones, their role in processing and retaining nutrients has been overlooked and understudied. Empirical measurements of nutrient uptake in large rivers are lacking, despite a substantial body of knowledge on nutrient transport and removal in smaller streams. Researchers interested in nutrient transport by rivers (discharge >10000 L/s) are left to extrapolate riverine nutrient demand using a modeling framework or a mass balance approach. To begin to fill this knowledge gap, we present data using a pulse method to measure inorganic nitrogen. (N) transport and removal in the Upper Snake River, Wyoming, USA (seventh order, discharge 12000 L/s). We found that the Upper Snake had surprisingly high biotic demand relative to smaller streams in the same river network for both ammonium (NH4+) and nitrate (NO3-). Placed in the context of a meta-analysis of previously published nutrient uptake studies, these data suggest that large rivers may have similar biotic demand for N as smaller tributaries. We also found that demand for different forms of inorganic N (NH4+ vs. NO3-) scaled differently with stream size. Data from rivers like the Upper Snake and larger are essential for effective water quality management at the scale of river networks. Empirical measurements of solute dynamics in large rivers are needed to understand the role of whole river networks (as opposed to stream reaches) in patterns of nutrient export at regional and continental scales.  相似文献   

20.
Recent surveys of recovery plans indicate that criteria, such as population sizes, for delisting species from the U.S. Endangered Species Act (ESA) are often unrealistically low by scientific standards. We describe the delisting criterion for the threatened southern sea otter (Enhydra lutris nereis) developed by the Southern Sea Otter Recovery Team. A major oil spill is the most serious threat to this sea otter population. After extensive modeling of oil spills, the recovery team concluded that it was not scientifically defensible to develop a delisting criterion in terms of a single probability of extinction over a specified time period. Instead, the team decided to define a size at which it would consider the population endangered and to consider the population threatened as long as a major oil spill might reduce it to that size. The effective population size (Ne) for endangered status was set at 500, estimated to be about 1850 otters. Using a spill the size of the Exxon Valdez spill (250,000 bbl), the oil spill model was iterated to generate a frequency distribution of the number of sea otters contacted by oil, from which the team estimated that less than 800 otters would be killed by 90% of the simulated spills. Thus, the delisting criterion was set at 1850 + 800 = 2650 individuals. There have been several proposals to improve the Endangered Species Act by providing quantitative guidance, in the form of specific probabilities of extinction within some time frame or specific criteria like those used by the World Conservation Union as to the levels of extinction risk represented by the terms "threatened" and "endangered." Experiences of the Sea Otter Recovery Team indicate that guidelines should not be overly rigid and should allow flexibility for dealing with specific situations. The most important consideration is to appoint a recovery team that is both technically well qualified and unconstrained by pressures from management agencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号