首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
为了降低蓝藻水处理中消毒副产物的产生,采用物理加压法取代传统化学氧化法进行预处理,从而减少新的化学物质的产生,降低消毒副产物风险,实验对比研究了加压混凝沉淀和预氧化混凝沉淀除藻工艺中消毒副产物及其前驱物的浓度。结果表明,经0.7 MPa加压1 min后混凝沉淀处理,藻类去除率达到95.8%,浊度0.58 NTU,均比原水混凝沉淀和预氧化混凝沉淀后效果大幅度提高。蓝藻水加压后三卤甲烷前驱物降低26.2%,卤乙酸前驱物无变化,混凝沉淀处理后前驱物比原水混凝沉淀后略有减少。加压水过滤消毒后消毒副产物与原水处理后持平。而经1~2 mg/L的Na Cl O预氧化水混凝沉淀过滤消毒后,三卤甲烷和卤乙酸浓度分别比原水处理后增加了3~4倍和1.7~2.5倍。加压混凝沉淀工艺处理蓝藻水,比传统预氧化工艺更有效控制了消毒副产物的产生。  相似文献   

2.
基于长江下游浅库型原水,对比常规与深度处理工艺运行效果,探索溶解性有机物(DOM)分子量分布的变化及其与消毒副产物生成的联系,明确常规与深度处理工艺的工艺适应性。研究结果表明,长江下游浅库型原水经以臭氧-生物活性炭(O3-BAC)为核心的深度处理后,出水高锰酸盐指数(IMn)、溶解性有机碳(DOC)、254nm单位吸光度(UV254)、UV254与DOC比值(SUVA254)、三卤甲烷生成潜能(THMFP)和卤乙酸生成潜能(HAAFP)分别降低了33%~79%、41%~67%、60%~81%、24%~58%、37%~70%和35%~64%,且出水小分子DOM(分子量≤1ku)占比降至50%(质量分数)以下。常规处理工艺中,混凝、沉淀及砂滤是DOM的主要去除单元;而深度处理工艺中,DOM则主要靠O3-BAC去除。针对长江下游浅库型原水,以O3-BAC为核心的深度处理工艺具有更高的工艺适应性,并能实现对DOM的有效去除。  相似文献   

3.
在对天然有机物分类的基础上进行了水体中有机物的特性研究,并采用氯胺对不同特性有机物的氯化消毒副产物进行了控制研究。结果表明,疏水酸占有机物总量的24%,疏水中性物质占41%,疏水性有机物占67%;对于三卤甲烷类消毒副产物生成势,疏水酸所产生的最多,疏水碱次之,亲水酸最少;对于卤乙酸类消毒副产物生成势,疏水碱产生的三卤乙酸最多,其次为疏水酸,亲水酸最少。氯胺对不同类有机物氯化消毒副产物控制程度不同,氯胺对疏水中性物质控制三卤甲烷类消毒副产物最好,其次是疏水碱和亲水碱;对疏水酸的三卤甲烷生成量控制较弱,对亲水酸的控制效果最差;氯胺对亲水碱氯化产生卤乙酸的控制效果最好,其次是疏水碱,控制效果最差的为疏水中性物质。  相似文献   

4.
以天津市某给水厂的水源水为实验对象,通过在实验室规模上模拟的给水处理厂工艺流程,比较了3种不同工艺流程中各单元出水的三卤甲烷(THMs)、卤乙酸(HAAs)和总有机物(TOC)浓度变化,分析了水处理单元工艺和TOC浓度对消毒副产物的影响。结果表明,预氯化生成的三卤甲烷和卤乙酸分别占最终出水中三卤甲烷和卤乙酸浓度的55.7%和66.7%,说明预氯化对出厂水中消毒副产物的产生有显著影响;混凝沉淀和过滤对三卤甲烷的去除率分别为17.2%和19.6%,而卤乙酸在水处理过程中变化不大,仅在过滤之后降低了3.32μg/L,说明过滤对三卤甲烷和卤乙酸均有一定的去除作用,而混凝沉淀仅对三卤甲烷有一定的去除作用;TOC浓度经过水处理工艺后整体呈下降趋势,但分析表明,其浓度对三卤甲烷和卤乙酸的生成影响很小,而氯则是三卤甲烷和卤乙酸生成的重要限制因素。  相似文献   

5.
水源地生态工程可改善饮用水水源水质,但其中的水生生物代谢物可能是消毒副产物(DBPs)前体物的来源。本文构建现场实验装置探究了水源地生态工程对原水水质的影响及原水中主要消毒副产物前体物的来源,考察了氯投量、温度以及pH对香蒲根分泌物、菰根分泌物和鲢鱼排泄物氯化后消毒副产物生成的影响。结果表明,实验装置对NH4+-N、TN和TP的平均总去除率分别为74.93%、53.98%和73.02%,总DOC沿程增加。溶解性有机物(DOM)中分子质量分布在<500 Da的DOC含量总体上呈沿程减少的趋势,>3 000 Da的DOC沿程有所增加。总三卤甲烷生成势(TTHMFP)和总卤乙酸生成势(THAAFP)沿程呈现增加的趋势,分子质量<3000Da的有机物中TTHMFP和THAAFP沿程有所下降,分子质量>3 000 Da的TTHMFP和THAAFP呈沿程增加的趋势。考察了装置中3种水生生物代谢物经氯化后得到的二氯乙酸(DCAA)、三氯乙酸(TCAA)、三氯甲烷(TCM)和二氯乙腈(DCAN)4种消毒副产物生成势,均随着氯投量和温度...  相似文献   

6.
针对城市污水再生处理工艺中卤乙酸类(HAAs)消毒副产物和卤乙酸生成潜能(HAAFP),结合三维荧光光谱,分析HAAs及其前体物的变化规律。结果表明,二级出水经2次加氯过程后,再生出水中的总卤乙酸浓度增加了90%,其中溴代乙酸的增幅最大,占增加量的82%。卤乙酸生成潜能较大的为氯代乙酸类物质,说明水中存在大量的氯代乙酸前体物。从工艺过程来看,总卤乙酸生成潜能与总有机物荧光强度分别下降了32%和28%,表明该再生处理工艺对HAAs前体物有一定的去除作用。  相似文献   

7.
采用生物接触氧化法对北京某水库的微污染水源水中消毒副产物前体物的去除进行了研究。结果表明,水源水和生物接触氧化柱(简称生化柱)出水中的消毒副产物前体物氯化后形成的消毒副产物三卤甲烷(THMs)以CHCl3,CHCl2Br和CHBr2Cl为主,其中CHCl3含量最高,约占THMs的70%。水温对THMs前体物的去除有很大的影响,水温15.8℃时,生化柱对THMs前体物的去除率为65.2%;当水温由15.8℃降至12.8℃时,THMs前体物的去除率由65.2%降至18.8%。2002年11月至2003年1月间,生化柱UV254吸收值的平均去除率为11%。  相似文献   

8.
天然有机物(NOM)和溴离子是卤代消毒副产物的前体物,氯型阴离子交换树脂可以有效去除这2种前体物,同时交换出氯离子。交换出的氯离子与水源水中天然存在的氯离子通过电解可以产生自由氯用于消毒。将氯型阴离子交换树脂处理与电解联用,通过建立和优化树脂处理与电解消毒方法,实现饮用水中卤代消毒副产物的控制。结果表明:树脂依次经过碱/酸洗、甲醇抽提和5次去离子水清洗后,可以有效减少树脂溶出,并降低氯离子和甲醇的影响;在2 L的模拟水源水样中加入20 mL树脂反应1 h后,可以去除93.7%的NOM和91.2%的溴离子;由树脂交换至水样中的氯离子通过电解氧化,可以在3 min内产生5 mg·L~(-1)的氯。与单独的氯消毒相比,新方法可以削减86.4%的总有机卤素(TOX)。  相似文献   

9.
对饮用水中普遍存在的消毒副产物形式HAAs的产生、测定方法以及控制途径进行了阐述.并对影响HAAs生成的主要因素投氯量、溴的影响以及卤乙酸副产物(HAAFP)含量等进行了分析.生物活性炭技术是一种非常有效的控制HAAs含量和减少HAAFP含量的方法,对于保障饮用水安全性具有重要意义.  相似文献   

10.
卤代腈(氰)是水处理过程中产生的一类含氮的氯化消毒副产物。鉴于这种物质有极强的致畸和致突变性,其细胞毒性也远大于三卤甲烷和卤乙酸等常规消毒副产物,因此成为近年来饮用水中颇受关注的含氮消毒副产物种类之一。卤代腈(氰)在水厂出厂水中被大量检出,其质量浓度基本维持在μg/L,而采用氯胺消毒的出厂水中其浓度明显高于自由氯消毒方式。重点对卤代腈(氰)的物质种类、理化特性、遗传毒性、生产机制、检测方法及控制方法进行综述。鉴于多数卤代腈(氰)类消毒副产物均具有含量低、亲水性强等特点,若生成将难以在饮用水处理工艺中有效去除,因此如何有效控制其生成是卤代腈(氰)研究的主要发展方向。  相似文献   

11.
Minimization of the formation of disinfection by-products   总被引:1,自引:0,他引:1  
The drinking water industry is required to minimize DBPs levels while ensuring adequate disinfection. In this study, efficient and appropriate treatment scheme for the reduction of disinfection by-product (DBPs) formation in drinking water containing natural organic matter has been established. This was carried out by the investigation of different treatment schemes consisting of enhanced coagulation, sedimentation, disinfection by using chlorine dioxide/ozone, filtration by sand filter, or granular activated carbon (GAC). Bench scale treatment schemes were applied on actual samples from different selected sites to identify the best conditions for the treatment of water. Samples were collected from effluent of each step in the treatment train in order to analyze pH, UV absorbance at 254 nm (UVA254), specific UV absorbance at 254 nm (SUVA254), dissolved organic carbon (DOC), haloacetic acids (HAAs) and trihalomethanes (THMs). The obtained results indicated that using pre-ozonation/enhanced coagulation/activated carbon filtration treatment train appears to be the most effective method for reducing DBPs precursors in drinking water treatment.  相似文献   

12.
Chang EE  Chiang PC  Ko YW  Lan WH 《Chemosphere》2001,44(5):1231-1236
The molecular weight distribution and chemical composition of precursors and their relationship with disinfection by-products (DBPs) were investigated. Most of the organic matter responsible for the major DBP precursors in the Pan-Hsin water are small compounds with a molecular weight less than 1 kDa. The hydrophobic acids display the greatest ability to produce DBP. Therefore, effective removal of small molecules or hydrophobic acidic organics prior to disinfection process will significantly reduce the DBP concentration in the finished water. Although the coagulation process is effective in removing large organic precursors and the removal efficiencies of CHCl3 formation potential and organic carbon increase proportionally to the molecular weight of the precursors, the conventional treatment methods have limited efficiency in eliminating small precursors, which have high DBP formation potential.  相似文献   

13.
This study presents the seasonal and spatial variations of trihalomethanes (THMs) and haloacetic acids (HAAs) in 30 sampling points within three water distribution systems of Istanbul City, Turkey. The effects of surface water quality, seasonal variation, and species differences were examined. The occurrence of chlorinated THMs and HAAs levels was considerably lower in the system in which raw water is subjected to pre-ozonation versus pre-chlorination. Seasonal analysis of the data indicated that the median concentration of four THMs (THM4) was higher than nine HAAs (HAA9) concentrations in all three distribution systems sampling points. For all distribution systems monitored, the highest median THM4 and HAA9 concentrations were observed in the spring and summer season, while the lowest concentrations of these disinfection byproduct (DBP) compounds were obtained in the fall and winter period. Due to the higher level of bromide in supplying waters of these two systems, moderate levels of brominated DBP species have been observed in the Kagithane and Buyukcekmece distribution systems districts. In fact, Spearman partial correlations (Spearman rank correlation coefficients [rs]) tend to be higher among analogues in terms of number and types of substituent, especially TCAA with TCM (rs 0.91), and DBAA with DBCM (rs 0.90). In contrast, the hydraulic (residence time and flow rate) and chemical mechanisms (hydrolysis, volatilization, and adsorption) affect the fate and transport of DBPs in distribution systems. Seasonal and spatial variations of DBPs presented in this study have important implications on regulatory issues and from an epidemiological point of view.  相似文献   

14.
Toor R  Mohseni M 《Chemosphere》2007,66(11):2087-2095
The presence of disinfection byproducts (DBPs) such as trihalomethanes (THMs) and haloacetic acids (HAAs) in drinking water is of great concern due to their adverse effects on human health. Emerging regulation limiting the concentration of DBPs in drinking water has increased demands for technologies and processes which reduce the formation of DBPs in drinking water. In this study, UV-H2O2 based advance oxidation process (AOP) was used to treat raw surface water. Experiments were conducted using low pressure mercury vapor UV lamps in collimated beam and flow-through annular photoreactors. The effect of UV fluence (0–3500 mJ cm−2) and hydrogen peroxide concentration (0–23 mg l−1) in reducing the concentration of THMs and HAAs was examined. The UV-H2O2 AOP was then coupled with a downstream biological activated carbon (BAC) treatment to assess the synergetic benefits of combining the two treatments. It was observed that UV-H2O2 AOP was only effective at reducing DBPs at UV fluences of more than 1000 mJ cm−2and initial H2O2 concentrations of about or greater than 23 mg l−1. However, the combined AOP–BAC treatment showed significant reductions of 43%, 52%, and 59% relative to untreated raw water for DBPs, TOC, and UV254, respectively.  相似文献   

15.
Knowledge on the behaviour of disinfection by-products (DBPs) during aquifer storage and recovery (ASR) is limited even though this can be an important consideration where recovered waters are used for potable purposes. A reclaimed water ASR trial in an anoxic aquifer in South Australia has provided some of the first quantitative information at field-scale on the fate and transport of trihalomethanes (THMs) and haloacetic acids (HAAs). The results revealed that THM half-lives varied from <1 to 65 days, with persistence of chloroform being highest and bromoform lowest. HAA attenuation was rapid (<1 day). Rates of THM attenuation were shown to be highly dependent on the geochemical environment as evidenced by the 2-5 fold reduction in half-lives at the ASR well which became methanogenic during the storage phase of the trial, as compared to an observation well situated 4 m away, which remained nitrate-reducing. These findings agree with previous laboratory-based studies which also show persistence declining with increased bromination of THMs and reducing redox conditions. Modelling suggests that the chlorinated injectant has sufficient residual chlorine and natural organic matter for substantial increases in THMs to occur within the aquifer, however this is masked in some of the field observations due to concurrent attenuation, particularly for the more rapidly attenuated brominated compounds. The model is based on data taken from water distribution systems and may not be representative for ASR since bromide and ammonia concentrations in the injected water and the possible role of organic carbon in the aquifer were not taken into consideration. During the storage phase DBP formation potentials were reduced as a result of the removal of precursor material despite an increase in the THM formation potential per unit weight of total organic carbon. This suggests that water quality improvements with respect to THMs and HAAs can be achieved through ASR in anoxic aquifers.  相似文献   

16.
Knowledge on the behaviour of disinfection by-products (DBPs) during aquifer storage and recovery (ASR) is limited even though this can be an important consideration where recovered waters are used for potable purposes. A reclaimed water ASR trial in an anoxic aquifer in South Australia has provided some of the first quantitative information at field-scale on the fate and transport of trihalomethanes (THMs) and haloacetic acids (HAAs). The results revealed that THM half-lives varied from <1 to 65 days, with persistence of chloroform being highest and bromoform lowest. HAA attenuation was rapid (<1 day). Rates of THM attenuation were shown to be highly dependent on the geochemical environment as evidenced by the 2-5 fold reduction in half-lives at the ASR well which became methanogenic during the storage phase of the trial, as compared to an observation well situated 4 m away, which remained nitrate-reducing. These findings agree with previous laboratory-based studies which also show persistence declining with increased bromination of THMs and reducing redox conditions. Modelling suggests that the chlorinated injectant has sufficient residual chlorine and natural organic matter for substantial increases in THMs to occur within the aquifer, however this is masked in some of the field observations due to concurrent attenuation, particularly for the more rapidly attenuated brominated compounds. The model is based on data taken from water distribution systems and may not be representative for ASR since bromide and ammonia concentrations in the injected water and the possible role of organic carbon in the aquifer were not taken into consideration. During the storage phase DBP formation potentials were reduced as a result of the removal of precursor material despite an increase in the THM formation potential per unit weight of total organic carbon. This suggests that water quality improvements with respect to THMs and HAAs can be achieved through ASR in anoxic aquifers.  相似文献   

17.
Effects of bromide on the formation of THMs and HAAs   总被引:17,自引:0,他引:17  
Chang EE  Lin YP  Chiang PC 《Chemosphere》2001,43(8):1029-1034
The role of bromide in the formation and speciation of disinfection by-products (DBPs) during chlorination was investigated. The molar ratio of applied chlorine to bromide is an important factor in the formation and speciation of trihalomethanes (THMs) and halogenacetic acids (HAAs). A good relationship exists between the molar fractions of THMs and the bromide incorporation factor. The halogen substitution ability of HOBr and HOCl during the formation of THMs and HAAs can be determined based on probability theory. The formation of HAAs, and their respective concentrations, can also be estimated through use of the developed model.  相似文献   

18.
The formation was investigated for different groups of disinfection byproducts (DBPs) during chlorination of filter particles from swimming pools at different pH-values and the toxicity was estimated. Specifically, the formation of the DBP group trihalomethanes (THMs), which is regulated in many countries, and the non-regulated haloacetic acids (HAAs) and haloacetonitriles (HANs) were investigated at 6.0≤pH≤8.0, under controlled chlorination conditions. The investigated particles were collected from a hot tub with a drum micro filter. In two series of experiments with either constant initial active or initial free chlorine concentrations the particles were chlorinated at different pH-values in the relevant range for swimming pools. THM and HAA formations were reduced by decreasing pH while HAN formation increased with decreasing pH. Based on the organic content the relative DBP formation from the particles was higher than previously reported for body fluid analogue and filling water. The genotoxicity and cytotoxicity estimated from formation of DBPs from the treated particle suspension increased with decreasing pH. Among the quantified DBP groups the HANs were responsible for the majority of the toxicity from the measured DBPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号