首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The fatty acids (FA) in neutral lipid (NL) and polar lipid (PL) of digestive gland, muscle and integument of Penaeus esculentus Haswell were analysed and compared during the moulting cycle and during starvation. The prawns were collected from Moreton Bay, Queensland, Australia, by trawling during 1985–1987, and were fed with a standard semi-purified diet. Compared with a natural diet, the artificial diet had much higher levels of 18:1n-9 and 18:2n-6, but only trace amounts of 20:4n-6, but there was no evidence of dietary imbalance. The fatty acid composition (percentage of total lipid) of the digestive gland changed markedly during the moulting cycle and during starvation, but the small changes observed in both muscle and integument suggested that these tissues maintained their composition under both conditions. When the fatty acids were calculated as absolute amounts, muscle composition, as well as that of the digestive gland, changed significantly. In the digestive gland, saturated FA (SFA), monounsaturated FA (MUFA), diunsaturated FA (DUFA) and polyunsaturated FA (PUFA) all increased up to the middle of the moulting cycle and then declined; with starvation all groups decreased. In muscle, SFA, MUFA and DUFA all increased during the moulting cycle; starvation caused SFA, MUFA and PUFA to decrease, whereas DUFA did not vary. Starvation caused both 18:2n-6 (linoleic) and 18:3n-3 (linolenic) in the digestive gland to reach or almost reach zero. The other essential PUFA, 20:4n-6 (arachidonic), 20:5n-3 (eicosapentaenoic) and 22:6n-3 (docosahexaenoic), decreased during the moulting cycle, but during starvation 20:4n-6 did not decrease as much. In muscle, the levels of 18:2n-6 and 18:3n-3 increased, while 20:4n-6, 20:5n-3 and 22:6n-3 remained approximately constant during the moulting cycle. Starvation reduced 20:5n-3 and 22:6n-3 to about 60%. The data suggest that levels of 18:3n-3, 20:4n-6, 20:5n-3 and 22:6n-3 are regulated, and that 20:4n-6 can be synthesised from 18:2n-6. There is no clear evidence that 20:5n-3 and 22:6n-3 are essential in P. esculentus, but tissue catabolism of cell membranes during starvation may have provided sufficient amounts for maintenance.  相似文献   

2.
During a period of short-term (19 d) starvation, total lipid in the digestive gland of Euphausia superba Dana decreased from 21 to 9% dry weight. Total lipid per digestive gland decreased significantly during starvation compared to Day 0 individuals, falling from 1960 (±172) to 385 (±81) g. Polar lipid was the major lipid class utilised during starvation, falling from 1510 (±225) to 177 (±46) g per digestive gland (76 to 45%). Absolute levels of triacylglycerol fell from 300 (±41) to 76 (±5) g; however, relative levels remained unchanged. The relative level of free fatty acid increased significantly with starvation (4 to 39%) with absolute levels ranging from 79 (±1) to 156 (±20) g per digestive gland. Absolute levels of all fatty acids per digestive gland declined continually until the end of the starvation period. The long-chain polyunsaturated acids eicosapentaenoic (20:53) and docosahexaenoic (22:63), decreased with starvation from 37 to 26% and 15 to 10%, respectively whereas the saturated fatty acid, palmitic acid (16:0), increased from 15 to 20%. Cholesterol, the major sterol in this organ, increased from 17 (±20) to 44 (±13) g per digestive gland by Day 3, and by Day 19 had returned to levels found in the digestive gland of Day 0 individuals. Desmosterol followed a similar pattern to cholesterol, increasing from 3 (±1) g per digestive gland on Day 0 to 11 (±4) g on Day 3, and falling to 2 (±1) g on Day 19. Other sterols in the digestive gland, predominantly of algal origin, fell from the levels found in Day 0 individuals to near zero amounts by Day 6. The digestive gland of E. superba plays a dynamic role during shortterm starvation in terms of lipid content and composition. The relative levels of polar lipids, free fatty acids and cholesterol in the digestive gland may provide reliable indices of the nutritional condition of E. superba in the field. Sterols in the digestive gland are indicative of recent dietary composition of krill, and may also be used to quantify dietary input from individual phytoplanktonic species.  相似文献   

3.
Nørum  U.  Bondgaard  M.  Bjerregaard  P. 《Marine Biology》2003,142(4):757-769
Tissue concentrations and contents of copper and zinc were determined at 11 different stages of the moult cycle in male and female shore crabs Carcinus maenas. Metal concentrations in haemolymph, gills, midgut gland, muscle, and exoskeleton of males and haemolymph, gills, and midgut gland of females were determined, as were haemocyanin concentrations and haemolymph volumes (using 14C-inulin) in males. The changes in tissue Cu and Zn concentrations and contents that occur throughout the moult cycle can be attributed to muscle breakdown in late premoult, the period of starvation in late premoult and early postmoult, the resorption from and shedding of the old exoskeleton, and the dilution of the haemolymph caused by water uptake around the time of ecdysis. The present study demonstrates that whole-body Cu and Zn contents remain constant during a large part of the moult cycle of male and female C. maenas. This state of whole-body trace metal homeostasis is maintained in spite of major changes in tissue proportions and tissue Cu and Zn concentrations and contents. Previous studies have not carried out the necessary analysis to move from theoretical estimates to quantitative determination of the changes in tissue metal distribution associated with moulting in crustaceans; the data presented illustrate the necessity of measuring both tissue concentrations and contents of metals to avoid misinterpretation of either.  相似文献   

4.
Changes in the biochemical composition of the digestive gland and in the proteins of the mantle muscle of Sepia officinalis L, collected in September 1989 from the Ria de Vigo (northwest Spain), were measured during periods of 2, 4, 10 and >53 d starvation. The digestive gland lost weight faster than the rest of the body throughout the whole period of starvation. In the digestive gland, carbohydrate and protein contents did not change during starvation; however, lipid levels decreased significantly after 53 d. Phospholipid content increased during longterm starvation. The content of free fatty acids rose after 16 d. Sterols, diacylglycerylethers, triacylglycerols and carotenoids contents did not change significantly. Of the total fatty acids, 18:0, 20:2n6, 20:4n6 and the monounsaturated moieties were preferentially consumed; others, such as 22:5n3, 22:6n3 and 16:4n1, were selectively retained. In the mantle muscle, water content increased and total protein content decreased. The myofibrillar proteins decreased after 53 d starvation, whereas the sarcoplasmic fraction did not change and the stromatic proteins increased. No changes were observed in the electrophoretic patterns of sarcoplasmic and myofibrillar proteins. The digestive gland of S. officinalis does not seem to be an important reserve organ during long-term starvation, but does seem to be important during shortterm starvation.  相似文献   

5.
The lipid content of the digestive gland and the gonad of cuttlefishes (Sepia officinalis L.) caught off the French coasts in 1979–1980 was determined and analysed by thinlayer chromatography. The total sterol and phospholipid levels were also determined. The results from immature and mature females and males were compared in an attempt to correlate variations of the lipids with sex or state of gonad maturation. The fluctuations in the lipid level of the digestive gland, which acts as a storage organ, seemed far better related to the diet than to sex or sexual maturity. In the gonads, the lipids were few and seemed to be mostly membrane constituents. However, the increase of phospholipids in the mature ovary could be related to yolk synthesis.  相似文献   

6.
Changes in biochemical composition, lipid class and fatty acid contents were studied in the ovaries and midgut glands of the fiddler crabs Uca tangeri Eydoux during maturation. Wild females were caught during spring and early summer of 1992 in the Bay of Cádiz (southwest Spain), near the mouth of the San Pedro river. Protein and total lipid contents in the ovaries increased significantly from Stages III to IV, at the expense of total carbohydrate, which showed a large decrease during the same period. In the midgut gland, the protein content did not present any significant variation, whereas total lipids and total carbohydrates presented opposite up and down trends during maturation. In the ovary, total polar lipids increased significantly during the final phase of maturation (Stages III to IV), mainly due to the significant contribution of the phosphatidylcholine and phosphatidylethanolamine fractions. In contrast, total neutral lipids showed an upward trend throughout the whole maturation period, mainly due to significant increases of the triacylglycerol fraction. In the midgut gland, total polar lipids (mainly phosphatidylcholine) and total neutral lipids (mainly triacylglycerol) presented significant decreases from Stages II to III, the phase which preceded major increases in both polar and neutral lipids in the ovaries. Cholesterol content did not vary during maturation in either organ, in the ovary or midgut gland. Major fatty acids in the ovaries [16:0, 16:1 (n-7), 18:1 (n-9), 18:1 (n-7), 18:2 (n-6), 18:3 (n-3), 20:4 (n-6), 20:5 (n-3) and 22:6 (n-3)] did, however, accumulate significantly at later stages of maturation. It is noteworthy that arachidonic acid [20:4 (n-6)] content remained constant during all stages of maturation but decreased significantly in total polar lipids in the later phases of maturation. In contrast, eicosapentaenoic acid [20:5 (n-3)] increased significantly in all lipid fractions in the later stages, and docosahexaenoic acid [22:6 (n-3)] remained constant in the polar lipids and increased during later stages in the triacylglycerol fraction. Major fatty acids in the midgut gland lipids showed significant decreases from Stages II to III, just before the final period of maturation.  相似文献   

7.
Using the starvation technique, changes in protein and free amino acids were examined in Penaeus esculentus Haswell collected from Moreton Bay, Australia, by trawling in 1985. Prawns of 17.7±0.26 g wet weight were held at 25°C until 2 d after moulting. Groups of seven or eight were then starved fro 5, 10, or 15 d, with appropriate control groups. At the end of each period, ecreted amino acids were collected for 24 h and whole-muscle amino acids and free amino acids (FAA) g-1 in each prawn were analysed. Concentrations of whole-muscle amino acids showed only minor changes with starvation, but concentrations of many of the FAA changed significantly. Total FAA averaged 1 182±45 mol g-1 dry weight. Individual FAA, in order of abundance, were glycine, arginine, proline, taurine, threonine, hydroxyproline, alanine, glutamic acid, valine, aspartic acid and lysine; the remaining FAA each contributed <0.2% of the total. Only taurine and alanine did not show significant changes with starvation. Concentrations of glycine, arginine, hydroxyproline, glutamic and aspartic acid increased, while those of proline, threonine, valine and lysine decreased with starvation, that of proline approaching zero after 15 d starvation. Excreted amino acid-nitrogen represented <2% of excreted ammonianitrogen ornithine being the most abundant (35%), followed by leucine (22%) and lysine (17%). The relative abundance of excreted amino acids did not correspond with those of the FAA. It is suggested that, as starvation progresses, the muscle protein is progressively hydrolysed, but with the remaining muscle maintaining its amino acid composition. The liberated amino acids enter the FAA pool and become available for energy production. Proline may have an important role as an energy source, but the ability to synthesise proline may be limited, and thus the artificial food of penaeid prawns may be improved by its addition.  相似文献   

8.
The endocrine regulation of carbohydrate metabolism in the decapod Ocypoda platytarsis was investigated by eyestalk ablation at all stages of the moult cycle. Eyestalk removal (and hence removal of a substance probably produced by it) profoundly influences the carbohydrate level of the major storage organ, the hepatopancreas. The changes taking place storage organ, the hepatopancreas. The changes taking place in hepatopancreatic glycogen are reflected in the blood sugar (glycemic) level. The blood-sugar level is also related to dynamic events taking place in the cuticle during the moult cycle. At the intermoult and postmoult stages, the eyestalk factor directs the sugar supply for energy metabolism, and prevents sugar deposition as glycogen in the hepatopancreas. At the premoult stage, the activity of the eyestalk is suppressed by the moulting gland (the Y organ), as eyestalk ablation does not alter the blood-sugar value or the hepatopancreatic glycogen-level. After the increase at the freshmoult stage due to eyestalk ablation, the blood-sugar level tends to re-attain its previous low level at the postmoult stage.  相似文献   

9.
Zoea I larvae of Hyas araneus L. (Decapoda: Brachyura: Majidae) were dredged in January 1986 from the German Bight and reared in the laboratory at constant 12°C, until they reached the transition of stages C/D0 of the moult cycle (4 d after hatching). This developmental stage had previously been found to correspond with the point of reserve saturation (PRS) which allows autonomous (food-independent) development through the rest of the moult cycle and hence, was termed the D0 threshold. One part of the larvae was continually fed (control), another group was starved from the D0 threshold until moulting to the zoea II instar. In these two experimental groups, as well as in the two groups of zoea II larvae obtained from the different feeding conditions, the course of the moult cycle, biomass (dry weight, W; carbon, C; nitrogen, N; hydrogen, H; energy, E; the latter estimated from C), and ecdysteroid titers (measured with a radio-immuno-assay as ecdysone equivalents) were investigated. When the larvae reached the PRS, they had gained 90% in W, 72% in C, 32% in N, 53% in H, and 65% in E, since hatching, corresponding to an accumulation of 87% of final W and 62 to 69% of C, N, and H reached later, at the end of the mould cycle in the control. The period of starvation caused a 2.5-d delay of the moult cycle, mainly in late premoult, and significant losses of biomass and energy. Starved and fed larvae secreted similar amounts of moulting hormone per individual, but with a reduced rate in the starved group, thus causing developmental delay. Zoea II larvae moulting after starvation contained less than half of the control biomass and energy, and even less than a freshly hatched zoea I. Growth rate was only slightly enhanced in these zoea II larvae as compared to the fed control, but losses of biomass, mainly of lipids, were partly compensated by a 4-d prolongation of their moult cycle, chiefly (3 d) in stage C. Biomass curves were almost parallel in the two experimental groups of zoea II larvae, with significantly higher values in the control during all stages of the moult cycle. However, similar relative proportions (74 to 89%) of late premoult biomass and energy were reached at the D0 threshold, regardless of different feeding history and initial or final values in a given group. The ecdysteroid titer curve of the zoea II which had moulted from starved zoea I was very similar to that in control larvae, but with a 3-d delay in the occurrence of premoult peak concentration (in both groups in stage D1). Regulation and coordination of moult cycle, ecdysteroid titers, and growth in the larval development of decapod crustaceans are discussed, with special reference to the D0 threshold.  相似文献   

10.
Chitinase andN-acetyl--D-glucosaminidase activity were quantified inPalaemon serratus (Pennant) integument and midgut gland during the moulting cycle. Studies were performed on specimens collected near Concarneau, France, in July 1989. The changes in specific activity are different in the two organs: in the midgut gland enzymatic activity is high throughout the whole moulting cycle with a weak peak at the early premoult Stage D1, whereas in the integument the activity of both enzymes is very low throughout post- and intermoult stages and rises only after premoult Stage D1. The highest specific activity is reached in D1 for chitinase and somewhat earlier (D1) forN-acetyl--D-glucosaminidase. The increase in specific chitinolytic activity coincides with an increase in ecdysteroids.  相似文献   

11.
Changes in total lipids, lipid classes and their fatty acid contents were studied in the ovaries and midgut glands ofPenaeus kerathurus Forskäl females during sexual maturation. The shrimp were captured in the Gulf of Cádiz (southwest Spain) in 1990. The lipid content and fatty acids, in relative terms, increased during ovarian development. The greatest changes occurred between Maturation Stages III and IV. Ovarian lipids were dominated by polar classes, whereas in the midgut gland the major classes were triacylglycerols and sterol esters. The amounts of major fatty acids in ovaries (16:0, 16:1n-7, 18:1n-9, 18:1n-7, 20:5n-3 and 22:6n-3) increased with increasing maturity, but declined slightly between Stages III and IV. The total polar lipid content of the midgut was 5.7% (by dry weight) and its fatty acid composition remained constant during the whole study period. Total lipid content of the midgut gland showed an upward trend during sexual maturation, except between Stages II and III, when a slight decrease was observed. Predominant fatty acids in the midgut gland (16:1n-7, 20:5n-3 and 22:6n-3) displayed a noteworthy decline between Stages II and III, corresponding with the marked increase in total lipid fatty acid content in the ovaries during the same period.  相似文献   

12.
Female Penaeus esculentus Haswell were collected by 15 to 20 min duration trawls during 1990. Carotenoids were analysed in the digestive gland, abdominal muscle, the remainder of the body (hereafter called integument) and ovary of prawns in Stage 2 through Stage 4 (fully mature) of maturation. The only oxycarotenoids (xanthophylls) identified were astaxanthins or astaxanthin esters; occasionally low levels of -carotene were detected in the digestive gland. The concentrations of astaxanthin monoesters (AM) and diesters (AD) were highest, with only minor amounts of free astaxanthins (Ast), except in the maturing ovaries, where free astaxanthins predominated (up to 80% of the total carotenoid). Of the total carotenoid, 82 to 94% was in the integument, but at maturity the digestive gland contained 10.7±3.4% and the ovary 5.6±0.9% of the total carotenoid. Only the ovary increased in mass during maturation, reaching up to 5.2% of total prawn mass. During this period, digestive gland concentrations of AM, AD and Ast all increased (tota 20 to 120 g g-1); levels in the muscle and integument varied little throughout maturation (total 0.4 and 100 g g-1, respectively); ovary AM levels remained low throughout (1.5 to 1.2 g g-1), AD increased from only 2 to 5 g g-1, but Ast increased from 2 to 34 g g-1. Apart from the ovary, AM concentrations were the most variable. In common with other decapod Crustacea, the maturing ovary of P. esculentus contained high levels of carotenoids, indicating that these may have an important role in early development. The natural diet of P. esculentus includes a variety of carotenoids, but except for a little -carotene, the digestive gland, where absorption occurs, contained astaxanthins, with only an occasional trace of -carotene. This suggests that the conversion of dietary carotenoids to astaxanthin occurs soon after ingestion.  相似文献   

13.
The pelagic yellowtail kingfish Seriola lalandi has become a target species for aquaculture in Asia and Australasia. Australasian production is reliant on larviculture from eggs of captive brood stock; however, knowledge regarding the nutritional requirements of larvae of this species is still scarce, particularly in relation to lipids. As a first step in establishing these requirements, eggs and larvae from captive S. lalandi brood stock were examined for differences in total protein, total lipid and lipid classes between individual spawning events, over the spawning season, and during larval development from fertilisation to 15 days post hatch. Results indicate that total protein egg−1 varied significantly between individual spawning events within a season, but neither total lipid nor total protein egg−1 varied significantly across the spawning season. Brood stock egg lipids were made up of approximately 60% phospholipid, 25% wax and/or sterol esters (WE), 15% triacylglycerol (TAG), and small amounts of sterols and free fatty acids. During the early larval period, both WE and TAG were utilised concurrently for energy. The larvae experienced very high mortality around 5–7 days post hatch, which coincided with very low levels of all neutral lipid classes. Although many other factors may also influence larval mortality, these results indicate that lipid provisioning may be an important factor in larval survival during the critical period around first-feeding in this species. Examination of ratios of TAG:ST, often used as a condition index in fish larvae, suggested that some of the larvae were suffering from starvation. However, as egg-derived WE appears to provide a significant source of energy during the early larval period in S. lalandi, it is suggested that WE should be included in any index of larval nutritional state.  相似文献   

14.
InEmerita asiatica, the quantitative fluctuations in the glycogen content of the hepatopancreas were markedly related to the moult cycle. The glycogen content of the hepatopancreas was maximum during premoult stages. It has been suggested that reserve glycogen, in addition to meeting general metabolic needs, may be especially involved in the genesis of the sugar precursors of chitin. The marked fall in the hepatopancreas glycogen values following moulting is probably due to its utilization in chitin synthesis during and immediately following moulting. InE. asiatica, the storage of glycogen was found to be meagre in muscles, and muscle glycogen had no bearing on chitin synthesis during moulting. InLigia exotica, glycogen is stored to a lesser extent than inE. asiatica, and was found in connective tissue and muscles. Significant fluctuations were noted in glycogen values correlated with the phases in the moult cycle when chitin synthesis took place. InL. exotica, the hepatopancreas does not serve as a storage depot for glycogen related to chitin synthesis.  相似文献   

15.
Blood sugars of the crustacean Emerita asiatica were studied during the moult cycle to examine their possible role in the synthesis of chitin, which takes place at the time of moulting. Blood sugars occur both in free state as well as bound with proteins, and show quantitative fluctuations in different phases of the moult cycle. The values of sugars were estimated in relation to total blood volume, to obviate the effects o absorption of water and consequent dilution of blood taking place during moulting. The data obtained suggest that the presence of glucosamine only during premoult stage may be due to resorption of chitin preparatory to the shedding of the cuticle. The fluctuations in the protein-bound blood sugars appear significant in the context of the synthesis of chitin, in view of the correlation seen between these and the chitin content. The above suggestion is supported by the observation that they are not involved in the nutritive metabolism of the crustacean. The protein-bound sugars do not appear to undergo further changes in the blood, as may be inferred by the absence of uridine diphosphate, and uridine diphosphate acetylglucosamine compounds, which have been suggested to be the more immediate precursors of chitin during the moult cycle of insects. It is suggested that protein-bound sugars may be transported, as such, to the epidermis, which may be the site of the final steps in chitin synthesis.  相似文献   

16.
The aims of this study were to assess quantitatively the enzymatic ability of squid to digest lipids and the ability of the digestive gland to accumulate lipid classes associated with storage. This was achieved through two manipulative experiments using the dumpling squid, Euprymna tasmanica. Firstly, we measured lipase activity and determined the presence and location of lipid vacuoles within the digestive gland; secondly we identified and quantified lipid classes in the digestive gland. Given the levels of lipase activity, we provided evidence for the first time that a squid species is capable of digesting lipid at levels comparable to invertebrates known to use dietary lipid. A poor relationship between feeding activity and lipase secretion suggests that enzyme production is continuous. The second experiment found no evidence that lipid was stored in the digestive gland; most of the lipid present in the gland was either structural or a dietary by-product. The implication of these findings is that for this species lipid is most probably being immediately digested and used for growth and reproduction rather than being stored in the digestive gland. We consider that the role and storage of lipid is likely to vary among different cephalopod species, but not predictably as function of their lifestyle. Therefore, potential locations for lipid storage, other than the digestive gland, need to be considered and using changes in the relative size of the digestive gland as a measure of condition needs to be interpreted with care.  相似文献   

17.
Freshly caught male and female Euphausia superba from the same swarm exhibited different rates of mortality subsequent to capture. Mortality was significantly higher for reproductive males (100%, n=68) than for females (3%, n=186) within the first 3 d of capture. Total lipid and triacylglycerol levels in male, female and juvenile Euphausia superba were analysed and compared. All reproductive male krill analysed from this swarm had low lipid levels (1 to 3% dry weight) with negligible triacylglycerol stores (0 to 2% of total lipid). Somatic lipid stores in female and juvenile krill ranged from 8 to 30% of which up to 40% was triacylglycerol. The levels of algal sterols in the digestive gland of males, females and juveniles indicate that all krill had been feeding recently. An analysis of the sex ratio of krill catches derived from data collected over seven summers from the Prydz Bay region showed a decrease in the proportion of males with increasing size. There was a sharp decline in numbers of male krill once they attained a length of 51 to 55 mm. Low lipid levels in redroductive male krill may be due to reproductive costs. The resulting low storage-lipid levels are accompanied by high mortality in male krill.  相似文献   

18.
We determined the temporal evolution of amylase, cellulase, laminarinase and protease in the digestive gland and crystalline style of cockles Cerastoderma edule held over 9 to 12 d in the presence and absence of food. Cockles were fed a constant diet of 1.5 mm3 l−1 of Tetraselmis suecica for 9 to 12 d and were then starved for 6 to 8 d in late summer (September 1992) and in winter (January 1993). Feeding increased the dry weight and total cellulase, laminarinase and protease activities of the digestive gland irrespective of season, whereas amylase activity remained unchanged. In winter (i.e. when cockles are metabolically weak) the response was faster and stronger, especially for protease. An additional experiment in September starved cockles for 20 d before resuming feeding. In agreement with the seasonal differences, the presence of food after prolonged starvation induced a rapid and marked increase in protease in the digestive gland of the cockles. In winter, the possible effects of the biochemical composition of food on their enzymatic response were tested by feeding two groups of cockles with the same ration of T. suecica but harvested at different growth phases. A compensatory induction of cellulases occurred in cockles fed on T. suecica with a lower carbohydrate content. In the crystalline style, the protein level and carbohydrase fell during the first day of feeding and increased during the first day of subsequent starvation. These results indicate that the release of enzymes from the style prevails over the incorporation of enzymes during the early stages of feeding, whereas the opposite occurs during starvation. Received: 15 February 1998 / Accepted: 22 February 1999  相似文献   

19.
Incorporation of 3H-labelled glucose and 3H-labelled N-acetylglucosamine (NAGA) — both precursors to chitin —into the cuticle of Rhithropanopeus harrisii (Gould) larvae (Crustacea: Brachyura) has been examined at different stages of the moult cycle in control larvae as well as in larvae treated with the insect growth regulator diflubenzuron (Dimilin®). As far as the control larvae were concerned, the incorporation of both precursors was high at the postmoult stage when endocuticle was secreted. NAGA appeared to be a more specific precursor of cuticular material than glucose during the premoult stage when exocuticle was produced. Incorporation of both precursors was low immediately before ecdysis and during the intermoult stage when secretion of the cuticle is complete. The results show that incorporation of glucose into chitin was greatly inhibited by the pollutant during the postmoult stage when endocuticle is produced, while incorporation of NAGA was reduced to a lesser extent at this stage. Diflubenzuron treatment markedly affected the incorporation of both NAGA and glucose in the premoult stage during secretion of exocuticle.  相似文献   

20.
Gammarus oceanicus Segerstråle, 1947 and Echinogammarus marinus (Leach, 1815) were sampled during the breeding season from Oslofjord in 1984, and their lipid composition examined in relation to reproductive condition. In G. oceanicus, female lipid content increased as the ovary matured. Both the amount of lipid stored and the rate of accumulation were greater in spring than in winter. Spring eggs contained 12.4 g lipid, of which 63% was triacylglycerol and 27% phospholipid. Both fractions decreased steadily during embryonic development. Winter eggs contained 19.2g lipid, of which 52% was triacylglycerol and 43% phospholipid. During the early stages of embryonic development the amount of phospholipid decreased sharply, whereas that of triacylglycerol increased, suggesting that some of the fatty acid released from phospholipid was sequestered temporarily as triacylglycerol. When newly spawned, both winter and spring eggs were richer in monoenoic fatty acids than adult amphipods and these acids were the major fuel consumed during development. 6 fatty acids were utilised more slowly than 3 acids, and egg carotenoid pigment content remained constant. Female E. marinus increased in lipid content as the ovary matured. Spring eggs contained 14.7 g lipid when newly spawned and this increased to 16.6 g during the early stages of development. This increase was entirely triacylglycerol, which declined in later stages; the source of the extra lipid was unclear. Eggs contained very little phospholipid or sterol, and both of these components remained at a steady low level during development. E. marinus eggs were not significantly rich in thonoenoic acids compared with adults, and saturated, monoenoic and polyenoic acids were utilised about equally during development. Both adults and eggs were rich in 20.46, which was utilised at a slower rate than the 3 polyunsaturated acids during embryonic development; again, egg carotenoid pigment content remained constant. In both species there was a decrease in the size of the egg (and as a result, of the newly hatched juvenile), but an increase in total reproductive output (i.e., the total weight of the egg clutch) per female as the breeding season proceeded. The reproductive output of an individual female is probably related to food availability during the period of ovarian maturation, whereas the size of an individual egg is dictated largely by feeding conditions for the juveniles once they are independent of the female. The different patterns of lipid utilisation during development found in this study emphasize the flexibility of response in the reproductive biology of gammarid amphipods. It is not yet possible, however, to relate the differing patterns in a simple way either to egg size or total female reproductive output. Two outstanding problems are the source of extra triacylglycerol during the early stages of development of E. marinus and the metabolic cost of brooding eggs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号