首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Research in reintroduction biology has provided a greater understanding of the often limited success of species reintroductions and highlighted the need for scientifically rigorous approaches in reintroduction programs. We examined the recent genetic‐based captive‐breeding and reintroduction literature to showcase the underuse of the genetic data gathered. We devised a framework that takes full advantage of the genetic data through assessment of the genetic makeup of populations before (past component of the framework), during (present component), and after (future component) captive‐breeding and reintroduction events to understand their conservation potential and maximize their success. We empirically applied our framework to two small fishes: Yarra pygmy perch (Nannoperca obscura) and southern pygmy perch (Nannoperca australis). Each of these species has a locally adapted and geographically isolated lineage that is endemic to the highly threatened lower Murray–Darling Basin in Australia. These two populations were rescued during Australia's recent decade‐long Millennium Drought, when their persistence became entirely dependent on captive‐breeding and subsequent reintroduction efforts. Using historical demographic analyses, we found differences and similarities between the species in the genetic impacts of past natural and anthropogenic events that occurred in situ, such as European settlement (past component). Subsequently, successful maintenance of genetic diversity in captivity—despite skewed brooder contribution to offspring—was achieved through carefully managed genetic‐based breeding (present component). Finally, genetic monitoring revealed the survival and recruitment of released captive‐bred offspring in the wild (future component). Our holistic framework often requires no additional data collection to that typically gathered in genetic‐based breeding programs, is applicable to a wide range of species, advances the genetic considerations of reintroduction programs, and is expected to improve with the use of next‐generation sequencing technology.  相似文献   

2.
Reintroductions are increasingly used to reestablish species, but a paucity of long‐term postrelease monitoring has limited understanding of whether and when viable populations subsequently persist. We conducted temporal genetic analyses of reintroduced populations of swift foxes (Vulpes velox) in Canada (Alberta and Saskatchewan) and the United States (Montana). We used samples collected 4 years apart, 17 years from the initiation of the reintroduction, and 3 years after the conclusion of releases. To assess program success, we genotyped 304 hair samples, subsampled from the known range in 2000 and 2001, and 2005 and 2006, at 7 microsatellite loci. We compared diversity, effective population size, and genetic connectivity over time in each population. Diversity remained stable over time and there was evidence of increasing effective population size. We determined population structure in both periods after correcting for differences in sample sizes. The geographic distribution of these populations roughly corresponded with the original release locations, which suggests the release sites had residual effects on the population structure. However, given that both reintroduction sites had similar source populations, habitat fragmentation, due to cropland, may be associated with the population structure we found. Although our results indicate growing, stable populations, future connectivity analyses are warranted to ensure both populations are not subject to negative small‐population effects. Our results demonstrate the importance of multiple sampling years to fully capture population dynamics of reintroduced populations. Análisis Temporal de la Estructura Genética para Evaluar la Dinámica Poblacional de Zorros (Vulpes velox) Reintroducidos  相似文献   

3.
Reintroduction of imperiled native freshwater fish is becoming an increasingly important conservation tool amidst persistent anthropogenic pressures and new threats related to climate change. We summarized trends in native fish reintroductions in the current literature, identified predictors of reintroduction outcome, and devised recommendations for managers attempting future native fish reintroductions. We constructed random forest classifications using data from 260 published case studies of native fish reintroductions to estimate the effectiveness of variables in predicting reintroduction outcome. The outcome of each case was assigned as a success or failure on the basis of the author's perception of the outcome and on whether or not survival, spawning, or recruitment were documented during post‐reintroduction monitoring. Inadequately addressing the initial cause of decline was the best predictor of reintroduction failure. Variables associated with habitat (e.g., water quality, prey availability) were also good predictors of reintroduction outcomes, followed by variables associated with stocking (e.g., genetic diversity of stock source, duration of stocking event). Consideration of these variables by managers during the planning process may increase the likelihood for successful outcomes in future reintroduction attempts of native freshwater fish. Identificación de Correlaciones de Éxito y Fracaso de Reintroducciones de Peces de Nativos Agua Dulce  相似文献   

4.
Abstract: The effectiveness of rare plant conservation will increase when life history, demographic, and genetic data are considered simultaneously. Inbreeding depression is a widely recognized genetic concern in rare plant conservation, and the mixing of genetically diverse populations in restoration efforts is a common remedy. Nevertheless, if populations with unrecognized intraspecific chromosome variation are crossed, progeny fitness losses will range from partial to complete sterility, and reintroductions and population augmentation of rare plants may fail. To assess the current state of cytological knowledge of threatened and endangered plants in the continental United States, we searched available resources for chromosome counts. We also reviewed recovery plans to discern whether recovery criteria potentially place listed species at risk by requiring reintroductions or population augmentation in the absence of cytological information. Over half the plants lacked a chromosome count, and when a taxon did have a count it generally originated from a sampling intensity too limited to detect intraspecific chromosome variation. Despite limited past cytological sampling, we found 11 plants with documented intraspecific cytological variation, while 8 others were ambiguous for intraspecific chromosome variation. Nevertheless, only one recovery plan addressed the chromosome differences. Inadequate within‐species cytological characterization, incomplete sampling among listed taxa, and the prevalence of interspecific and intraspecific chromosome variation in listed genera, suggests that other rare plants are likely to have intraspecific chromosome variation. Nearly 90% of all recovery plans called for reintroductions or population augmentation as part of recovery criteria despite the dearth of cytological knowledge. We recommend screening rare plants for intraspecific chromosome variation before reintroductions or population augmentation projects are undertaken to safeguard against inadvertent mixtures of incompatible cytotypes.  相似文献   

5.
The outcomes of species recovery programs have been mixed; high‐profile population recoveries contrast with species‐level extinctions. Each conservation intervention has its own challenges, but to inform more effective management it is imperative to assess whether correlates of wider recovery program success or failure can be identified. To contribute to evidence‐based improvement of future conservation strategies, we conducted a global quantitative analysis of 48 mammalian recovery programs. We reviewed available scientific literature and conducted semistructured interviews with conservation professionals involved in different recovery programs to investigate ecological, management, and political factors associated with population recoveries or declines. Identifying and removing threats was significantly associated with increasing population trend and decreasing conservation dependence, emphasizing that populations are likely to continue to be compromised in the absence of effective threat mitigation and supporting the need for threat monitoring and adaptive management in response to new and potential threats. Lack of habitat and small population size were cited as limiting factors in 56% and 42% of recovery programs, respectively, and both were statistically associated with increased longer term dependence on conservation intervention, demonstrating the importance of increasing population numbers quickly and restoring and protecting habitat. Poor stakeholder coordination and management were also regularly cited by respondents as key weaknesses in recovery programs, indicating the importance of effective leadership and shared goals and management plans. Project outcomes were not influenced by biological or ecological variables such as body mass or habitat, which suggests that these insights into correlates of conservation success and failure are likely to be generalizable across mammals.  相似文献   

6.
Conservation actions, such as habitat protection, attempt to halt the loss of threatened species and help their populations recover. The efficiency and the effectiveness of actions have been examined individually. However, conservation actions generally occur simultaneously, so the full suite of implemented conservation actions should be assessed. We used the conservation actions underway for all threatened and near‐threatened birds of the world (International Union for Conservation of Nature Red List of Threatened Species) to assess which biological (related to taxonomy and ecology) and anthropogenic (related to geoeconomics) factors were associated with the implementation of different classes of conservation actions. We also assessed which conservation actions were associated with population increases in the species targeted. Extinction‐risk category was the strongest single predictor of the type of conservation actions implemented, followed by landmass type (continent, oceanic island, etc.) and generation length. Species targeted by invasive nonnative species control or eradication programs, ex situ conservation, international legislation, reintroduction, or education, and awareness‐raising activities were more likely to have increasing populations. These results illustrate the importance of developing a predictive science of conservation actions and the relative benefits of each class of implemented conservation action for threatened and near‐threatened birds worldwide.  相似文献   

7.
Abstract: Disruption of gene flow among demes after landscape fragmentation can facilitate local adaptation but increase the effect of genetic drift and inbreeding. The joint effects of these conflicting forces on the mean fitness of individuals in a population are unknown. Through simulations, we explored the effect of increased isolation on the evolution of genetic load over the short and long term when fitness depends in part on local adaptation. We ignored genetic effects on demography. We modeled complex genomes, where a subset of the loci were under divergent selection in different localities. When a fraction of the loci were under heterogeneous selection, isolation increased mean fitness in larger demes made up of hundreds of individuals because of improved local adaptation. In smaller demes of tens of individuals, increased isolation improved local adaptation very little and reduced overall fitness. Short‐term improvement of mean fitness after fragmentation may not be indicative of the long‐term evolution of fitness. Whatever the deme size and potential for local adaptation, migration of one or two individuals per generation minimized the genetic load in general. The slow dynamics of mean fitness following fragmentation suggests that conservation measures should be implemented before the consequences of isolation on the genetic load become of concern.  相似文献   

8.
Linking diversity to biological processes is central for developing informed and effective conservation decisions. Unfortunately, observable patterns provide only a proportion of the information necessary for fully understanding the mechanisms and processes acting on a particular population or community. We suggest conservation managers use the often overlooked information relative to species absences and pay particular attention to dark diversity (i.e., a set of species that are absent from a site but that could disperse to and establish there, in other words, the absent portion of a habitat‐specific species pool). Together with existing ecological metrics, concepts, and conservation tools, dark diversity can be used to complement and further develop conservation prioritization and management decisions through an understanding of biodiversity relativized by its potential (i.e., its species pool). Furthermore, through a detailed understanding of the population, community, and functional dark diversity, the restoration potential of degraded habitats can be more rigorously assessed and so to the likelihood of successful species invasions. We suggest the application of the dark diversity concept is currently an underappreciated source of information that is valuable for conservation applications ranging from macroscale conservation prioritization to more locally scaled restoration ecology and the management of invasive species.  相似文献   

9.
Abstract: Predation pressure on vulnerable bird species has made predator control an important issue for international nature conservation. Predator removal by culling or translocation is controversial, expensive, and time‐consuming, and results are often temporary. Thus, it is important to assess its effectiveness from all available evidence. We used explicit systematic review methodology to determine the impact of predator removal on four measurable responses in birds: breeding performance (hatching success and fledging success) and population size (breeding and postbreeding). We used meta‐analysis to summarize results from 83 predator removal studies from six continents. We also investigated whether characteristics of the prey, predator species, location, and study methodology explained heterogeneity in effect sizes. Removing predators increased hatching success, fledging success, and breeding populations. Removing all predator species achieved a significantly larger increase in breeding population than removing only a subset. Postbreeding population size was not improved on islands, or overall, but did increase on mainlands. Heterogeneity in effect sizes for the four population parameters was not explained by whether predators were native or introduced; prey were declining, migratory, or game species; or by the study methodology. Effect sizes for fledging success were smaller for ground‐nesting birds than those that nest elsewhere, but the difference was not significant. We conclude that current evidence indicates that predator removal is an effective strategy for the conservation of vulnerable bird populations. Nevertheless, the ethical and practical problems associated with predator removal may lead managers to favor alternative, nonlethal solutions. Research is needed to provide and synthesize data to determine whether these are effective management practices for future policies on bird conservation.  相似文献   

10.
The genetic diversity of populations, which contributes greatly to their adaptive potential, is negatively affected by anthropogenic habitat fragmentation and destruction. However, continental‐scale losses of genetic diversity also resulted from the population expansions that followed the end of the last glaciation, an element that is rarely considered in a conservation context. We addressed this issue in a meta‐analysis in which we compared the spatial patterns of vulnerability of 18 widespread European amphibians in light of phylogeographic histories (glacial refugia and postglacial routes) and anthropogenic disturbances. Conservation statuses significantly worsened with distances from refugia, particularly in the context of industrial agriculture; human population density also had a negative effect. These findings suggest that features associated with the loss of genetic diversity in post‐glacial amphibian populations (such as enhanced fixation load or depressed adaptive potential) may increase their susceptibility to current threats (e.g., habitat fragmentation and pesticide use). We propose that the phylogeographic status of populations (i.e., refugial vs. post‐glacial) should be considered in conservation assessments for regional and national red lists.  相似文献   

11.
Understanding the environmental contributors to population structure is of paramount importance for conservation in urbanized environments. We used spatially explicit models to determine genetic population structure under current and future environmental conditions across a highly fragmented, human‐dominated environment in Southern California to assess the effects of natural ecological variation and urbanization. We focused on 7 common species with diverse habitat requirements, home‐range sizes, and dispersal abilities. We quantified the relative roles of potential barriers, including natural environmental characteristics and an anthropogenic barrier created by a major highway, in shaping genetic variation. The ability to predict genetic variation in our models differed among species: 11–81% of intraspecific genetic variation was explained by environmental variables. Although an anthropogenically induced barrier (a major highway) severely restricted gene flow and movement at broad scales for some species, genetic variation seemed to be primarily driven by natural environmental heterogeneity at a local level. Our results show how assessing environmentally associated variation for multiple species under current and future climate conditions can help identify priority regions for maximizing population persistence under environmental change in urbanized regions.  相似文献   

12.
Growing threats to biodiversity and global alteration of habitats and species distributions make it increasingly necessary to consider evolutionary patterns in conservation decision making. Yet, there is no clear‐cut guidance on how genetic features can be incorporated into conservation‐planning processes, despite multiple molecular markers and several genetic metrics for each marker type to choose from. Genetic patterns differ between species, but the potential tradeoffs among genetic objectives for multiple species in conservation planning are currently understudied. We compared spatial conservation prioritizations derived from 2 metrics of genetic diversity (nucleotide and haplotype diversity) and 2 metrics of genetic isolation (private haplotypes and local genetic differentiation) in mitochondrial DNA of 5 marine species. We compared outcomes of conservation plans based only on habitat representation with plans based on genetic data and habitat representation. Fewer priority areas were selected for conservation plans based solely on habitat representation than on plans that included habitat and genetic data. All 4 genetic metrics selected approximately similar conservation‐priority areas, which is likely a result of prioritizing genetic patterns across a genetically diverse array of species. Largely, our results suggest that multispecies genetic conservation objectives are vital to creating protected‐area networks that appropriately preserve community‐level evolutionary patterns.  相似文献   

13.
Abstract: Theory suggests that demographic and genetic traits deteriorate (i.e., fitness and genetic diversity decrease) when populations become small, and that such deterioration could precipitate positive feedback loops called extinction vortices. We examined whether demographic attributes and genetic traits have changed over time in one of the 2 remaining small populations of the highly endangered Iberian lynx (Lynx pardinus) in Doñana, Spain. From 1983 to 2008, we recorded nontraumatic mortality rates, litter size, offspring survival, age at territory acquisition, and sex ratio. We combined these demographic attributes with measures of inbreeding and genetic diversity at neutral loci (microsatellites) and genes subjected to selection (major histocompatibility complex). Data on demographic traits were obtained through capture and radio tracking, checking dens during breeding, track surveys, and camera trapping. For genetic analyses, we obtained blood or tissue samples from captured or necropsied individuals or from museum specimens. Over time a female‐biased sex ratio developed, age of territory acquisition decreased, mean litter size decreased, and rates of nontraumatic mortality increased, but there were no significant changes in overall mortality rates, standardized individual heterozygosity declined steadily, and allelic diversity of exon 2 of class II major histocompatibility complex DRB genes remained constant (2 allelic variants present in all individuals analyzed). Changes in sex ratio and age of territory acquisition may have resulted from demographic stochasticity, whereas changes in litter size and nontraumatic mortality may be related to observed increases in inbreeding. Concomitant deterioration of both demographic attributes and genetic traits is consistent with an extinction vortex. The co‐occurrence, with or without interaction, of demographic and genetic deterioration may explain the lack of success of conservation efforts with the Doñana population of Iberian lynx.  相似文献   

14.
Conservation decisions increasingly involve multiple environmental and social objectives, which result in complex decision contexts with high potential for trade‐offs. Improving social equity is one such objective that is often considered an enabler of successful outcomes and a virtuous ideal in itself. Despite its idealized importance in conservation policy, social equity is often highly simplified or ill‐defined and is applied uncritically. What constitutes equitable outcomes and processes is highly normative and subject to ethical deliberation. Different ethical frameworks may lead to different conceptions of equity through alternative perspectives of what is good or right. This can lead to different and potentially conflicting equity objectives in practice. We promote a more transparent, nuanced, and pluralistic conceptualization of equity in conservation decision making that particularly recognizes where multidimensional equity objectives may conflict. To help identify and mitigate ethical conflicts and avoid cases of good intentions producing bad outcomes, we encourage a more analytical incorporation of equity into conservation decision making particularly during mechanistic integration of equity objectives. We recommend that in conservation planning motivations and objectives for equity be made explicit within the problem context, methods used to incorporate equity objectives be applied with respect to stated objectives, and, should objectives dictate, evaluation of equity outcomes and adaptation of strategies be employed during policy implementation.  相似文献   

15.
Restoration programs in the form of ex-situ breeding combined with reintroductions are becoming critical to counteract demographic declines and species losses. Such programs are increasingly using genetic management to improve conservation outcomes. However, the lack of long-term monitoring of genetic indicators following reintroduction prevents assessments of the trajectory and persistence of reintroduced populations. We carried out an extensive monitoring program in the wild for a threatened small-bodied fish (southern pygmy perch, Nannoperca australis) to assess the long-term genomic effects of its captive breeding and reintroduction. The species was rescued prior to its extirpation from the terminal lakes of Australia's Murray-Darling Basin, and then used for genetically informed captive breeding and reintroductions. Subsequent annual or biannual monitoring of abundance, fitness, and occupancy over a period of 11 years, combined with postreintroduction genetic sampling, revealed survival and recruitment of reintroduced fish. Genomic analyses based on data from the original wild rescued, captive born, and reintroduced cohorts revealed low inbreeding and strong maintenance of neutral and candidate adaptive genomic diversity across multiple generations. An increasing trend in the effective population size of the reintroduced population was consistent with field monitoring data in demonstrating successful re-establishment of the species. This provides a rare empirical example that the adaptive potential of a locally extinct population can be maintained during genetically informed ex-situ conservation breeding and reintroduction into the wild. Strategies to improve biodiversity restoration via ex-situ conservation should include genetic-based captive breeding and longitudinal monitoring of standing genomic variation in reintroduced populations.  相似文献   

16.
Abstract Spatial prioritization techniques are applied in conservation‐planning initiatives to allocate conservation resources. Although typically they are based on ecological data (e.g., species, habitats, ecological processes), increasingly they also include nonecological data, mostly on the vulnerability of valued features and economic costs of implementation. Nevertheless, the effectiveness of conservation actions implemented through conservation‐planning initiatives is a function of the human and social dimensions of social‐ecological systems, such as stakeholders’ willingness and capacity to participate. We assessed human and social factors hypothesized to define opportunities for implementing effective conservation action by individual land managers (those responsible for making day‐to‐day decisions on land use) and mapped these to schedule implementation of a private land conservation program. We surveyed 48 land managers who owned 301 land parcels in the Makana Municipality of the Eastern Cape province in South Africa. Psychometric statistical and cluster analyses were applied to the interview data so as to map human and social factors of conservation opportunity across a landscape of regional conservation importance. Four groups of landowners were identified, in rank order, for a phased implementation process. Furthermore, using psychometric statistical techniques, we reduced the number of interview questions from 165 to 45, which is a preliminary step toward developing surrogates for human and social factors that can be developed rapidly and complemented with measures of conservation value, vulnerability, and economic cost to more‐effectively schedule conservation actions. This work provides conservation and land management professionals direction on where and how implementation of local‐scale conservation should be undertaken to ensure it is feasible.  相似文献   

17.
Roads,Interrupted Dispersal,and Genetic Diversity in Timber Rattlesnakes   总被引:1,自引:0,他引:1  
Abstract: Anthropogenic habitat modification often creates barriers to animal movement, transforming formerly contiguous habitat into a patchwork of habitat islands with low connectivity. Roadways are a feature of most landscapes that can act as barriers or filters to migration among local populations. Even small and recently constructed roads can have a significant impact on population genetic structure of some species, but not others. We developed a research approach that combines fine‐scale molecular genetics with behavioral and ecological data to understand the impacts of roads on population structure and connectivity. We used microsatellite markers to characterize genetic variation within and among populations of timber rattlesnakes (Crotalus horridus) occupying communal hibernacula (dens) in regions bisected by roadways. We examined the impact of roads on seasonal migration, genetic diversity, and gene flow among populations. Snakes in hibernacula isolated by roads had significantly lower genetic diversity and higher genetic differentiation than snakes in hibernacula in contiguous habitat. Genetic‐assignment analyses revealed that interruption to seasonal migration was the mechanism underlying these patterns. Our results underscore the sizeable impact of roads on this species, despite their relatively recent construction at our study sites (7 to 10 generations of rattlesnakes), the utility of population genetics for studies of road ecology, and the need for mitigating effects of roads.  相似文献   

18.
Abstract: In conservation biology, understanding the causes of endangerment is a key step to devising effective conservation strategies. We used molecular evidence (coalescent simulations of population changes from microsatellite data) and historical information (habitat and human population changes) to investigate how the most‐isolated populations of giant pandas (Ailuropoda melanoleuca) in the Xiaoxiangling Mountains became highly endangered. These populations experienced a strong, recent demographic reduction (60‐fold), starting approximately 250 years BP. Explosion of the human population and use of non‐native crop species at the peak of the Qing Empire resulted in land‐use changes, deforestation, and habitat fragmentation, which are likely to have led to the drastic reduction of the most‐isolated populations of giant pandas. We predict that demographic, genetic, and environmental factors will lead to extinction of giant pandas in the Xiaoxiangling Mountains in the future if the population remains isolated. Therefore, a targeted conservation action—translocation—has been proposed and is being implemented by the Chinese goverment.  相似文献   

19.
Abstract: Conservation actions need to account for and be adapted to address changes that will occur under global climate change. The identification of stresses on biological diversity (as defined in the Convention on Biological Diversity) is key in the process of adaptive conservation management. We considered any impact of climate change on biological diversity a stress because such an effect represents a change (negative or positive) in key ecological attributes of an ecosystem or parts of it. We applied a systemic approach and a hierarchical framework in a comprehensive classification of stresses to biological diversity that are caused directly by global climate change. Through analyses of 20 conservation sites in 7 countries and a review of the literature, we identified climate‐change‐induced stresses. We grouped the identified stresses according to 3 levels of biological diversity: stresses that affect individuals and populations, stresses that affect biological communities, and stresses that affect ecosystem structure and function. For each stress category, we differentiated 3 hierarchical levels of stress: stress class (thematic grouping with the coarsest resolution, 8); general stresses (thematic groups of specific stresses, 21); and specific stresses (most detailed definition of stresses, 90). We also compiled an overview of effects of climate change on ecosystem services using the categories of the Millennium Ecosystem Assessment and 2 additional categories. Our classification may be used to identify key climate‐change‐related stresses to biological diversity and may assist in the development of appropriate conservation strategies. The classification is in list format, but it accounts for relations among climate‐change‐induced stresses.  相似文献   

20.
The taxonomic uniqueness of island populations is often uncertain which hinders effective prioritization for conservation. The Christmas Island shrew (Crocidura attenuata trichura) is the only member of the highly speciose eutherian family Soricidae recorded from Australia. It is currently classified as a subspecies of the Asian gray or long‐tailed shrew (C. attenuata), although it was originally described as a subspecies of the southeast Asian white‐toothed shrew (C. fuliginosa). The Christmas Island shrew is currently listed as endangered and has not been recorded in the wild since 1984–1985, when 2 specimens were collected after an 80‐year absence. We aimed to obtain DNA sequence data for cytochrome b (cytb) from Christmas Island shrew museum specimens to determine their taxonomic affinities and to confirm the identity of the 1980s specimens. The Cytb sequences from 5, 1898 specimens and a 1985 specimen were identical. In addition, the Christmas Island shrew cytb sequence was divergent at the species level from all available Crocidura cytb sequences. Rather than a population of a widespread species, current evidence suggests the Christmas Island shrew is a critically endangered endemic species, C. trichura, and a high priority for conservation. As the decisions typically required to save declining species can be delayed or deferred if the taxonomic status of the population in question is uncertain, it is hoped that the history of the Christmas Island shrew will encourage the clarification of taxonomy to be seen as an important first step in initiating informed and effective conservation action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号