首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cellular fluorescence of chlorophyll a in natural phytoplankton was measured during vertical profiling in marine coastal waters. The ratio of in situ fluorescence to chlorophyll a concentration, which was considered as an index of cellular fluorescence, varied over a wide range, with large changes occurring both within the water column and between profiling sites. The variations were caused in part by an inhibition in the fluorescence of cells exposed to intense sunlight. The inhibition, which occurred at irradiances exceeding 0.15 langley (ly)/min, led to diel fluctuations in the fluorescence of those phytoplankton near the sea surface. The remaining variations were independent of changes in temperature, but were unexplained. Both light-dependent and light-independent variations in cellular fluorescence will affect the accuracy of the continuous, fluorometric measurement of in vivo chlorophyll.  相似文献   

2.
Decreases in cell-nitrogen quota resulted in changes in the carbon-based quantum yield of photosynthesis, the chlorophyll a-specific absorption coefficient, and in vivo fluorescence in the marine diatom Chaetoceros gracilis in laboratory experiments performed in 1983 and 1984. The three parameters were independently determined for the two spectral regions dominated by either chlorophyll a or fucoxanthin absorption. As cell-nitrogen quota decreased, the quantum yield for both pigments decreased; the specific absorption coefficient for chlorophyll a and the in vivo chlorophyll a fluorescence excited by each pigment increased. The observed increase in the in vivo fluorescence per chlorophyll a could be partially attributed to the increased specific absorption coefficient for chlorophyll a; the remainder of the fluorescence increase was related to a decline in photosystem activity. Energy transfer efficiency between light-harvesting pigments appeared to be maintained as cell-nitrogen quota decreased. The decrease in a fluorescence index [(F DCMU-F O)/F DCMU] with nitrogen starvation suggested a decrease in Photosystem II activity. These results imply that decreases in reaction center and/or electron-transport system activity were responsible for the decline in rates of photosynthesis under conditions of notrogen deficiency.  相似文献   

3.
Skeletonema costatum (Greville) Cleve isolated from Narragansett Bay, USA, was incubated at 3 light intensities (ca. 0.008, 0.040 and 0.075 ly min-1) under a 12 h light: 12 h dark (12L:12D) photoperiod at 2°, 10° and 20°C. Cellular chlorophyll a increased at intensities less than ca. 0.040 ly min-1; increases occured within one photoperiod at temperatures above 10°C. Cellular carbohydrate increased with light intensity at all temperatures; increases during the photophase were due to net production of the dilute acid-soluble fraction. Cellular protein increased during the photoperiod at 10° and 20°C; there was little difference in cellular protein among all cultures after one photoperiod. The rate at which cellular chlorophyll a increased in response to a decrease in light suggests that diel variation in cellular chlorophyll a is temperature-dependent in S. costatum. Protein: carbohydrate ratios ranged from ca. 0.5 to 2.0 over a diel cycle; ratios increased at lower intensities and higher temperatures. The diel range in protein:carbohydrate ratios equals that in cultures developing nitrogen deficiency; thus, use of this ratio as an index to phytoplankton physiological state must account for diel light effects.  相似文献   

4.
Diel periodicity in cellular chlorophyll content in marine diatoms   总被引:2,自引:0,他引:2  
Owens  T. G.  Falkowski  P. G.  Whitledge  T. E. 《Marine Biology》1980,59(2):71-77
Intracellular chlorophyll a content is one of the many measurable parameters which displays a diel rhythm in marine phytoplankton. In asynchronous laboratory cultures of the diatom Skeletonema costatum, cellular chlorophylls a and c exhibit periodicities which closely follow the light-dark cycle and are not the result of cell division. The laboratory cultures also exhibit diel rhythms in cellular flourescence properties and carbon: chlorophyll a ratios. The occurrence of similar patterns of cellular flourescence, carbon: chlorophyll a ratios, and in situ flourescence in diatom-dominated natural phytoplankton communities suggests the possibility of diel rhythms in cellular chlorophyl a content in diatoms in the sea. The data also suggest that the observed periodicity in cellular chlorophyll content is regulated by the diel light cycle and that the co-occurrence of synchronous or phased cell division would only modify the observed periodicity.This research was performed under the auspices of the United States Department of Energy under Contract No. EY-76-C-02-0016  相似文献   

5.
The effect of 3x10-6 M DCMU [3-(3,4-dichlorophenyl)-1, 1-dimethylurea] on in vivo chlorophyll a fluorescence was observed in nearshore waters of the Southern California Bight. We compared fluorescence readings in the presence and absence of this inhibitor using parallel flow-through fluorometers. The increase in fluorescence induced by DCMU is expressed as the FRI (fluorescence response index). Theory and laboratory studies on batch cultures of phytoplankton suggest that the FRI is correlated with photosynthetic efficiency and/or physiological state, but other studies have produced results in apparent conflict with this interpretation. Although sufficient information does not exist to justify the use of fluorescence response as a precise physiological indicator in the field, we suggest that very low FRI values are a manifestation of photosynthetic debility in a sample. Vertical profiles showed a wide range of the fluorescence response index. At a station close to shore, low FRI values were observed well below the 1% light level, but the fluorescence response of the phytoplankton throughout the euphotic zone was similar to that of growing cultures. Farther offshore, the FRI was depressed near the surface, but increased in the enhanced nutrient conditions of the lower euphotic zone. The patterns observed were strong, and consistent with hypotheses which relate low values of the FRI to diminished photosynthetic capacity.  相似文献   

6.
The relationship between in vivo light absorption efficiency of whole cells and in vitro absorption efficiency of algal pigments has been examined experimentally in the marine diatom Thalassiosira sp. In vitro absorption spectra were obtained for cells disrupted by either ultrasonic treatment or high-pressure shearing stress in a low-temperature (-40°C) pressure cell. A dimensionless measure of the magnitude of the package effect (Q a *), calculated from the ratio of whole-cell to disrupted-cell absorption, ranged from about 0.5 at the blue absorption peak of chlorophyll a (λ=435 nm) to 0.7 at the red chlorophyll a peak (λ=670 nm) to 1.0 at the absorption minimum (λ=600 nm). Cell diameter was found to be an inappropriate measure of size for assessing the magnitude of the package effect. Instead, the effective optical diameter for calculation of intracellular self-shading was found to be less than the cell diameter. This observation is consistent with the fact that most algal pigments are contained within chloroplasts, and that chloroplast volume is necessarily smaller than cell volume.  相似文献   

7.
Changes in cellular chlorophyll content, cell volume, and light scatter of a New England red tide dinoflagellate, Protogonyaulax tamarensis var. excavata (clone GT-429), cultured in various light regimes are reported. Individual cells were analyzed, using flow cytometry and compared to traditional bulk measurements. Compared to high photon flux densities (182 Ein m-2 s-1), changes were measured that reflected increased chlorophyll fluorescence and increased cell volume at reducec photon flux densities when cell division was sustained, and increased flourescence and decreased cell volume when cell division ceased. These optical changes were accompanied by conformational changes in the chloroplasts. We found no change in photosynthetic carboxylating enzyme activities. We suggest that this photomorphogenesis of the chloroplasts at low photon flux densities may be an indication of stress and survival vs adaptive value to these persistent cells.  相似文献   

8.
Mycosporine-like amino acids (MAAs), which occur in diverse taxonomic groups, exhibit in vivo absorption maxima between 310 nm and 360 nm and may play a photoprotective role against ultraviolet (UV) exposure. Using cultures of colonial Phaeocystis antarctica, we examined the relationship between MAA concentration, in vivo UV absorption, photoprotective (carotenoid) and photosynthetic pigments, and photosynthetically available radiation (PAR, 350–700 nm). UV absorption was high; chlorophyll-specific absorption, a * ph, at 330 nm ranged from 0.06 to 0.41 m2/mg chlorophyll a. Values of a * ph (330) were 4–13 times greater than a * ph (676). Mycosporine-glycine, shinorine, and mycosporine-glycine valine are responsible for the strong in vivo UV absorption. The sum of all MAAs increased with irradiance when normalized to chlorophyll a or carbon concentrations, whereas individual MAAs varied independently from each other. Mycosporine-glycine concentrations showed no statistically significant change over the range of light intensities, whereas mycosporine-glycine and shinorine concentrations increased at higher irradiances. The relative fluorescence yield for chlorophyll a was low in the UV region compared to the visible region, implying that absorbed UV radiation (<375 nm) is transferred inefficiently to chlorophyll a in the reaction center. Quantitative estimates of UV screening by MAAs are attributed to elevated MAA concentrations and increased diameter at high light. Received: 31 March 1999 / Accepted: 13 July 2000  相似文献   

9.
Circadian rhythms in photosynthesis were defined in field populations of phytoplankton. Measurements of carbon-dioxide fixation rates demonstrated that a diurnal periodicity of photosynthesis in samples incubated under natural light-dark (LD) cycles also were observed to continue in similar samples which had been photoadapted to constant dim light (LL) for 48 h. These changes in photosynthetic rates preceded sunset and sunrise, had daily amplitudes that ranged from 1.5 to 2.0, appeared to be independent of light-intensity, and displayed maxima about midday, while rates of dark fixation of carbon dioxide and the photosynthetic pigment content per cell were constant over the circadian cycle. Similar rhythmicity also was detected in room-temperature (22°C) chlorophyll a fluorescence yield, in both the obsence and presence of the photosynthesis inhibitor DCMU [3-(3,4-dichlorophenyl)-1, 1-dimethylurea]. However, the magnitude and timing of the fluorescence rhythm maxima seem to depend on wavelengths monitored and, in part, on the measuring technique used. Also, the circadian changes in the fluorescence intensity were abolished at low temperature (-60°C), and the shape of the emission spectra of chlorophyll fluorescence of cells in LD and LL did not change over time. The significance of the fluorescence rhythms with regard to chlorophyll a determinations and photosynthetic rates is discussed. It was concluded that there was sufficient similarity between circadian rhythms of photosynthesis in natural phytoplankton populations and in laboratory cultures of dinoflagellates to suggest that the mechanism of regulation may be the same for both of them.  相似文献   

10.
This study employed polyphasic chlorophyll a fluorescence transients (OJIP), a non-invasive marker of environmental stress in plants, to evaluate salt tolerance in three different Juncus roemerianus age classifications (6-, 24-, and 60-months). Following exposure to elevated salts (30 psu), the younger plants sustained growth, which was comparable to freshwater controls. While older (60-month) plants receiving only freshwater also grew over the 8-week study, the older salt-treated plants did not increase in size. Similarly, there were significant declines in variable chlorophyll a fluorescence parameters (F v/F m and F v/F o), electron transport flux per reaction center (ETo/RC), and photosystem II performance index (PIABS) for 60-month J. roemerianus following salt treatment. These responses were not evident in the two younger salt-treated age classifications. Our results suggest that older J. roemerianus are less tolerant to rapid and sudden increases in salinity relative to younger plants and that this age-specific response may help explain observed discrepancies in salt tolerance in J. roemerianus.  相似文献   

11.
In vivo chlorophyll fluorescence is particularly interesting ot ecologists because of various concepts (biomass, productivity, physiological state) associated with it. Using a modified spectrophotofluorometer, we have studied the kinetics of fluorescence in unialgal cultures and in a natural population of marine phytoplankton. Our apparatus did not achieve satisfactory results with cell suspensions having a chlorophyll concentration less than 10 g l-1. We have also tested a method for estimating kinetics of diluted cultures and marine phytoplankton using cells collected on glass-fibre filters. For unialgal cultures in the exponential growth phase, the method proved satisfactory, and results obtained from both cell suspensions and filters were in good agreement. However, for aged cultures (principally diatoms) and natural marine phytoplankton the method proved unsuitable. The kinetics of fluorescence induction vary according to taxonomic position of the cells, light intensity of the measuring excitation beam and productiveness of the culture medium. The importance of the kinetics of fluorescence induction for characterization of phytoplankton activity is discussed.  相似文献   

12.
Kinetics of light-intensity adaptation in a marine planktonic diatom   总被引:2,自引:0,他引:2  
The marine planktonic diatom Thalassiosira weisflogii was grown in turbidostat culture under both continuous and 12 hL: 12 hD illumination regimes in order to study the kinetics of adaptation to growth-irradiance levels. In both illumination regimes adaptation to a higher growth-irradiance level was accompanied by an increase in cell division rates and a decrease in chlorophyll a cell-1. The rates of adaptation for both processes, derived from first order kinetic analysis, equaled each other in each experiment. The results suggest that during the transition from low-to-high growth-irradiance levels chlorophyll a is diluted by cell division and is not actively degraded. Introduction of a light/dark cycle lowered the rate of adaptation. In transitions from high-to-low growth-irradiance levels there was a sharp drop in growth rates and a slow increase in chlorophyll a cell-1 under both continuous and intermittent illumination. In the 12 hL:12hD cycle there was a circadian rhythm in chlorophyll a cell-1, where cellular chlorophyll contents increased during the light cycle and decreased during the dark cycle. This circadian rhythm was distinctly different from light intensity adaptation. For kinetic analysis of light intensity adaptation in a 12 hL: 12 hD cycle, the circadian periodicity was separated from the light intensity response by subjecting the data to a Kaiser window optimization digital filter. Kinetic parameters for light-intensity adaptation were resolved from the filtered data. The kinetics of lightintensity adaptation of marine phytoplankton are discussed in relation to their spatial variations and time scales of mixing.This research was performed at Brookhaven National Laboratory under the auspices of the United States Department of Energy under Contract No. DE-AC02-76 CH00016  相似文献   

13.
Growth, photosynthetic capacity and chlorophyll a content of the marine diatom Phaeodactylum tricornutum Bohlin were observed after exposure to the aromatic hydrocarbon 9–10 dihydroanthracene and its biodegradation products. Growth was inhibited after exposure to the aromatic hydrocarbon, whereas no inhibition occurred in the presence of the biodegradation products alone. The degradation products were found to enhance the chlorophyll a cellular content. Synergistic effects between dihydroanthracene and its biodegradation products increased the toxicity of this aromatic hydrocarbon.  相似文献   

14.
The photosynthetic functionality in chloroplasts in the two sacoglossan molluscs Placida dendritica and Elysia viridis from the Trondheim fjord in Norway was studied. P. dendritica and E. viridis with no functional chloroplasts in their digestive system were introduced to the green macroalgae Codium fragile. Our results showed that P. dendritica was not able to retain functional (photosynthetic) chloroplasts. Transmission electron microscopy (TEM) showed that chloroplasts were directly digested when phagocytosed into the digestive cells. Four stages of chloroplast degradation were observed. A corresponding operational quantum yield of chl a fluorescence (ΦPSII ~ 0) indicated autofluorescence, and the presence of highly degraded chl a supported these observations. In contrast, E. viridis was able to retain functional chloroplasts. For this species it took only 1 week for the chloroplasts inside the digestive cells to acquire the same ΦPSII and light utilisation coefficient (α) as C. fragile kept under the same light conditions. Data for 8 days showed a 2–6-fold increase in the maximum photosynthetic rate (P max) and light saturation index (E k) relative to C. fragile. This increase in available light was probably caused by a reduced package effect in the digestive gland of E. viridis relative to C. fragile, resulting in a partial photoacclimation response by reducing the turnover time of electrons (τ). Isolated pigments from C. fragile compared to E. viridis showed the same levels of photosynthetic pigments (chl a and b, neoxanthin, violaxanthin, siphonaxanthin, siphonein and β,ε-carotene) relative to μg chl a (w:w), indicating that the chloroplasts in E. viridis did not synthesise any new pigments. After 73 days of starvation, it was estimated that chloroplasts in E. viridis were able to stay photosynthetic 5–9 months relative to the size of the slugs, corresponding to an RFC of level 8 (a retention ability to retain functional chloroplasts (RFC) for more than 3 months). The reduction in ΦPSII, P max and α as a function of time was caused by a reduction in chloroplast health and number (chloroplast thylakoid membranes and PSII are degraded). These observations therefore conclude that chloroplasts from C. fragile cannot divide or synthesise new pigments when retained by E. viridis, but are able to partially photoacclimate by decreasing τ as a response to more light. This study also points to the importance of siphonaxanthin and siphonein as chemotaxonomic markers for the identification of algal sources of functional chloroplasts.  相似文献   

15.
Variations in the photosynthetic activity under monochromatic light was studied in Phaeodactulum tricornutum grown under various culture conditions, with special reference to the composition of photosynthetic pigments. Photosynthetic activity, under light-limiting conditions, was reduced when the cells were grown under strong light. The reduction was more extensive in activity resulting from fucoxanthin-excitation than in that from chlorophyll a-excitation. The diminution in activity for fucoxanthin-excited photosynthesis did not correlate with variations in the pigment content. A similar diminution was observed with chlorophyll a fluorescence upon excitation of fucoxanthin. The change was accelerated by lowering the culture temperature, or limiting the supply of nitrogen source. The results were interpreted in terms of a nitrogen-deficient state for algal cells induced by strong light, low temperature or a limited supply of nitrogen. This leads to a modification of the physicochemical state of in vivo fucoxanthin, so that the excitation energy of fucoxanthin is less efficiently transferred to chlorophyll a. The significance of the phenomenon in the oceanic primary production is discussed.  相似文献   

16.
In 1987 effects of salinity fluctuations on growth of Ditylum brightwellii (West) Grunow, isolated from the Eastern Scheldt estuary (SW Netherlands) in 1981, were studied. D. brightwellii was grown in a 12 h light: dark cycle at constant salinity in brackish media. Ammonium-limited cultures were subjected to a salinity fluctuation. By decreasing the salinity to 4.8 photosynthesis and cell division were inhibited; cells were deformed. Protein and carbohydrate contents increased slightly, dark respiration was stimulated and cellular levels of glucose decreased at low salinity; this indicated a possible role of sugars in osmoregulation. Ammonium was accumulated in cultures, amino acids may have been stored; the role of the vacuole as a storage compartment was discussed. Both the ammonium uptake capacity and the affinity for ammonium decreased. Nitrogen limitation was relieved in the transient state. [With the activity of the nitrogen assimilation enzymes glutamine synthetase (GS) and glutamate synthase (GOGAT) being uninhibited by lower salinity.] Recovery from hypo-osmotic stress during a salinity increase was initiated by stimulated photosynthesis; chlorophyll a increased, but persistant contractions of cytoplasm (with chloroplasts) may have delayed cell growth. The glutamate dehydrogenase (GDH) activity decreased further whereas the cellular level of alanine increased in the presence of large ammonium pools; this may indicate a temporary activity of ADH (alanine dehydrogenase). Skeletonema costatum (Greville) Cleve, recovered faster from hypoosmotic stress than did D. brightwellii. Due to an osmotic shock from 13.6 to 7.1 S both species excreted amino acids and glucose; S. costatum accumulated more glucose, D. brightwellii accumulated more amino acids. S. costatum may with the competition for nitrogen in waters with an unstable salinity; it will replace D. brightwellii.Contribution no. 427 Delta Institute for Hydrobiological Research, Yerseke, The Netherlands  相似文献   

17.
Photosynthetic and optical properties of the marine chlorophyte Dunaliella tertiolecta Butcher were studied in response to irradiance fluctuations caused by surface-wave focusing. The experimental conditions simulated the prominent features of the light field (high average irradiance, spectral composition and statistical properties) in the uppermost few meters of the water column under sunny surface conditions. The properties of algae grown under high-frequency fluctuations were compared with control cells grown under constant light at the same average irradiance (800 mol quantam-2s-1). No significant differences were found for a number of parameters, including growth rate, cellular chlorophyll a and pigment ratios, photosynthetic unit size and density of Photosystem I reaction centers, the rate of photosynthesis at the growth irradiance, dark respiration, and in vivo fluorescence of chlorophyll a per cell. Photosynthetic parameters were not affected by whether the incident light for oxygen exchange measurements was fluctuating or constant. This was the case whether the cells had been previously acclimated to either fluctuating or constant irradiance. Such a photosynthetic response indicates that cells are accomplishing a time integration of the fluctuating light. In addition, although D. tertiolecta is capable of dramatically changing its optical properties in response to low or high growth irradiance levels, the refractive index of the cells, the efficiency factors for light absorption and scattering by individual cells, and chlorophyll-specific absorption and scattering coefficients of cell suspensions, were all very similar under high irradiance, whether or not wave focusing was present.Contribution to the program of GIROQ (Groupe Interuniversitaire de Recherches Océanographiques du Québec)  相似文献   

18.
Species-specific rates of photosynthetic carbon uptake (P), chlorophyll a content and P versus irradiance (P-I), have been measured for cells of Pyrocystis noctiluca and P. fusiformis isolated from natural populations collected in the euphotic zone within and below the surface mixed layer in the Sargasso Sea. These same measurements and the assay for ribulose bis-phosphate carboxylase (RuBP-Case), have been made for cultures of P. noctiluca in a 12 h L: 12 h D photoperiod at 9 different constant or at changing light intensities. In nature chl a cell-1 was constant throughout the euphotic zone. The photosynthetic capacity (Pmax), of cells captured below the surface mixed layer was lower by a factor of 10 compared with cells collected from the surface mixed layer. The Pmax for P. noctiluca collected and incubated within the surface mixed layer was the same as for cell cultures grown under high light, non nutrient-limiting conditions, suggesting that photosynthesis in the natural system was not nutrient limited. In laboratory cultures under constant low light intensities, chl a cell-1 increased by a factor of 5 while both Pmax and RuBPCase activity decreased by a factor of ca 4 compared with high light intensities. In changing light intensities both Pmax and RuBPCase activities were decreased by factors of 4 during low light intervals while chl a cell-1 approached a constant intermediate value. The change in chl a cell-1 in response to prolonged exposure to constant low light intensities was first order with a rate constant of 0.33 d-1. For all irradiance conditions in culture, the P-I dependence could be described by the simple Michaelis-Menten formula. The ratio of Pmax to KI, (the light intensity where P=Pmax/2) was a constant with a Coefficient of Variation of 12%: The constancy of this ratio, the parallel changes in RuBPCase activity with Pmax and the constant chl a cell-1 in the Sargasso Sea imply that for P. noctiluca and presumably P. fusiformis in nature, a dark enzymatic step rather than changes in photosynthetic pigment concentrations may regulate the photosynthetic capacity in the changing photic environment.Contribution no. 1141 from McCollum-Pratt Institute and Department of Biology, The Johns Hopkins University. Supported by DOE contract no. EY 76S20 3278, NSF no. OCE 76-02571 and ONR no. N300014-81-C-0062  相似文献   

19.
E. Lopez 《Marine Biology》1979,53(3):201-211
The ultrastructure and pigment content of algal chloroplasts (derived from Bacillariophyceae or Chrysophyceae) are described from 3 benthic species of brackish-water foraminiferans.Elphidium williamsoni Haynes contains 4×106 chloroplasts mg-1, whereas the contents ofNonion germanicum (Ehrenberg) andE. excavatum (Terquem) are about 10% of this value. The two former contain chlorophyllsa andc and fucoxanthin, but these pigments were not detectable in the latter.E. williamsoni andN. germanicum had a net uptake of14C–HCO 3 - , proportional to their content of chlorophyll and number of chloroplasts, increasing linearly up to approximately 10 Klux. At light saturation the former assimilates 2.3x10-3 mg C mg-1 h-1 and the latter only about 20% of this value. Dark uptake was insignificant in all cases. Uptake could not be demonstrated inE. excavatum. The photosynthesis effected by these species is trivial in terms of the total benthic carbon fixation effected by the microflora. The chloroplasts survived longer in forminiferans kept in the dark than in light/dark adapted individuals. To keep a steady state population of chloroplasts under light/dark conditions,E. williamsoni must eat at least 65 chloroplasts individual-1 h-1, whereas the minimum consuption rate inN. germanicum is 20.  相似文献   

20.
The effects of mercury (HgCl2) on cell population, chlorophyll a concentration and rates of photosynthesis and excretion were investigated in the phytoplanktonic species Dunaliella minuta in laboratory cultures. Mercury, above 25ppb inhibited both cell population and chlorophyll a concentration approximately to the same extent, whereas the photosynthetic rate was inhibited to a significantly lesser degree. Although, the total photosynthetic rate of the tested organism was reduced, above a threshold concentration, the photosynthetic activity was not reduced under these conditions, but it was in fact significantly greater than that in the control culture. This may suggest that in D. minuta the inhibitory effect of mercury is primarily on cell division rather than cellular photosynthesis, which is enhanced by the fact mercury caused a significant increase of the mean cell volume. Mercury, also, decreased the growth rate and final cell yield. The excretory rate was markedly increased at concentrations ≥ 250 ppb of mercury, but at lower concentrations it tended to depend more on the physiological state of cells than on mercury concentration. In the different cultures, the photosynthetic activity showed variations which occurred without major changes in the chlorophyll a content per cell, which remained almost constant and independent of variations in cell size and growth conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号