首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
In a subtropical Hawaiian ecosystem, phytoplanton size structure analyses (November–December, 1980) showed that ultraplankton (>3μm), nanoplankton (>20μm) and netplankton (>20μm) accounted for ca. 80, 98, and 2% of total chlorophyll standing stock, respectively, on the basis of chlorophyll. Similar trends were evident, for other biomass indices (e.g. cell numbers, total cell volume, ATP, particulate organic carbon, particulate organic nitrogen). The ultraplankton fraction consisted primarily of small flagellates (1 to 3 μm diam) and coccoid cells (?1 μm diam); the 3 to 20 μm fraction was represented by dinoflagellates, coccolithophores, diatoms, and chrysophytes; and the netplankton fraction consisted principally of dinoflagellates and centric diatoms. Community photosynthesis had a size distribution similar to that of biomass. Sinking rates for the 3 μm, 3 to 20 μm, and >20 μm fractions averaged 0.0, 0.09, and 0.29m d?1, respectively. The absence of measurable sinking rates for the ultraplankton, together with the relative abundance of biomass in this fraction, result in very small phytoplankton losses due to sinking in such subtropical surface waters.  相似文献   

2.
At two fixed stations in the Equatorial Atlantic Ocean (0°–4° W), the physical, chemical and biological properties of the euphotic layer were determined for 14 d (Station A: 5–18 February, 1979) and 13 d (Station B: 20 October–7 November, 1979), respectively. The stability of the water column allowed comparison of 3 different “systems”: (i) a well-illuminated and nitrate-depleted mixed layer; (ii) a chlorophyll maximum layer (chl a max) in the thermocline which is poorly illuminated (6.3% of surface irradiance); (iii) a well-illuminated but nitrate-rich (>0.9 μg-at l-1) mixed layer. In each layer the particulate organic carbon (COP), nitrogen (NOP) and phosphorus (POP) contents were measured and compared with the phytoplankton biomass. In the chlorophyll maximum layer, the phytoplankton biomass contributed significantly to the total particulate organic matter (between 55 and 75%). In the nitrate-depleted mixed layer, the results varied according to whether the regression technique [COP=f(chl a)] was used, or the chl a synthesis during the incubation of the samples. With the former technique, the phytoplankton carbon (C p) content appeared minimal, because the y intercept, computed using all the data of the water column, was probably overestimated for this layer. POP would be more associated with living protoplasm than with carbon and nitrogen in the three layers. In the chlorophyll a maximum layer it constitutes a valuable detritus-free biomass measurement, since 80% of the POP consist of phytoplankton phosphorus. The assimilation numbers (NA=μg C μg chl a -1 h-1) were high in all three layers, but the highest values were recorded in the nitrate-depleted mixed layer (NA=15 μg C μg chl a -1 h-1). In the chlorophyll maximum layer, light would be a limiting factor during incubation: between 1025 and 8.1024 quanta m-2 d-1 NA and light are positively correlated independant of nitrate concentration. The growth rates of phytoplankton (μ) were estimated and compared to the maximum expected growth rate. Our main conclusion was that despite very low biomass and nutrient content, the mixed layer was in a highly dynamic state, as evidenced by high rates of phytoplankton growth and short nutrient turnover times (1 d or less for PO-P4 in the mixed layer versus 3 d in the thermocline). The presence of nitrate in the water column allows the development of a higher phytoplankton biomass but does not increase growth rate.  相似文献   

3.
In comparative tests, acrylic diffusion chambers (voltume=42 ml) with polycarbonate filter membranes (1 m pore diameter) consistently supported higher cell yields and faster growth rates of summer phytoplankton populations and species from Narragansett Bay than did dialysis bags (volume=50 ml, 0.24–0.48 nm pore diameter) or bottle cultures (with or without added nutrients). Stirring of diffusion chambers or dialysis bags had less effect on growth responses than did the choice of the containment membrane. Exchange measurements showed the polycarbonate filters (0.49 ml cm-2 h-1) to be five times more permeable than dialysis membranes (0.09 ml cm-2 h-1) per unit area. The mean of measured half-life times for water in diffusion chambers was less than one hour while comparable half-life times for dialysis bags were approximately 3 h. Diatoms from the <10 m size fraction had higher growth rates than assemblages of microflagellates and non-motile ultraplankton. Stirring of diffusion chambers did not adversly effect the growth of microflagellates or non-motile ultraplankton. Growth responses in diffusion chambers moored in situ were generally similar to those measured in diffusion chambers incubated in outdoor tanks connected to a running seawater system.  相似文献   

4.
J. Kuprinen 《Marine Biology》1987,93(4):591-607
Primary productivity and respiration of the overall plankton community and of ultraplankton (organisms passing through a 3-m Nuclepore filter) were studied at the entrance to the Gulf of Finland during the growth season in 1982. Data of the respiration measurements from previous years are also presented. During the development of a diatom spring bloom, the algal component could be successfully separated from the bacterial component by size fractionation with a 3-m Nuclepore filter and thus the algal respiration could be approximated, being on the order of 10 to 20% of the gross production. After the phytoplankton spring maximum, bacteria played an important role in mediating the energy flow from phytoplankton exudates to higher trophic levels. Maximum values of 1 230 and 740 mg O2 m-2 d-1 were recorded for overall and for ultraplankton respiration, respectively, during late July. High productivity values coupled with low phytoplankton biomass and low inorganic nutrient values were also recorded in late July, indicating effective nutrient regeneration and rapid turnover of the plankton community. During late summer, a considerable fraction (over 30%) of phytoplankton production was released as exudates, suggesting that much of the energy is channeled to higher trophic levels via bacterial pathways rather than by direct herbivorous grazing during this season. The summer development of phytoplankton community structure and functioning is strongly controlled by hydrographic conditions, i.e. by nutrient inputs via upwelling and by water temperature. A carbon budget for late summer indicated that bacteria may contribute only up to 50% of the overall respiration of the plankton community, which suggests that heterotrophs other than bacteria play an important role in nutrient regeneration. The present study stresses the importance of energy flow via the phytoplankton exudatebacteria-micrograzer pathway in relatively oligotrophic, brackish water ecosystems.  相似文献   

5.
Growth rates of summer (June–September) phytoplankton assemblages and constituent species were measured in 30 diffusion culture experiments. Size-fractionated (<10 m) phytoplankton assemblages were incubated in situ or under simulated in-situ conditions in outdoor tanks connected to a running seawater system. Doubling rates of important species and groups (such as microflagellates) were compared to community biomass doubling rates estimated from 14C uptake and changes in chlorophyll a concentrations. Division rates of dominant diatom species generally equalled or exceeded community biomass doubling rates, while those of flagellates and non-motile ultraplankters were slower. Maximum division rates of sixteen common diatom species exceeded 2.1 divisions d-1, while nine had maximum division rates in excess of 3 d-1. Mean division rates of 12 diatom species exceeded 1 d-1. Maximum division rates of flagellated species, uncharacterized microflagellates and non-motile ultraplankton assemblages were 2.1, 1.5 and 1.4 d-1, respectively. Microflagellate and non-motile ultraplankton assemblage doubling rates were less than 0.5 d-1 in over half of all growth experiments.  相似文献   

6.
Orthophosphate uptake by a natural estuarine phytoplankton population was estimated using two methods: (1) 32P uptake experiments in which filters of different pore sizes were used to separate plankton size-fractions; (2) 33P autoradiography of phytoplankton cells. Results of the first method showed that plankton cells larger than 5 m were responsible for 2% of the total orthophosphate uptake rate. 98% of the total uptake rate occurred in plankton composed mostly of bacteria, which passed the 5 m screen and were retained by the 0.45 m pore-size filter. There was no orthophosphate absorption by particulates in a biologically inhibited control containing iodoacetic acid. Orthophosphate uptake rates of individual phytoplankton species were obtained using 33P autoradiography. The sum of these individual rates was very close to the estimated rate of uptake by particulates larger than 5 m in the 32P labelling experiment. Generally, smaller cells were found to have a faster uptake rate per m3 biomass than larger cells. Although the nannoplankton constituted only about 21% of the total algal biomass, the rate of phosphate uptake by the nannoplankton was 75% of the total phytoplankton uptake rate. Results of the plankton autoradiography showed that the phosphate uptake rate per unit biomass is a power function of the surface: volume ratio of a cell; the relationship is expressed by the equation Y=2x10-11 X 1.7, where Y is gP m-3 h-1 and X is the surface: volume ratio. These results lend support to the hypothesis that smaller cells have a competitive advantage by having faster nutrient uptake rates.  相似文献   

7.
The composition and productivity of four different size-fractions (<20, 20 to 60, 60 to 100, >100 μm) of the phytoplankton of lower Narragansett Bay (USA) were followed over an annual cycle from November, 1972 to October, 1973. Diatoms dominated the population in the winter-spring bloom and in the fall, the summer population was dominated by flagellates. The nannoplankton (<20 μm) were the most important, accounting for 46.6% of the annual biomass as chlorophyll a and 50.8% of the total production. The relative importance of the different fractions showed a marked seasonality. During the winter-spring and fall blooms the netplankton fractions (>20 μm) were the most important. Nannoplankters domnated in the summer. The yearly mean assimilation numbers for the different fractions were not signfficantly different. During the winter-spring bloom, however, the assimilation numbers for the netplankters were significantly higher than those for the nannoplankton fraction. Temperature accounted for most of the variability in assimilation numbers; a marked nutrient stress was observed on only two occasions. Growth rates calculated from 14C uptake and adenosine triphosphate (ATP)-cell carbon were generally quite high; maxima were >1.90 doublings per day during blooms of a flagellate in the summer and of Skeletonema costatum in the fall. The series of short cycles observed in which the dominant species changed were related to changes in the physiological state of the population. Higher growth rates were generally observed at times of peak phytoplankton abundance while lower growth rates were observed between these peaks. The high growth rates and assimilation numbers usually found suggest that the phytoplankton in lower Narragansett Bay was not generally nutrient-limited between November, 1972 and October, 1973. Nutrient regeneration in this shallow estuary, therefore, must be very rapid when in situ nutrient levels are low.  相似文献   

8.
Dissolved nutrients, Chl-a and primary productivity were measured from seven transects along the coastal waters of the southeastern Arabian Sea during northeast monsoon. Ten major estuaries were chosen to study the influence of estuarine discharge on the nutrient dynamics in the coastal waters. The mean water discharge of the estuaries in the north (64.8?±?18?×?105?m3?d?1) was found to be higher than those in the south (30.6?±?21.4?×?105?m3?d?1), whereas the nutrient concentrations were found to be higher in the estuaries of the south. The results from the offshore waters were discussed in accordance with the depth contour classification, that is, shelf (depth?≤?30?m) and slope waters (depth?≥?30?m). Our results suggest that the estuarine discharge plays a major role in the nutrient distribution in near shore shelf waters, whereas in shelf and slope waters, it was mainly controlled by in situ biological processes. The inorganic form of N to P ratios were found to be higher than Redfield ratio in slope waters when compared with shelf waters, suggesting that PO43? (<0.15?µmol?L?1) is a limiting nutrient for primary production. The multivariate statistical analysis revealed that the nutrient dynamics in the coastal waters was controlled by both biological and physical processes.  相似文献   

9.
A significant proportion of the total primary production in the Celtic Sea (50°30′N; 07°00′W) has been found to be due to picoplankton and small nanoplankton. In July, August and October, 1982, 20 to 25% of the 14C fixed in primary production was in organisms >5 μm, 35 to 40% was in organisms <5–1 μm and 20 to 30% was in organisms<1 μm. Bacterial production was estimated by the incorporation of 3H and would account for less than 10% of the production in the <1–>0.2 μm fraction; therefore, production in the <1–>0.2 μm fraction was the result of photosynthesis per se by picoplankton and could not have been due to heterotrophic bacteria utilizing exudates from larger phytoplankton. Time-course experiments demonstrated some transfer of label from the <1–>0.2μm fraction to the >5 μm fraction, presumably by grazing, but again most of the production in this fraction was the result of photosynthesis by organisms larger than 5 μm and was not due to grazing by heterotrophic microflagellates on smaller phytoplankton.  相似文献   

10.
In August 2000 high concentrations of the dominant herbivorous copepod Calanus hyperboreus were detected in the Arctic Fram Strait, west of Spitsbergen, 1 m above the seafloor at 2,290 m water depth. Individuals from that layer were sampled by a hyper-benthic net attached to the frame of an epi-benthic sledge. For comparison, the vertical distribution of C. hyperboreus in the water column was studied simultaneously by a multiple opening/closing net haul from 2,250 m depth to the surface. Maximum abundance was found close to the surface with 6.6 and 10.0 ind. m?3 at 0–50 m and 50–100 m depth, respectively. However, the major fraction of the population (>40%) occurred between 1,000 and 1,500 m depth. In the deepest layer (2,000–2,250 m) abundance measured 2.2 ind. m?3 and was twice as high as between 100 and 1,000 m depth. In comparison to individuals from surface waters, copepods from the hyper-benthic layer were torpid and did not react to mechanical stimuli. Stage CV copepodids and females from the deep sample contained 4–10% less lipid and showed significantly reduced respiration rates of 0.24 and 0.26 ml O2 h?1 g?1 dry mass (DM) as compared to surface samples (0.49 and 0.43 ml O2 h?1 g?1 DM). All these observations indicate that the hyper-benthic part of the population had already started a dormant overwintering phase at great depth. Based on the lipid deposits and energy demands, the potential maximum duration of the non-feeding dormant phase was estimated at 76–110 days for females and at 98–137 days for CV copepodids, depending on what indispensable minimum lipid content was assumed. In any case, the estimated times could not meet the necessary requirements for a starvation period of >6 months until the next phytoplankton bloom in the following spring. The ecological implications of these results are discussed with respect to the life cycle and eco-physiological adaptations of C. hyperboreus to its high-Arctic habitat.  相似文献   

11.
Vertical profiles of physical, chemical and phytoplanktonic parameters are described, at the level of the thermocline, in the area of Banyuls-sur-Mer, France. The results show that the thermocline divides two masses of water: (1) Mediterranean surface water with low nutrient concentrations and a salinity below 38.00 ‰; (2) deep, nutrient-rich upwelled water (N?NO3 >3 μat-g·l-1, P?PO4>0.3 μat-g·l-1, >38.30 ‰ S), which comes from the upper limit of the Mediterranean intermediate water, usually located at the 200 m level. Consequently, conditions are suitable for high production rates at the bottom of the thermocline, where Chl a is above 0.5 mg·m-3; dominant species are Nitzschia delicatissima and N. pungens. A diagram is presented explaining the different effects of the pycnoclines on primary production: eutrophication at the pycnocline levels is the result of passive accumulation of phytoplankton and organic matter during sedimentation, and/or of reduced diffusion of nutrients from deep waters towards the surface.  相似文献   

12.
Flocculation of phytoplankters into large, rapidly sinking aggregates has been implicated as a mechanism of vertical transport of phytoplankton to the sea floor which could have global significance. The formation rate of phytoplankton aggregates depends on the rate at which single cells collide, which is mainly physically controlled, and on the probability of adhesion upon collision (=coagulation efficiency, stickiness), which depends on physico-chemical and biological properties of the cells. We describe here an experimental method to quantify the stickiness of phytoplankton cells and demonstrate that three species of diatoms grown in the laboratory (Phaeodactylum tricornutum, Thalassiosira pseudonana, Skeletonema costatum) are indeed significantly sticky and form aggregates upon collision. The dependency of stickiness on nutrient limitation and growth was studied in the two latter species by investigating variation in stickiness as batch cultures aged. In nutrient repleteT. pseudonana cells stickiness is very low (< 5 × 10?3), but increases by more than two orders of magnitude as cell growth ceases and the cells become nutrient limited. Stickiness ofS. costatum cells is much less variable, and even nutrient replete cells are significantly sticky. Stickiness is highest (> 10?1) forS. costatum cells in the transition between the exponential and the stationary growth phase. The implications for phytoplankton aggregate formation and subsequent sedimentation in the sea of these two different types of stickiness patterns are discussed.  相似文献   

13.
Controlled laboratory experiments were conducted to examine how photosynthesis and growth occur in Potamogeton wrightii Morong under different photoperiods and nutrient conditions. The experiment was based on a 3×2 factorial design with three photoperiods (16, 12 and 8 h) of 200 μE · m?2·s?1 irradiance and two nutrient conditions, high (90 μmol N · L?1·d?1 and 9 μmol P · L?1·d?1) and low (30 μmol N L?1·d?1 and 3 μmol P · L?1·d?1). After 14, 28, 56 and 70 days of growth, plants were harvested to determine net photosynthesis rate and various growth parameters. Above- and below-ground biomass were investigated on days 56 and 70 only. Plants under low nutrient conditions had greater leaf area, more chlorophyll a, a higher rate of net photosynthesis and accumulated more above- and below-ground biomass than plants in the high nutrient condition. Plants with an 8 h photoperiod in the low nutrient condition had a significantly higher rate of net photosynthesis, whereas 8 h photoperiod plants in the high nutrient condition had a lower rate of net photosynthesis and their photosynthetic capacity collapsed on day 70. We conclude that P. wrightii has the photosynthetic plasticity to overcome the effects of a shorter photoperiod under a tolerable nutrient state.  相似文献   

14.
Orthophosphate (P) uptake on a seasonal basis in surface waters and in vertical profiles was directly proportional to the standing stocks of phytoplankton and bacterioplankton in the outer Los Angeles Harbor and in southern California coastal waters during 1978–1979. A phytoplankton-enriched size fraction (PEF) which was retained on a 1 m pore-size filter contained 83% of the total chlorophyll a but only 18% of the total bacteria. A bacterioplankton-enriched size fraction (BEF) which passed the 1 m filter but was retained on a 0.2 m filter contained 82% of the total bacteria but only 17% of the total chlorophyll a. PEF and BEF accounted for 91 and 9% of the microbial carbon, respectively. The differential uptake of 10 radiolabeled substrates more fully characterized PEF and BEF. 33P uptake occurred in both PEF and BEF, accounting for 47 and 53%, respectively, of the total uptake. 33P uptake by both size fractions was inhibited by low concentrations of 2,4-dinitrophenol (DNP), N-ethylmaleimide (NEM) and carbonyl cyanide, m-chlorophenylhydrozone (CCCP). Darkness and low levels of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) selectively inhibited 33P uptake by PEF; valinomycin selectively inhibited 33P uptake by BEF. An experiment measuring 33P uptake velocity versus P concentration produced sigmoidal saturation kinetics at high levels of exogenous P. Kinetic parameter analyses according to the Hill equation gave a V max of 7.12 nmol l–1 h–1 and aK t of 0.41 nmol l–1 for PEF, and a V max of 5.17 nmol l–1 h–1 and aK t of 112 nmol l–1 for BEF. Consideration of relative surface areas of phytoplankton and bacterioplankton, their 33P uptake rates in light and dark, and estimates of the population turnover times emphasizes the potential importance of bacterioplankton in community phosphorus metabolism.  相似文献   

15.
Over a 2-year program of monthly cruises covering the entire Chesapeake Bay (USA), the phytoplankters which passed 35 μm mesh were responsible for 89.6% of the phytoplankton productivity. On a single summer cruise, the <35 μm phytoplankton fraction was responsible for 93.4% of the chlorophyll a and 100% of the primary productivity. The <10 μm fraction was responsible for 81.3% of the chlorophyll a and 94% of the productivity. The difference in biomass in the <35 μm and the <10 μm fractions was significant (P=0.025), but no significant difference in the productivity could be demonstrated. Laboratory experiments demonstrated that recently assimilated carbon can be lost with gravity screening. Considering both this and the effect of herbivorous zooplankters enclosed in productivity incubations, a prescreening rather than postscreening technique is recommended for studying nanoplankton productivity.  相似文献   

16.
N:P atomic ratios calculated on NO3-N alone for the upper waters of the tropical Atlantic Ocean off Barbados are very low, being only 9.8:1. Absolute values are also low, the integrated values between O and 100 m for NO3-N and PO4-P being 0.59 and 0.06 g-at l-1, respectively. However, when ammonia is included as a nitrogen source the ratio becomes 28.8:1. This is the average value obtained from 42 samples taken over a 21-month period, and suggests that phosphorus, and not nitrogen, is the more critical nutrient in phytoplankton growth off Barbados.  相似文献   

17.
黄海春季表层叶绿素和初级生产力及其粒径结构研究   总被引:1,自引:0,他引:1  
张江涛  殷克东 《生态环境》2010,19(9):2107-2111
根据2006年4月对黄海浮游植物分级叶绿素及初级生产力的调查,研究了黄海叶绿素及初级生产力的水平分布及粒级结构特征,并分析了其主要影响因素。黄海海域调查站位表层叶绿素a质量浓度变化范围为0.20~4.94μg·L-1,平均值为0.96μg·L-1。叶绿素最大值出现在临近长江口的站位。叶绿素分级结果表明黄海春季以粒径〉5μm的浮游植物占优势。黄海表层初级生产力的变化范围为2.03~15.64mg·m-3·h-1,平均值为6.08mg·m-3·h-1。其中南黄海海域初级生产力平均为6.58mg·m-3·h-1,北黄海海域初级生产力平均为4.92mg·m-3·h-1。高值区分布在南黄海中部。受水体透明度的影响,低值区出现在临近长江口的站位。断面站位分析表明浮游植物初级生产力由北向南逐步升高,温度随纬度的变化是南北海域初级生产力水平差异的主要原因。由于粒径较小(〈5μm)的浮游植物单位叶绿素具有较高的碳固定能力,调查期间整个海区初级生产力以粒径〈5μm的浮游植物贡献为主。  相似文献   

18.
The influence of the sewage from the city of Marseilles, France, upon the marine microplanktonic assemblages was followed over a period of one year (May 1980–April 1981) at five stations and three sampling depths. Measurements of the 14C assimilation rate, adenylate energy charge, and the electron-transport system (ETS) were compared with parallel phytoplankton and bacteria counts. In the coastal waters near the sewage outlet the phytoplanktonic organisms were stressed, as attested by the low values of both assimilation rate and energy-charge ratios; the living microbiomass in these waters was essentially of bacterial origin. In waters situated 4 to 5 km away from the outlet, and therefore not directly under its influence, higher mean P:B and EC ratios indicated the presence of a predominantly living phytoplanktonic assemblage. Nevertheless, the metabolic stress induced by the inflow of polluted water to the waters near the sewage outlet did not prevent the occurrence of a spring bloom. The electron-transport system measurements and their relationship to the effective bacterial counts are in good accordance with the literature data describing laboratory cultures, and indicate intense heterotrophic activity in the waters nearest to the sewage outlet. This activity is most probably of bacterial origin: perhaps some of the terrestrial germs introduced into the marine environment remained viable, perhaps the considerable volume of organic matter introduced into this area induced heterotrophic development, or perhaps both factors combined. Simultaneous consideration of biochemical and physiological data with the structure and composition of the microplanktonic populations could explain the apparent contradiction between the high level of nutrient supply and the lack of photoautotrophic growth noted in previous studies in this area. However, the considerable amounts of fresh organic matter present in the waters near the sewage outlet at Cortiou indicate the necessity for great care in the use of biochemical parameters such as chlorophyll or AMP for the estimation of microplankton biomass; such estimates can be biased by the presence of non-degraded detrital particles of biological origin.  相似文献   

19.
Carbon assimilation and lipid production were studied in phytoplankton in Balsfjorden and Ullsfjorden, northern Norway, during the exponential growth phase of the spring bloom in 1983 (6–7 April). In Balsfjorden, phytoplankton biomass was constant with depth and equivalent to 1.5 g chlorophyll a 1-1. Phytoplankton biomass in Ullsfjorden varied with depth, with a maximum of ca. 7 g chlorophyll a 1-1 occurring at 5 to 10 m. Particulate carbon-14 assimilation was about 18 mg C per m-2 h-1 in Balsfjorden and about 39 mg C per m-2 h-1 in Ullsfjorden over the depth range 4 to 8 m. In Balsfjorden, the percentage of total fixed carbon recovered as total lipid was 14.7 and 20.4% at 4 and 8 m depth, respectively. In Ullsfjorden, the corresponding values were 8.8 and 28.1% at 4 and 8 m, respectively. The percentages of total fixed carbon present as fatty acids were 1.1 and 1.6% at 4 and 8 m, respectively, in Balsfjorden, and 0.8 and 6.4% at 4 and 8 m in Ullsfjorden. The majority of the radioactivity in lipid at both locations and at both depths was present as polar lipid, with small percentages present in triacylglycerols and very small percentages present in free fatty acids. On average, about 18% of the total carbon-14 incorporated into phytoplankton over a 6 to 7 h mid-day period was recovered as total lipid and its percentage tended to increase with depth. The relatively low percentage of incorporated carbon-14 present as fatty acids in total lipid implies that most of the radioactivity is present in glyceryl and/or glucosyl moieties and that measurement of total radioactivity in total lipid does not necessarily give an accurate estimation of lipogenesis in phytoplankton. Fatty acid analyses of total phytoplankton in Balsfjorden and Ullsfjorden in 1983 and of a surface slick at the end of a bloom of Phaeocystis pouchetii in Balsfjorden in May 1980 showed an abundance (more than 40% of the total) of (n-3) polyunsaturates in all cases. C-18 polyunsaturates, especially 18:4 and 18:5, were very abundant (about 30% of the total) in the P. pouchetii surface slick in Balsfjorden in 1980. Both P. pouchetii biomass and C-18 polyunsaturates were more abundant in Ullsfjorden than in Balsfjorden (1983). Lipids from the P. pouchetii surface slick were deficient in C-16 polyunsaturates and relatively deficient in C-20 polyunsaturates, but both these classes of fatty acids were abundant in Balsfjorden and Ullsfjorden in 1983. The phytoplankton in both locations in 1983 was dominated by P. pouchetii and diatoms; Chaetoceros socialis was especially abundant in Balsfjorden. The results are discussed in terms of the fatty acids present in herbivorous zooplankton in northern Norwegian fjords.  相似文献   

20.
G. Schneider 《Marine Biology》1989,100(4):507-514
The population dynamics, ammonia and inorganic phosphate excretion, and nutrient regeneration of the common jellyfish Aurelia aurita was investigated from 1982 to 1984 in the Kiel Bight, western Baltic Sea. During summer 1982, medusae abundance ranged between 14 and 23 individuals 100 m-3, biomass was estimated at about 5 g C 100 m-3 and the mean final diameter of individuals was 22 cm. Abundance, based on numbers, in 1983 and 1984 was an order of magnitude lower; biomass was less than 2 g C 100 m-3 and jellyfish grew to 30 cm. During the summers of 1983 and 1984, A. aurita biomass constituted roughly 40% of that of the total zooplankton>200 m. In 1982, for which zooplankton data were lacking, it was assumed that medusae biomass was greater than that of all other zooplankton groups. Total ammonia excretion ranged between 6.5 and 36 mol h-1 individual-1, whereas inorganic phosphate release was 1.4 to 5.7 mol h-1 individual-1. Allometric equations were calculated and exponents of 0.93 for NH4–N release and 0.87 for PO4–P excretion were determined. Nitrogen and phosphorus turnover rates were 5.4 and 14.6% d-1, respectively. In 1982, the medusae population released 1 100 mol NH4–N m-2 d-1, about 11% of the nitrogen requirements of the phytoplankton. The inorganic phosphate excretion (150 mol m-2 d-1) sustained 23% of the nutrient demands of the primary producers. In the other two years the nutrient cycling of the medusae was much less important, and satisfied only 3 to 6% of the nutrient demands. It is suggested that in some years A. aurita is the second most important source of regenerated nutrients in Kiel Bight, next to sediment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号