首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Two natural-gradient pulse tracer tests were conducted in a petroleum-contaminated aquifer to evaluate the potential for benzene, toluene, ethylbenzene, and xylenes (BTEX) biodegradation under enhanced nitrate-reducing conditions. Addition of nitrate resulted in loss of toluene, ethylbenzene, and m,p-xylenes (TEX) after an initial lag period of approximately 9 days. Losses of benzene were not observed over the 60-day monitoring period. Tracer breakthrough curves (BTCs) were analyzed to derive transport and biodegradation parameters, including advective velocities, retardation factors, dispersion coefficients, biodegradation rate constants, and nitrate utilization ratios. Using the parameters derived from the BTC analysis, numerical simulations of one of the tracer experiments were conducted using BIONAPL/3D [Molson, J., BIONAPL/3D User Guide, A 3D Coupled Flow and Multi-Component Reactive transport model. University of Waterloo, Waterloo, Ontario, Canada]. Simulations using the BTC-derived transport and biodegradation parameters successfully reproduced benzene, TEX, and nitrate concentrations measured during the tracer experiment. Comparisons of observed and simulated nitrate concentrations indicate that the mass ratio of nitrate-N utilized to TEX degraded increased over time during the experiment, reaching values many times that expected based on stoichiometry of TEX oxidation coupled to nitrate reduction. Excess nitrate loss is likely due to oxidation of other organics in addition to TEX.  相似文献   

2.
Conventional methods to measure the hydraulic conductivity of an aquifer on a relatively large scale (10-100 m) require extraction of significant quantities of groundwater. This can be expensive, and otherwise problematic, when investigating a contaminated aquifer. In this study, innovative approaches that make use of tandem circulation wells to measure hydraulic conductivity are proposed. These approaches measure conductivity on a relatively large scale, but do not require extraction of groundwater. Two basic approaches for using circulation wells to measure hydraulic conductivity are presented; one approach is based upon the dipole-flow test method, while the other approach relies on a tracer test to measure the flow of water between two recirculating wells. The approaches are tested in a relatively homogeneous and isotropic artificial aquifer, where the conductivities measured by both approaches are compared to each other and to the previously measured hydraulic conductivity of the aquifer. It was shown that both approaches have the potential to accurately measure horizontal and vertical hydraulic conductivity for a relatively large subsurface volume without the need to pump groundwater to the surface. Future work is recommended to evaluate the ability of these tandem circulation wells to accurately measure hydraulic conductivity when anisotropy and heterogeneity are greater than in the artificial aquifer used for these studies.  相似文献   

3.
An injected tracer field experiment was conducted at the University of Idaho Ground Water Field Laboratory to evaluate the application of borehole-to-surface voltage measurements for delineation of the tracer distribution in partially saturated, fractured basalt. A tap water tracer was injected into a fracture-dominated, salt-water plume formed during a previous salt-water injection experiment. The tap water tracer was injected into a central injection well under constant hydraulic head for 34 days. The injection well was surrounded by seven test boreholes. Each borehole contained several copper wire electrodes for borehole-to-surface potential measurements between a surface grid of 224 copper sulfate, porous pot electrodes. Eight pole-pole, borehole-to-surface voltage data sets were acquired during each measurement period by energization of a selected electrode in each of the eight boreholes. Predicted voltages for a uniform earth (homogeneous and isotropic) potential model (finite difference) were subtracted from each data set (for its respective current source location), and the voltage residuals superposed to create new data sets with greater measurement sensitivity and coverage, to aid in interpretation. These data sets were collected over four measurement periods during tap water injection and four measurement periods during the subsequent 64-day drainage phase. The data were interpreted with the use of three-dimensional models and by comparisons with other electrical and hydrological observations. Results indicate that superposition of multiple data sets of voltage residuals significantly improved the lateral resolution of subsurface bulk resistivity changes that occurred over time.  相似文献   

4.
Dual-screened groundwater circulation wells (GCWs) can be used to remove contaminant mass and to mix reagents in situ. GCWs are so named because they force water in a circular pattern between injection and extraction screens. The radial extent, flux and direction of the effective flow of this circulation cell are difficult to measure or predict. The objective of this study is to develop a robust protocol for assessing GCW performance. To accomplish this, groundwater flow patterns surrounding a GCW are assessed using a suite of tools and data, including: hydraulic head, in situ flow velocity, measured hydraulic conductivity data from core samples, chemical tracer tests, contaminant distribution data, and numerical flow and transport models. The hydraulic head data show patterns that are consistent with pumping on a dual-screened well, however, many of the observed changes are smaller than expected. In situ thermal perturbation flow sensors successfully measured horizontal flow, but vertical flow could not be determined with sufficient accuracy to be useful in mapping flow patterns. Two types of chemical tracer tests were utilized at the site and showed that much of the flow occurs within a few meters of the GCW. Flow patterns were also assessed based on changes in contaminant (trichloroethylene, TCE) concentrations over time. The TCE data clearly showed treated water moving away from the GCW at shallow and intermediate depths, but the circulation of that water back to the well, except very close to the well, was less clear. Detailed vertical and horizontal hydraulic conductivities were measured on 0.3 m-long sections from a continuous core from the GCW installation borehole. The measured vertical and horizontal hydraulic conductivity data were used to construct numerical flow and transport models, the results of which were compared to the head, velocity and concentration data. Taken together, the field data and modeling present a fairly consistent picture of flow and transport around the GCW. However, the time and expense associated with conducting all of those tests would be prohibitive for most sites. As a consequence, a sequential protocol for GCW characterization is presented here in which the number of tools used can be adjusted to meet the needs of individual sites. While not perfect, we believe that this approach represents the most efficient means for evaluating GCW performance.  相似文献   

5.
Aquifer heterogeneity (structure) and NAPL distribution (architecture) are described based on tracer data. An inverse modelling approach that estimates the hydraulic structure and NAPL architecture based on a Lagrangian stochastic model where the hydraulic structure is described by one or more populations of lognormally distributed travel times and the NAPL architecture is selected from eight possible assumed distributions. Optimization of the model parameters for each tested realization is based on the minimization of the sum of the square residuals between the log of measured tracer data and model predictions for the same temporal observation. For a given NAPL architecture the error is reduced with each added population. Model selection was based on a fitness which penalized models for increasing complexity. The technique is demonstrated under a range of hydrologic and contaminant settings using data from three small field-scale tracer tests: the first implementation at an LNAPL site using a line-drive flow pattern, the second at a DNAPL site with an inverted five-spot flow pattern, and the third at the same DNAPL site using a vertical circulation flow pattern. The Lagrangian model was capable of accurately duplicating experimentally derived tracer breakthrough curves, with a correlation coefficient of 0.97 or better. Furthermore, the model estimate of the NAPL volume is similar to the estimates based on moment analysis of field data.  相似文献   

6.
Aquifer heterogeneity (structure) and NAPL distribution (architecture) are described based on tracer data. An inverse modelling approach that estimates the hydraulic structure and NAPL architecture based on a Lagrangian stochastic model where the hydraulic structure is described by one or more populations of lognormally distributed travel times and the NAPL architecture is selected from eight possible assumed distributions. Optimization of the model parameters for each tested realization is based on the minimization of the sum of the square residuals between the log of measured tracer data and model predictions for the same temporal observation. For a given NAPL architecture the error is reduced with each added population. Model selection was based on a fitness which penalized models for increasing complexity. The technique is demonstrated under a range of hydrologic and contaminant settings using data from three small field-scale tracer tests: the first implementation at an LNAPL site using a line-drive flow pattern, the second at a DNAPL site with an inverted five-spot flow pattern, and the third at the same DNAPL site using a vertical circulation flow pattern. The Lagrangian model was capable of accurately duplicating experimentally derived tracer breakthrough curves, with a correlation coefficient of 0.97 or better. Furthermore, the model estimate of the NAPL volume is similar to the estimates based on moment analysis of field data.  相似文献   

7.
Methods to derive reaction rates of microbial processes are important since these processes are determining many chemical reactions influencing groundwater quality. Thereby, it is not only important to derive the parameters, but also to have a firm idea about the reliability with which these are determined. Analysis of residuals, sensitivity analyses and analysis of joint confidence intervals provide an interesting tool for this purpose. The method is illustrated in this paper using a push-pull test designed to derive aerobic respiration and denitrification. Therefore, a test solution containing dissolved oxygen and nitrate as reactive tracer and bromide as non-reactive tracer was injected in organic matter rich sediment. Afterwards, this test solution was extracted and water quality was monitored. ReacTrans, a finite-difference, axial-symmetric groundwater flow and solute transport model was developed to simulate the test and derive hydraulic, solute transport and chemical parameters. Aerobic respiration and denitrification were simulated with Michaelis-Menten kinetics. Maximum reaction rates (10.4 and 2.4 mmol/ld for aerobic respiration and denitrification respectively) and Michaelis constants (0.14 and 0.1 mmol/l for aerobic respiration and denitrification respectively) were determined. The reliability with which these parameters are derived is indicated by analysis of residuals, sensitivities and joint confidence intervals. This shows that the Michaelis-Menten parameters can be derived reliable with a push-pull test, whereas the test is insensitive to effective porosity and hydraulic conductivity. Because of the small scale of the test, longitudinal dispersivity was very small and therefore unidentifiable.  相似文献   

8.
Denitrification walls are a practical approach for decreasing non-point source pollution of surface waters. They are constructed by digging a trench perpendicular to groundwater flow and mixing the aquifer material with organic matter, such as sawdust, which acts as a carbon source to stimulate denitrification. For efficient functioning, walls need to be permeable to groundwater flow. We examined the functioning of a denitrification wall constructed in an aquifer consisting of coarse sands. Wells were monitored for changes in nitrate concentration as groundwater passed through the wall and soil samples were taken to measure microbial parameters inside the wall. Nitrate concentrations upstream of the wall ranged from 21 to 39 g N m(-3), in the wall from 0 to 2 g N m(-3) and downstream from 19 to 44 g N m(-3). An initial groundwater flow investigation using a salt tracer dilution technique showed that the flow through the wall was less than 4% of the flow occurring in the aquifer. Natural gradient tracer tests using bromide and Rhodamine-WT confirmed groundwater bypass under the wall. Hydraulic conductivity of 0.48 m day(-1) was measured inside the wall, whereas the surrounding aquifer had a hydraulic conductivity of 65.4 m day(-1). This indicated that during construction of the wall, hydraulic conductivity of the aquifer had been greatly reduced, so that most of the groundwater flowed under rather than through the wall. Denitrification rates measured in the center of the wall ranged from 0.020 to 0.13 g N m(-3) day(-1), which did not account for the rates of nitrate removal (0.16-0.29 g N m(-3) day(-1)) calculated from monitoring of groundwater nitrate concentrations. This suggested that the rate of denitrification was greater at the upstream face of the wall than in its center where it was limited by low nitrate concentrations. While denitrification walls can be an inexpensive tool for removing nitrate from groundwater, they may not be suitable in aquifers with coarse textured subsoils where simple inexpensive construction techniques result in major decreases in hydraulic conductivity.  相似文献   

9.
A unique field experiment has been undertaken at the CFB Borden research site to investigate the development of dissolved chlorinated solvent plumes from a residual dense non-aqueous phase liquid (DNAPL) source. The "emplaced-source" tracer test methodology involved a controlled emplacement of a block-shaped source of sand containing chlorinated solvents below the water table. The gradual dissolution of this residual DNAPL solvent source under natural aquifer conditions caused dissolved solvent plumes of trichloromethane (TCM), trichloroethene (TCE) and perchloroethene (PCE) to continuously develop down gradient. Source dissolution and 3-D plume development were successfully monitored via 173 multilevel samplers over a 475-day tracer test period prior to site remediation research being initiated. Detailed groundwater level and hydraulic conductivity data were collected. Development of plumes with concentrations spanning 1-700,000 micrograms/1 is described and key processes controlling their migration identified. Plumes were observed to be narrow due to the weakness of transverse dispersion processes and long due to advection and significant longitudinal dispersion, very limited sorptive retardation and negligible, if any, attenuation due to biodegradation or abiotic reaction. TCM was shown to be essentially conservative, TCE very nearly conservative and PCE, consistent with its greater hydrophobicity, more retarded yet having a greater mobility than observed in previous Borden field tests. The absence of biodegradation was ascribed to the prevailing aerobic conditions and lack of any additional biodegradable carbon substrates. The transient groundwater flow regime caused significant transverse lateral plume movement, plume asymmetry and was likely responsible for most of the, albeit limited, transverse horizontal plume spreading. In agreement with the widespread incidence of extensive TCE and PCE plumes throughout the industrialized world, the experiment indicates such solvent plumes are likely to be highly mobile and persistent, at least in aquifers that are aerobic and have low sorption potential (low foc content).  相似文献   

10.
11.
Data from 90 tracer experiments performed in low-permeability fractured media have been studied to explore correlations among parameters controlling flow and transport. The original data had been interpreted by different authors using different models, which prevents direct comparison of their estimated parameters. In order to produce comparable parameters, the data have been reexamined using simple models (homogeneous domain, steady-state flow regime, single porosity). Specifically, hydraulic conductivity has been derived as the ratio of water flux to head gradient and apparent porosity as the ratio of water velocity to water flux; the former estimated from both first and peak arrival times. Hydraulic conductivity and porosity correlate along a straight line of slope 1:3 in log scale. While the regression is too noisy to be of predictive use, it lends some support to the use of a generalized cubic law. The fact that correlation for first arrival time porosity (0.77) is larger than for peak arrival porosity (0.62) suggests that first arrival is controlled by the same flow paths as hydraulic conductivity. Apparent porosity derived from peak arrival time is found to grow with travel time along a line of 0.55 slope (again log scale). The correlation coefficient ranges between 0.73 and 0.80 (depending on the data set) for hard rocks. The fact that this correlation is maintained when varying the flow rate at a given site leads us to suggest that it is caused by diffusion mechanisms. This conclusion is further supported by the increase of apparent porosity with the matrix porosity of the rock on which the experiments were performed.  相似文献   

12.
Realistic models of contaminant transport in groundwater demand detailed characterization of the spatial distribution of subsurface hydraulic properties, while at the same time programmatic constraints may limit collection of pertinent hydraulic data. Fortunately, alternate forms of data can be used to improve characterization of spatial variability. We utilize a methodology that augments sparse hydraulic information (hard data) with more widely available hydrogeologic information to generate equiprobable maps of hydrogeologic properties that incorporate patterns of connected permeable zones. Geophysical and lithologic logs are used to identify hydrogeologic categories and to condition stochastic simulations using Sequential Indicator Simulation (SIS). The resulting maps are populated with hydraulic conductivity values using field data and Sequential Gaussian Simulation (SGS). Maps of subsurface hydrogeologic heterogeneity are generated for the purpose of examining groundwater flow and transport processes at the Faultless underground nuclear test, Central Nevada Test Area (CNTA), through large-scale, three-dimensional numerical modeling. The maps provide the basis for simulation of groundwater flow, while transport of radionuclides from the nuclear cavity is modeled using particle tracking methods. Sensitivity analyses focus on model parameters that are most likely to reduce the long travel times observed in the base case. The methods employed in this study have improved our understanding of the spatial distribution of preferential flowpaths at this site and provided the critical foundation on which to build models of groundwater flow and transport. The results emphasize that the impacts of uncertainty in hydraulic and chemical parameters are dependent on the radioactive decay of specific species, with rapid decay magnifying the effects of parameters that change travel time.  相似文献   

13.
The investigation of the migration of a high pH plume in a fractured shear zone is foreseen by a long-term experiment at the Grimsel rock laboratory. In order to characterise the initial conditions for the long-term experiment and to evaluate an optimal hydraulic in situ set-up, several dipole experiments with nonreacting tracers have been performed. The dipole experiments differ in geometry, pumping rates and orientation to the background water flow. Several single and double-porosity models have been applied to fit the results of these dipole tracer tests in order to extract values for some transport parameters and discriminate for certain transport processes. A two-dimensional porous medium approach was successfully used to fit tracer breakthrough curves measured for a dipole experiment. A model based on a one-dimensional dual porous medium approach was also successful, although the applied hydraulic dipole, with similar injection and extraction rates, suggests the existence of an extended two-dimensional flow field. For the two-dimensional porous medium approach, tracer breakthrough could only be fitted with a complex flow field geometry within the heterogeneous fractured shear zone. The heterogeneity was generated by heterogeneous porosity and hydraulic permeability distributions. Predictions for further dipole geometries and a sorbing tracer have been calculated by means of both models using the flow and transport parameters deduced from fits for a single dipole experiment. This allows for comparison with the measured breakthrough of sorbing tracers. The foreseen experiment with sorbing (radionuclide) tracers will help decide on the appropriate approach that should be used to describe such dipole experiments in this shear zone. Additionally, the migration and spreading of a solution with high pH has been calculated taking into account mineral dissolution and precipitation in a two-dimensional porous medium approach in order to estimate the amount and character of the mineral reactions induced by the interaction between the high pH solution and the rock.  相似文献   

14.
Addition of trace metals such as cadmium to soils in metal-rich sewage sludge may result in contamination of soil and groundwater. This study addresses the plot-scale transport of Cd derived from sewage sludge in a layered clay soil in an arid region of central Iran. Sewage sludge was enriched by Cd at rates of 38 and 80 mg kg(-1) and applied to experimental soil plots using a complete random block design with three replicates. Cadmium concentration was measured as a function of depth after 185 and 617 days. HYDRUS-1D and MACRO codes were calibrated for Cd transport in the site treated with 80 mg kg(-1) sewage sludge. Model parameters were estimated by inverse modelling using the SUFI-2 procedure. The site treated with 38 mg kg(-1) cadmium was used to test the calibrated models. Both convection-dispersion equation (CDE) and non-equilibrium CDE in HYDRUS-1D produced reasonable calibration results. However, the estimated Freundlich sorption constants were significantly smaller than those measured in a batch study. A site tracer experiment revealed the existence of substantial macropore flow. For this reason we applied MACRO to account for this process. The calibration and test results with MACRO were as good as those obtained by HYDRUS-1D with the difference that adsorption constants were much closer to the measured ones. This indicates that in HYDRUS-1D, the adsorption parameters were underestimated in order to allow a deeper transport of Cd which had actually occurred due to macropore flow. A 20-year simulation scenario depicting the long-term effect of sludge application indicated small risk of groundwater contamination. However, high concentration of Cd near the soil surface raises a concern about the crop Cd uptake which should be further investigated.  相似文献   

15.
Forced-gradient groundwater tracer tests may be conducted using a variety of hydraulic schemes, so it is useful to have simple semi-analytic models available that can examine various injection/withdrawal scenarios. Models for radially convergent tracer tests are formulated here as transfer functions, which allow complex tracer test designs to be simulated by a series of simple mathematical expressions. These mathematical expressions are given in Laplace space, so that transfer functions may be placed in series by simple multiplication. Predicted breakthrough is found by numerically inverting the composite transfer function to the time-domain, using traditional computer programs or commercial mathematical software. Transport is assumed to be dictated by a radially convergent or uniform flow field, and is based upon an exact first-passage-time solution of the backward Fokker–Planck equation. These methods are demonstrated by simulating a weak-dipole tracer test conducted in a fractured granite formation, where mixing in the injection borehole is non-ideal.  相似文献   

16.

A study was conducted in the Muttom–Mandaikadu coastal region, which is among the profitable coastal sectors in Tamil Nadu, to find the groundwater potential as well as its quality by an integrated geospatial, geophysical and geochemical approach. The GIS-based weighted overlay analysis was used to merge five thematic layers to create the groundwater potential zone map. The geophysical resistivity survey was performed in the study area at 26 stations by applying Schlumberger vertical electrical sounding technique. The observed data were inverted to develop a subsurface lithology model and its electrical properties using one-dimensional software AGI Earth Imager. The combined vertical electrical sounding result and remote sensing thematic maps have exposed the potential zone of groundwater in the study area. From the inferred results, it was observed that 20.8% of the area has ample groundwater potential and 7.7% of the area has scanty groundwater potential. The saltwater intrusion zone had been predicted by validating aquifer resistivity with Dar-Zarrouck (D-Z) parameter. From the geophysical and geochemical interpreted results, it was found that aquifers in 34.6% of the study area are vulnerable to saline contamination. The 4-D model with integrated groundwater quantity and quality suggests that the study area's Western part falls under excellent-to-good groundwater potential zone and excellent water quality.

  相似文献   

17.
Analytical solutions for flow fields near continuous wall reactive barriers   总被引:1,自引:0,他引:1  
Permeable reactive barriers (PRBs) are widely applied for in-situ remediation of contaminant plumes transported by groundwater. Besides the goal of a sufficient contaminant remediation inside the reactive cell (residence time) the width of plume intercepted by a PRB is of critical concern. A 2-dimensional analytical approach is applied to determine the flow fields towards rectangular PRBs of the continuous wall (CW) configuration with and without impermeable side walls (but yet no funnel). The approach is based on the conformal mapping technique and assumes a homogeneous aquifer with a uniform ambient flow field. The hydraulic conductivity of the reactive material is furthermore assumed to exceed the conductivity of the aquifer by at least one order of magnitude as to neglect the hydraulic gradient across the reactor. The flow fields are analyzed regarding the widths and shapes of the respective capture zones as functions of the dimensions (aspect ratio) of the reactive cell and the ambient groundwater flow direction. Presented are an improved characterization of the advantages of impermeable side walls, a convenient approach to improved hydraulic design (including basic cost-optimization) and new concepts for monitoring CW PRBs. Water level data from a CW PRB at the Seneca Army Depot site, NY, are used for field demonstration.  相似文献   

18.
Measurements of groundwater velocity in discrete rock fractures   总被引:1,自引:0,他引:1  
Estimating groundwater velocity in fracture networks using a Darcy or cubic law calculation is complicated by the wide distribution of fracture aperture often found in these systems and by the difficulty in measuring hydraulic head in discrete fracture features. Although difficult to conduct in a fractured rock setting, the point dilution method can be utilized to collect direct measurements of groundwater velocity in individual fractures. To compare measured against calculated velocities, more than 100 point dilution experiments were conducted within a 35 x 35 m area of a single fracture and in discrete fracture features within a fracture network at a larger scale. The dilution experiments were conducted by isolating a fracture feature in a borehole, measuring the hydraulic aperture, and measuring the decay of an injected tracer due to the advective groundwater flux across the fracture. Groundwater velocity was estimated using the hydraulic aperture and the rate of decay of the injected tracer. Estimates of the local hydraulic gradient were calculated via the cubic law using the velocity estimate and the hydraulic aperture. The results of the tests conducted in the single fracture show variable (1 to 33 m/day) but on average higher velocities in comparison to that measured during a natural gradient tracer experiment conducted previously (in which the effects of matrix diffusion were accounted for) and to that which would be calculated using the cubic law. Based on these results, it was determined that the best estimate of the average groundwater velocity, at the scale of the measurement area used for the cubic law calculations, could only be obtained using the largest apertures in the aperture distribution. Variability of the velocity measurements was also observed over time. Increases in velocity were attributed to the effect of rainfall although concurrent increases in hydraulic gradient were not detected (likely within the tolerance of the measuring devices). The groundwater velocities measured in the fracture network varied over a wider range than at the scale of the single fracture (from 2 to 388 m/day). No correlation, however, was observed between the size of the fracture aperture and measured velocity.  相似文献   

19.
Two-dimensional models for biological clogging and sorptive trace transport were used to study the progress of clogging in a sand box experiment. The sand box had been inoculated with a strip of bacteria and exposed to a continuous injection of nitrate and acetate. Brilliant Blue was regularly injected during the clogging experiment and digital images of the tracer movement had been converted to concentration maps using an image analysis. The calibration of the models to the Brilliant Blue observations shows that Brilliant Blue has a solid biomass dependent sorption that is not compliant with the assumed linear constant Kd behaviour. It is demonstrated that the dimensionality of sand box experiments in comparison to column experiments results in a much lower reduction in hydraulic conductivity (factor of 100) and that the bulk hydraulic conductivity of the sand box decreased only slightly. However, in the central parts of the clogged area, the observations and simulations clearly show a complex picture of flow diverting the injected nutrients around the clogged area as fingers. The calibration of the model demonstrates that the physical and microbiological processes (advection, dispersion, attachment-detachment, growth-decay) are all needed to capture the progress of clogging.  相似文献   

20.
A site in mid-western Sweden contaminated with chlorinated solvents originating from a previous dry cleaning facility, was investigated using conventional groundwater analysis combined with compound-specific isotope data of carbon, microbial DNA analysis, and geoelectrical tomography techniques. We show the value of this multidisciplinary approach, as the different results supported each interpretation, and show where natural degradation occurs at the site. The zone where natural degradation occurred was identified in the transition between two geological units, where the change in hydraulic conductivity may have facilitated biofilm formation and microbial activity. This observation was confirmed by all methods and the examination of the impact of geological conditions on the biotransformation process was facilitated by the unique combination of the applied methods. There is thus significant benefit from deploying an extended array of methods for these investigations, with the potential to reduce costs involved in remediation of contaminated sediment and groundwater.Electronic supplementary materialThe online version of this article (10.1007/s13280-020-01418-5) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号