首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
为研究典型有机污染物在黄河兰州段的吸附规律及影响因素,以黄河兰州段的底泥为供试样品,选择对羟基联苯(phydroxy biphenyl,PHB)为代表性有机污染物,采用批量实验法研究了底泥对PHB的吸附动力学和热力学特征及其影响因素.结果表明,黄河兰州段底泥对PHB吸附动力学的最优模型为准二级动力学模型,吸附热力学过程更符合单分子层吸附的Langmuir等温吸附模型(R20.974),在25~45℃温度范围内,PHB在黄河兰州段底泥上的吸附平均自由能(E)在0.913~1.00 k J·mol~(-1)之间,吸附过程中,ΔGθ和ΔHθ均小于0,ΔSθ均大于0,表明黄河兰州段底泥对PHB的吸附过程主要是物理吸附,属于自发放热过程且体系的混乱度是增加的.分析黄河兰州段底泥对PHB吸附影响因素的结果表明,粒径越小,黄河底泥对PHB的吸附量越大;PHB的初始质量浓度越高,黄河底泥对PHB的吸附量越大;当p H在4.23~7.00之间时,吸附量随pH升高而缓慢下降,当pH7.00时,吸附量随pH升高急剧下降,且在pH=10.3附近,吸附量几乎为零;体系中离子强度增大,PHB吸附量增大,但当离子强度到一定值时,由于竞争吸附作用,会抑制底泥对PHB的吸附,造成吸附量的下降.  相似文献   

2.
为研究典型有机污染物在黄河兰州段沉积物的吸附规律及影响,以黄河兰州段的沉积物为供试样品,选择萘(naphthalene)为代表性有机污染物,采用批量试验法研究了污染物萘在黄河沉积物上的吸附动力学、吸附热力学、初始质量浓度、pH、离子强度、粒径等影响因素以及解吸动力学.结果表明:黄河沉积物对萘的吸附动力学更符合准二级动力学模型,且吸附过程主要分为快吸附(0~4 h)和慢吸附(4~8 h)两个阶段,在8 h左右达到平衡;Freundlich模型能较好地拟合热力学吸附特征.在25~45℃的温度范围内,E(吸附平均自由能)为0.288~0.316 kJ/mol(< 8 kJ/mol),吸附过程中,ΔGθ(吉布斯自由能)小于0,ΔSθ(熵变)与ΔHθ(焓变)均大于0,说明萘在黄河沉积物上的吸附是一个自发的混乱度增大的吸热过程,且以物理吸附为主.影响因素分析结果显示,随着沉积物粒径的增大,萘在其上的吸附量逐渐减小;增大吸附体系中的离子强度时,萘在沉积物上的吸附过程受到抑制;当萘初始浓度增大时,吸附量增加;酸性条件抑制吸附过程,碱性环境促进吸附过程;黄河沉积物对萘的解吸量远小于吸附量,存在解吸滞后现象.研究显示,萘在黄河沉积物中的吸附速率受内部扩散、表面吸附和液膜扩散的共同影响,并且吸附过程同时受到沉积物粒径和溶液的pH和离子强度的影响.   相似文献   

3.
为研究添加秸秆焚烧物对黄土吸附环境激素的影响,以五氯酚(PCP)为目标污染物,采用批量实验法研究了PCP在黄土与添加秸秆焚烧物黄土上的吸附动力学、吸附热力学以及初始浓度、离子强度、粒径、pH值等影响因素.结果表明:添加秸秆焚烧物促进黄土对PCP的吸附,黄土与添加秸秆焚烧物黄土的动力学均较好的符合准二级动力学模型;其热力学吸附过程均更符合Freundlich吸附模型,且吸附等温线符合C-型;温度在25~45℃时,PCP在黄土与添加秸秆焚烧物黄土上的吸附平均自由能(E)小于8kJ/mol,说明其对PCP的吸附主要以物理吸附为主;PCP的吉布斯自由能ΔGθ、焓变ΔHθ和熵变ΔSθ均小于0,表明该吸附属于自发放热且混乱度减小的过程;当pH值在3~7范围内时,PCP的吸附量随pH值升高而逐渐减小,而pH值在7~10范围内时,其吸附量逐渐增大;黄土对PCP的吸附量随其粒径的减小而增大;离子相同时,其浓度越高越有利于PCP的吸附;离子浓度相同时,黄土对PCP的吸附量随其价态的升高而增加.  相似文献   

4.
通过批量吸附实验考察了锆负载颗粒沸石改良底泥对水中磷酸盐的吸附特征,并采用分级提取法分析了被改良底泥中锆负载颗粒沸石所吸附磷酸盐的形态分布特征.结果发现,与Freundlich和Dubinin-Radushkevich模型相比,Langmuir模型可以更好地用于描述改良底泥对水中磷酸盐的吸附等温行为.改良底泥对水中磷酸盐的吸附动力学过程可以较好地采用准二级动力学模型和Elovich模型加以描述,膜扩散和颗粒内扩散共同构成了缓慢吸附阶段速率的限制步骤.溶液共存的SO_4~(2-)和HCO_3~-降低了改良底泥对水中磷酸盐的吸附,而共存的Na~+、K~+、Mg~(2+)和Ca~(2+)却增强了对磷酸盐的吸附,且Ca~(2+)的增强效果大于Mg~(2+),后者的增强效果又大于Na~+和K~+.改良底泥对水中磷酸盐的吸附能力明显强于未改良底泥,前者的最大单位吸附量为336 mg·kg~(-1),明显高于后者的最大单位吸附量(215 mg·kg~(-1)).被改良底泥中锆负载颗粒沸石所吸附的磷酸盐主要以较为稳定的NaOH-P和最为稳定的Res-P形态存在,不容易被重新释放出来.上述的研究结果显示,向底泥中添加锆负载颗粒沸石可以显著增加底泥对水中磷酸盐的吸附能力,锆负载颗粒沸石是一种有希望的可以用于底泥内源磷释放控制的底泥改良剂.  相似文献   

5.
为研究施加腐熟牛粪对黄土吸附BPA(双酚A)的影响,采用批量平衡试验法,分析不同因素[如黄土粒径、体系温度、初始ρ (BPA)、离子强度、pH等]对BPA在黄土及施加牛粪熟肥黄土上吸附量的影响.结果表明:BPA在黄土中的吸附均符合先快后慢并最终达到平衡的吸附规律,准二级动力学模型能较好地描述其吸附动力学过程.BPA在黄土与施加腐熟牛粪黄土上的解吸量远小于其吸附量,说明吸附-解吸过程中存在解吸滞后性.黄土与施加腐熟牛粪黄土对BPA的热力学吸附过程符合Freundlich等温吸附模型,并且吸附等温线符合L-型吸附等温模式,BPA的吸附吉布斯自由能(ΔGθ) < 0,焓变(ΔHθ) < 0,熵变(ΔSθ) < 0,表明该吸附属于混乱程度减小、可自发放热的吸附过程.影响因素分析结果显示,黄土对BPA的吸附量随其粒径的减小而增大,而不论是否施加腐熟牛粪,其对BPA的吸附量均随体系温度升高而减少,且随初始ρ (BPA)的增加而升高.此外,加入的阳离子(Ca2+、Mg2+)会与BPA形成竞争吸附,不论是黄土还是施加腐熟牛粪黄土,其对BPA的吸附量均随加入阳离子浓度的升高而降低.当pH为3~7时,黄土与施加腐熟牛粪黄土对BPA的吸附量随着pH的升高而增加,而pH为7~10时对BPA的吸附量变化较小,表明该范围内pH变化对黄土与施加腐熟牛粪黄土吸附BPA的影响不明显.研究显示,施加牛粪等腐熟肥可能导致BPA的吸附行为发生改变.   相似文献   

6.
生物炭对西北黄土吸附壬基酚的影响   总被引:1,自引:1,他引:0  
张振国  蒋煜峰  慕仲锋  孙航  周琦  展惠英 《环境科学》2016,37(11):4428-4436
以壬基酚(nonylphenol,NP)为目标污染物,采用批量实验法研究其在添加不同温度制备的小麦秸秆生物炭的黄土中的吸附动力学、吸附热力学,以及粒径、pH等影响因素.结果表明,不添加生物炭黄土吸附NP的快反应时间为10 h,而加入生物炭后,黄土对NP吸附的快反应时间缩短,为6 h;且快反应阶段添加生物炭黄土明显比不添加生物炭黄土对NP的吸附量多,但碳化温度不同的生物炭在此阶段吸附量差别较小.黄土和添加生物炭黄土对NP的吸附平衡时间均为16 h且符合准二级动力学模型.无论是否添加生物炭,NP在黄土上的热力学吸附过程都较好地符合Freundlich等温吸附模型,符合L-型吸附等温模式;随着系统温度的升高,黄土和添加生物炭的黄土对NP的饱和吸附量都呈增大趋势;NP的吸附自由能ΔGθ0,焓变ΔHθ0,熵变ΔSθ0,表明此吸附是一个自发吸热且混乱程度增大的吸附过程.在同一温度下,随着生物炭碳化温度的升高,NP在添加生物炭黄土中的吸附量逐渐增大.添加生物炭黄土的粒径越小,对NP的吸附量越大.pH值为4~7时,添加生物炭黄土吸附量随pH值的增大而增加;pH为7~10时,吸附量又随pH值增大而减小;表明添加生物炭黄土在中性范围内对NP的吸附效果最好,酸性和碱性都不利于NP的吸附.  相似文献   

7.
鸟粪石天然沸石复合材料对水中铅离子的去除   总被引:2,自引:1,他引:1  
将一种含鸟粪石的氮磷回收产物(NZ-MAP)应用于水中重金属离子铅的去除.通过XRD、FTIR、SEM/EDS分析手段对NZ-MAP进行表征,并探究投加量、溶液初始pH、反应时间对去除过程的影响.结果表明NZ-MAP材料主要成分为负载有鸟粪石的天然沸石;当投加量为0. 4 g·L~(-1)时,最大吸附量为749. 74 mg·g~(-1),同时NZ-MAP对溶液中Pb~(2+)的吸附量随pH的增大呈先增加后趋于平衡的趋势,其去除机理主要为Pb_(10)(PO_4)_6(OH)_2沉淀作用,且当pH为5. 0时效果最佳.该材料对于水中铅离子的去除过程更加符合准二级动力学模型.为深入探讨共存重金属离子对NZ-MAP去除水中铅离子的影响,发现共存Ni~(2+)和Cu~(2+)对NZ-MAP吸附Pb~(2+)的影响较小,共存Zn~(2+)和Al~(3+)明显抑制了NZ-MAP对Pb~(2+)的吸附.研究显示,NZ-MAP材料可高效去除水中铅离子,可为水体中铅离子的去除提供有效的方法  相似文献   

8.
吸附-解吸是环境中抗生素发生迁移转化的重要过程。文章研究选择鄱阳湖滨湖底泥,采用批平衡实验法进行2种喹诺酮类抗生素的底泥吸附-解吸实验,并考察了pH、阳离子种类及阳离子浓度等因素对吸附的影响。结果表明,底泥对2种喹诺酮类抗生素的吸附过程符合拟二级动力学方程(R~20.99)。在298 K下,Langmuir模型能够更好地描述底泥对2种抗生素的等温吸附行为,底泥对CIP和ENR的最大吸附容量Q_m分别为15.289 0 mg/g和8.649 6 mg/g。底泥对2种抗生素在pH 3~9时均具有较好的吸附率,其中pH=5时其吸附率均达90%以上。底泥对2种抗生素的吸附-解吸行为受到水环境中Ca~(2+)的明显影响。研究表明,2种喹诺酮类抗生素在鄱阳湖滨湖底泥中具有较好的吸附作用,但考虑鄱阳湖流域水环境中以Ca~(2+)为主的常量阳离子的存在,则底泥对2种抗生素的平衡吸附率为40%~50%。研究可为喹诺酮类抗生素在鄱阳湖水环境中的环境行为及归趋研究提供科学依据。  相似文献   

9.
制备高温焙烧改性底泥作为吸附剂,采用静态吸附试验来研究其吸附废水中重金属Mn~(2+)的效果。分别对高温焙烧改性底泥吸附重金属Mn~(2+)的影响因素(Mn~(2+)的质量浓度、吸附时间、p H、吸附剂的投加量)及吸附动力学进行研究。结果表明:改性底泥吸附Mn~(2+)的浓度为10 mg/L、平衡时间为130 min、p H为中性偏酸(范围4~7)、投加量为30 g/L时效果最佳,并对数据进行拟合且符合Langmuir和Freundlich吸附等温方程,但拟合效果更好地符合Freundlich吸附等温方程。在高温焙烧改性底泥对Mn~(2+)的吸附阶段用伪一级吸附动力学方程和伪二级吸附动力学方程进行拟合,其结果表明吸附过程更好地遵循伪二级吸附动力学方程,表明以化学吸附为主,对Mn~(2+)的平衡吸附量为11.560 7 mg/g。  相似文献   

10.
城市污水处理厂污泥对水中硫化物的吸附特性   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究城市污水厂污泥对水中硫化物的吸附特性,从3座城市污水处理厂采集回流污泥,考察了硫化物浓度、温度、pH值和其他离子对污泥吸附硫化物的影响.结果表明,污水厂回流污泥对硫化物的吸附等温线可以用Langmuir方程很好地描述,其最大硫化物吸附量为15~27mg/g-干污泥.在温度为5~35℃条件下,吸附量随温度上升而增加,表明该吸附为吸热过程.pH值在2~7范围内,pH值对污泥吸附硫化物的影响不大,当pH值低于2时,污泥对硫化物的吸附量随pH降低显著减小.硫化物可能以离子形式被污泥吸附,该过程为化学吸附过程.水中存在0~25mg/L Cl-或0~12mg/L SO2- 4不影响污泥对硫化物的吸附量.  相似文献   

11.
采用沉淀法合成了纳米级二氧化锆,利用SEM、XRD技术,对纳米ZrO_2进行微观形貌和粒径分析,探讨了吸附时间、吸附温度、pH值以及Pb~(2+)初始浓度对吸附的影响,分析了吸附热力学性质和动力学特性,初步探讨了吸附机理。研究结果表明:在吸附温度为40℃,Pb~(2+)初始浓度为10 mg/L,pH为4.5时,吸附反应40 min后,最大吸附量为17.8 mg/g;纳米ZrO_2对Pb~(2+)吸附等温线符合Langmuir模型,其吸附动力学过程以准二级动力学方程拟合效果最好;温度在303~323 K时,纳米ZrO_2吸附Pb~(2+)的吉布斯自由能ΔG~o<0、焓变ΔH~o<0、熵变ΔS~o<0,表明纳米ZrO_2对Pb~(2+)的吸附是一个自发放热过程。  相似文献   

12.
酸碱复合改性海泡石亚结构特征及其对Cd(Ⅱ)吸附性能   总被引:2,自引:1,他引:1  
为强化海泡石(Sep)对溶液中Cd~(2+)的吸附性能,采用酸碱复合改性处理获得改性海泡石(ABsep),借助氮气吸脱附等温线、SEM-EDS、TEM、FTIR和XRD等技术分析了改性前后海泡石的结构特征,采用静态吸附实验研究了时间、ABsep/Cd~(2+)质量比、温度、吸附剂用量、pH及共存离子等因素对ABsep吸附Cd~(2+)的影响.结果表明,ABsep孔隙结构发达,比表面积、平均孔径和孔容分别较改性前增加66.1%、15.7%和34.8%,可交换性离子含量有所增加,主要成分为SiO_2和Mg(OH)_2.改性前后海泡石对Cd~(2+)吸附过程能较好地以准二级动力学方程和Langmuir模型进行拟合,且均为自发吸热反应,以化学吸附为主并伴有物理性吸附;最佳ABsep/Cd~(2+)质量比为3:1;298 K时Sips拟合ABsep对Cd~(2+)最大饱和吸附量为142.43 mg·g~(-1),为改性前海泡石的3.55倍;随着吸附剂投加量的增加,Cd~(2+)吸附量表现为先增大后减小,最佳用量为0.3 g·L~(-1);ABsep对Cd~(2+)的吸附量随溶液初始pH的升高而增加最佳pH为7;不同浓度K~+、Na~+、Mg~(2+)和Ca~(2+)的存在均会对Cd~(2+)的吸附产生一定的抑制作用其中Mg~(2+)的抑制作用最强.  相似文献   

13.
为了探究菌体-炭复合材料对废水中Cu~(2+)的吸附性能,文章将生物炭(B)以共沉淀法制得磁化生物炭(MB),并将不同质量啤酒酵母菌(S)(0、10、20、40 g)分别负载于B和MB表面,形成了B+S_0(生物炭+0 g啤酒酵母菌,下同)、B+S_(10)、B+S_(20)、B+S_(40)、MB+S_0(磁化生物炭+0 g啤酒酵母菌,下同)、MB+S10、MB+S20和MB+S408种混合材料。采用批处理法研究各复合材料对Cu~(2+)的等温吸附和热力学特征,并分析不同温度、pH值和离子强度下对Cu~(2+)吸附能力的影响。结果表明:(1)B+S和MB+S复合材料对Cu~(2+)的最大吸附量qm分别在248.67~292.70 mmol/kg和256.50~299.11 mmol/kg之间,且最大吸附量均表现为B/MB+S40B/MB+S0B/MB+S20B/MB+S10的趋势。(2)温度为10~40℃范围时,各复合材料对Cu~(2+)吸附量均随温度升高而增大,表现为增温效应。吸附过程均为自发、吸热和熵增的过程,且自发性和温度成正比。(3)在pH为3~5的范围内,B+S、MB+S材料对Cu~(2+)的吸附量均随pH的升高而增加;离子强度在0.01~0.5 mol/L范围内,2类复合材料对Cu~(2+)吸附量随着离子强度的增加均呈现先增加后减小的趋势。  相似文献   

14.
比较4种金属氧化物纳米颗粒(nMgO,nAl_2O_3,nTiO2和nFe_2O_3)对水体P的吸附性能,并探讨了pH、吸附时间、共存离子等因素对nMgO吸附P的影响,用XRD和XPS分析了nMgO对P的吸附机制,最后通过小青菜盆栽实验法探讨nMgO从养殖废水中吸附回收P的应用潜力.结果发现,在pH3.0~8.0范围内,nMgO对P的吸附量显著高于nAl_2O_3、nTiO_2和nFe_2O_3,4种纳米颗粒对P的吸附量分别可达40、31.77、15.93和13.08mg/g.吸附后P的解吸可逆性较差.nMgO对P的吸附能在0.5h内达到吸附平衡,P的吸附符合准二级动力学过程.体系共存的等量F~-、Cl~-、NO_3~-、SO_4~(2-)、Na~+、K~+和NH_4~+离子对nMgO吸附P无显著影响,Mg~(2+)和Ca~(2+)离子对P吸附具有促进作用.nMgO对P的吸附等温线可用Langmuir模型描述,最大吸附量达139.3mg/g.XRD和XPS分析表明,nMgO对P的吸附是伴有静电吸引的以表面络合沉淀反应为主的吸附过程.nMgO能有效地从养殖废水中吸附回收P,吸附P的nMgO作为肥料,能使小青菜干物质量从0.31g/kg土增加到0.96g/kg土.  相似文献   

15.
不同热解及来源生物炭对西北黄土吸附敌草隆的影响   总被引:3,自引:1,他引:2  
孙航  蒋煜峰  石磊平  慕仲锋  展惠英 《环境科学》2016,37(12):4857-4866
以西北黄土为研究对象,采用批量法研究不同温度下制得的生物炭对西北黄土吸附敌草隆的影响.结果表明,敌草隆在添加不同质生物炭黄土上的动力学吸附过程较好地符合准二级吸附动力学模型,且吸附过程主要分为快吸附(0~8 h)和慢吸附(8~12 h)两个阶段,在12 h左右达到平衡;热力学较好地符合Freundlich等温吸附模型;添加生物炭的黄土对敌草隆的吸附量随着温度的升高而增大,且吸附过程中ΔG~θ小于0,ΔH~θ和ΔS~θ大于0;不加生物炭的黄土对敌草隆吸附量则随着温度的升高而降低,且吸附过程中ΔG~θ和ΔH~θ小于0,ΔS~θ大于0;在体系温度范围内,E(吸附平均自由能)为1.29~5.00 k J·mol-1,表明无论是否添加生物炭,黄土对敌草隆的吸附都以物理吸附为主.其影响因素分析结果显示,随着生物炭热解温度的升高,溶液中敌草隆的平衡浓度降低,平衡吸附量增大;添加生物炭的黄土对敌草隆吸附量在0.5~6 mg·L-1浓度范围内快速上升,之后吸附量随初始浓度的升高缓慢增加并逐渐趋于平衡;溶液pH对黄土吸附敌草隆有一定影响,但影响不大.  相似文献   

16.
铜绿假单胞菌对铜和铅的吸附   总被引:3,自引:0,他引:3  
研究了铜绿假单胞菌(Pseudomonas aeruginosa)对Cu和Pb的吸附特性.结果表明,相同条件下,该菌株对Cu~(2+)的吸附率低于Pb~(2+).对于单一重金属体系,吸附率均随时间的延长先上升后平稳变化,2 h达到稳定.吸附率随投菌量的增加先迅速增加,之后趋于平稳.对于Cu~(2+),投菌量为1 g·L~(-1)时吸附率达到稳定,而Pb~(2+)的吸附效果达到平稳时的投菌量为0.5 g·L~(-1).单位质量菌体对Cu~(2+)、Pb~(2+)的吸附量随投菌量的增加而下降.pH为3时,菌体的吸附效果较差,当pH为5~8时,2种重金属的吸附效果较高.对于活菌,Pb~(2+)对菌体吸附Cu~(2+)有抑制作用,而Cu~(2+)对菌体吸附Pb~(2+)的影响无明显规律.对于失活菌,P.aeruginosa吸附Pb~(2+)和Cu~(2+)的效果均随共存重金属浓度的增大而降低,但Cu~(2+)对Pb~(2+)的影响比Pb~(2+)对Cu~(2+)的影响更显著.扫描电镜观察发现,吸附后的菌体较吸附前聚集性更好.总体而言,P.aeruginosa能对水体中共存的Cu~(2+)和Pb~(2+)有较好的吸附效果.  相似文献   

17.
研究了应用低成本吸附剂废酵母菌经微波改性后去除溶液中的重金属铜离子.并研究了在pH值、温度、初始浓度、酵母菌吸附量等因素的影响下,废酵母菌对水中铜离子的吸附效率.研究结果表明,在pH为7.0、温度为328 K、Cu2+初始浓度为40 mg/L时,微波改性酵母菌的最大吸附容量为41.84 mg/g.吸附过程符合Langmuir吸附等温模式.吸附过程的热力学常数△G0、△H0和△S0分别为-3.512 54 kJ/mol,3.290 96 kJ/mol和20.181 46 J/(mol·K).表明废酵母菌对Cu2+的吸附是自发的、吸热反应.微波改性废酵母菌对Cu2+的吸附动力学模型能够较好地符合准二级动力学方程.  相似文献   

18.
黑土不同粒径有机-矿质复合体对镉的吸附特性   总被引:5,自引:1,他引:4  
采用振荡平衡法研究了黑土不同粒级有机-矿质复合体对Cd2+的吸附等温过程和吸附动力学过程,并采用常见数值模型进行了拟合. 结果表明,原土及各粒级复合体对Cd2+的吸附量随平衡液中ρ(Cd2+)的增加而增加. 各粒级组分对Cd2+的吸附量表现为黏粒>粉粒>原土>粗砂>细砂. Langmuir和Freundlich方程对Cd2+的等温吸附过程均有较好的拟合效果,线性方程拟合效果较差. 最大吸附量与吸附作用强度均呈随粒径增大而减小的趋势. 对影响最大吸附量和吸附作用强度的因子进行回归分析表明,w(有机质)、CEC(阳离子交换量)和比表面积的影响较大,其中w(有机质)是最主要因素,CEC和比表面积的影响次之. 各粒级复合体对土壤吸附Cd2+的贡献率为粉粒>细砂>黏粒>粗砂,99%的Cd2+吸附在<200 μm的组分上. 不同粒级组分对Cd2+的吸附动力学过程可分为0~20 min的快速反应阶段(吸附量均达到饱和吸附量的90%以上)和慢速反应阶段. 各组分对Cd2+的吸附符合二级动力学过程,表明吸附过程以化学吸附为主,并且吸附速率随颗粒粒径的增大而减小.   相似文献   

19.
壳聚糖/PVA微粒上Cu2+的吸附平衡与动力学   总被引:4,自引:0,他引:4       下载免费PDF全文
采用粒径<200μm、在酸碱介质中溶胀率小且能稳定存在的壳聚糖/PVA微粒对Cu2+的吸附进行了研究,结果表明,在pH 6,室温条件下,其饱合吸附量达56.0mg/g,随温度升高,吸附量降低.通过计算不同温度下各热力学参数△G0、△H0和△S0,证实该吸附为自发的放热过程.对实验数据运用相关数学模型拟合,显示等温吸附平衡符合Langmuir模型,吸附过程动力学更适合二级反应,被吸附在壳聚糖/PVA微粒上的Cu2+,可被0.01mo/L的EDTS或HNO3溶液快速地脱附出来,其洗脱率分别为85.3%和65.9%.  相似文献   

20.
为研究我国中原城市群中心城市郑州市的不同粒径大气颗粒物的组成特征,利用八级撞击式采样器在夏、秋季进行大气颗粒物分级采样,利用离子色谱测定Na~+、Ca~(2+)、NH_4~+、K~+、Mg~(2+)、F~-、Cl~-、NO_3~-和SO_4~(2-)共9种离子的浓度,利用在线离子色谱分析仪监测颗粒物中硝酸盐的实时浓度.结果表明,采样期间郑州市水溶性离子平均浓度为(70. 9±52. 1)μg·m~(-3),其中监测的9种水溶性离子浓度从大到小顺序依次为:NO_3~- SO_4~(2-) NH_4~+ Ca~(2+) Na~+ Cl~- Mg~(2+) K~+ F~-、NO_3~-、SO_4~(2-)和NH_4~+占总水溶性离子的质量分数为79. 9%;无论在秋季或夏季SO_4~(2-)主要集中在≤1. 1μm粒径段上,而NO_3~-主要集中在0. 65~3. 3μm粒径段上. NO_3~-和SO_4~(2-)夏季和秋季均呈双峰分布,主要分布于细粒子中; NH_4~+夏季呈双峰分布,秋季呈单峰分布,表现出季节变化.郑州市夏季臭氧污染严重,O_3与NO_3~-明显地"错峰"现象,表示大气中存在光化学反应;秋季颗粒物污染严重,采样期间[NO_3~-]/[SO_4~(2-)]的比值远大于0. 5,移动源成为颗粒物重要的来源.夏季NOR、SOR峰值在1. 1~2. 1μm粒径段上,秋季两者峰值在0. 65~1. 1μm粒径段上;夏季硫的气-粒转化大于氮的转化,而秋季则相反.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号